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Abstract

In today’s world, technological advancements have entangled our financial, social
and many more other aspects of lives to the internet or some network. Moreover,
with the development of IoT technologies, it has spread over to our transportation,
home-appliances and more devices. It is also a security risk because all of our
sensitive and private knowledge on the Internet is exposed to a growing amount of
cyber-attacks. An Intrusion Detection System can identify a cyber-attack while it is
ongoing or prior to it. We are conscious of the evolving Machine Learning and Deep
Learning developments, the most sophisticated multi-functional methods created by
humans that can be utilized to overcome this issue. Alongside identification, precise
classification of intrusion is of considerable significance for the administrator to take
decisive actions. In this study, we have used the dataset CIC-IDS-2018 that is the
biggest and most recent labeled dataset of intrusions. This dataset comprises of six
varieties of attacks. Our thesis proposes a CNN Model with mish activation function
and Ranger optimizer. The model reaches an accuracy of 0.989 that is the highest
in multiclass classification with this dataset.

Keywords: Intrusion Detection System (IDS), Multiclass Classification, CNN,
DNN, Machine Learning.

iii



Acknowledgement

We are very much thankful to Dr. Muhammad Iqbal Hossain for his precious ideas
and continuous supervision which made us to complete our project. Our thanks and
appreciations also go to people who have willingly helped us out with their abilities
in this thesis

iv



Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Tables vii

List of Figures viii

Nomenclature ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives and Contribution . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Intrusion Detection System . . . . . . . . . . . . . . . . . . . 5
2.1.2 Machine Learning and Deep Learning Algorithms . . . . . . . 7

2.1.2.1 Convolutional Neural Network . . . . . . . . . . . . . 7
2.1.2.2 Deep Neural Network . . . . . . . . . . . . . . . . . 8
2.1.2.3 Random Forest Classifier . . . . . . . . . . . . . . . 8
2.1.2.4 Decision Tree Classifier . . . . . . . . . . . . . . . . 9
2.1.2.5 Extra Tree Classifier . . . . . . . . . . . . . . . . . . 9
2.1.2.6 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Dataset 13
3.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Type of Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Class Imbalance in Dataset . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Features in Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



4 Methodology 21
4.1 Work Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Split Dataset into Training and Test Set . . . . . . . . . . . . 23
4.1.4 Synthetic Minority Oversampling Technique (SMOTE) . . . . 23
4.1.5 Training the Classifier . . . . . . . . . . . . . . . . . . . . . . 23
4.1.6 Evaluating the Performance . . . . . . . . . . . . . . . . . . . 23

5 Implemented Algorithms 24
5.1 Proposed CNN Model Structure . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Proposed CNN Model Parameters . . . . . . . . . . . . . . . . 24
5.1.2 Activation function . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 DNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Random Forest Classifier Parameters . . . . . . . . . . . . . . . . . . 27
5.4 Decision Tree Classifier Parameters . . . . . . . . . . . . . . . . . . . 27
5.5 Extra Tree Classifier Parameters . . . . . . . . . . . . . . . . . . . . . 28
5.6 Bagging Classifier Parameters . . . . . . . . . . . . . . . . . . . . . . 28

6 Evaluation 29
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.1 Result of CNN model . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.2 Result of DNN model . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.3 Result of Random Forest Classifier . . . . . . . . . . . . . . . 31
6.2.4 Result of Decision Tree Classifier . . . . . . . . . . . . . . . . 31
6.2.5 Result of Extra Tree Classifier . . . . . . . . . . . . . . . . . . 32
6.2.6 Result of Bagging Classifier . . . . . . . . . . . . . . . . . . . 32

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion 36

References 39

vi



List of Tables

3.1 Type of attacks in CSE-CIC-IDS2018 dataset. . . . . . . . . . . . . . 15
3.2 Number of occurrences of each attack type in CSE-CIC-IDS2018 . . . 16

6.1 Performance summary of CNN model . . . . . . . . . . . . . . . . . . 30
6.2 Performance summary of DNN model . . . . . . . . . . . . . . . . . . 30
6.3 Performance summary of Random Forest Classifier . . . . . . . . . . 31
6.4 Performance summary of Decision Tree Classifier . . . . . . . . . . . 31
6.5 Performance summary of Extra Tree Classifier . . . . . . . . . . . . . 32
6.6 Performance summary of Bagging Classifier . . . . . . . . . . . . . . 32
6.7 Summarized result of all trained model in the thesis . . . . . . . . . . 33

vii



List of Figures

2.1 Basic design of IDS system . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Convolutional Neural Network Structures [13] . . . . . . . . . . . . . 7
2.3 Multilayer perceptron with two hidden layers [14] . . . . . . . . . . . 8

3.1 Heatmap of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Percentage instance of classes in CSE-CIC-IDS2018 . . . . . . . . . . 16
3.3 Features in CIC-IDS2018 dataset . . . . . . . . . . . . . . . . . . . . 20

4.1 Work Plan for proposed model . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Zero variance features in CSE-CIC-IDS2018 dataset . . . . . . . . . . 22

5.1 Structure of Convolution Layers in proposed CNN model . . . . . . . 25
5.2 Structure of Fully Connected Layers in proposed CNN model . . . . . 25
5.3 Mish Activation Function [30] . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Hyperparameters for the optimizer . . . . . . . . . . . . . . . . . . . 27
5.5 Parameters for Random Forest Classifier . . . . . . . . . . . . . . . . 27
5.6 Parameters for Decision Tree Classifier . . . . . . . . . . . . . . . . . 27
5.7 Parameters for Extra Tree Classifier . . . . . . . . . . . . . . . . . . . 28
5.8 Parameters for Bagging Classifier . . . . . . . . . . . . . . . . . . . . 28

6.1 Accuracy comparison of CNN and other models. . . . . . . . . . . . . 33
6.2 Precision comparison of CNN and other models. . . . . . . . . . . . . 34
6.3 Recall comparison of CNN and other models. . . . . . . . . . . . . . 34
6.4 F1-score comparison of CNN and other models. . . . . . . . . . . . . 34

viii



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ANN Artificial Neural Network

CNN Convolutional Neural Network

DDoS Distributed Denial of Service

DNN Deep Neural Network

DoS Denial of Service

FN False Negative

FP False Positive

H(S) The Entropy of set S

HIDS Host Intrusion Detection System

IDS Intrusion Detection System

IoT Internet of Things

LSTM Long Short Term Memory

LV Q Learning vector quantization

MLP Multilayer Perceptron

NIDS Network Intrusion Detection System

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

T the number of subset created from splitting set S by a given attribute A such
that,

S = ∪t∈TT

TN True Negative

TP True Positive

H(t) Entropy of subset t

P(t) The proportion of the number of elements in t to the number of elements in
set S
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Chapter 1

Introduction

Intrusion or cyber invasions are the technological counterpart to a robbery in real
life that can be potentially more deleterious as the victim is unaware of the act.
We are conscious of how valuable can information be in this age. An intruder is
a person tries to gain unauthorized access to a network or personal computer to
extract this invaluable information or incapacitate the system to interrupt regular
activities. The target of the attacker may be an important person, organization or
a regular person. Basically, it can be anyone who is available on the internet.

Exponential rise of Internet of Things (IoT) have allowed users to connect every
aspect of their life to the internet and to be recorded digitally [1]. It integrated into
our appliances (e.g. refrigerator, lights, security system) and lifestyle (e.g. smart
watches, smartphones). As this information are deposited in a server, they are sus-
ceptible to any data theft or server breach. In March of 2017, One of the North
America’s biggest consumer credit reporting agency ‘Equifax’ had a data breach
where hundreds of millions of people’s private information were stolen through a
breach in their server network [2]. The personal data is offered to prospective buy-
ers for a significant amount. It is frightening to think about the minimal privacy we
have with our data. Moreover, several cases of cyber-attacks have been carried out
to take down a competing, steal sensitive information from country officials or hack
into the military database. Infiltrating inside any of these networks would cause a
huge crisis. This is why many developing countries are spending their considerable
resources in their cybersecurity department. In March 2020, U.S. Health and Hu-
man Services suffered a DDoS attempt from cyber attackers to halt their routine
network operation during COVID-19 pandemic [3].

An intrusion detection system has one primary objective that is to monitor and iden-
tify malicious activities from third party attacker. It is understood as a secondary
stage of protection. The attackers can weaken the first stage such as firewalls us-
ing various utilities and mechanisms. Therefore, it is very crucial to have an IDS
on the network for protect against unexpected threats. Intrusion detection system
can be classified to two fundamental classes - signature-based and anomaly-based.
Signature based IDS works by matching new threats with recorded threats for iden-
tification. On the other hand, Anomaly based IDS has been modeled after learning
through patterns of intrusion or anomaly to identify unknown attacks. We can
categorize intrusion detection can be based on network or host [4], [5].
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1.1 Motivation

Tremendous amount of research has been conducted to develop and implement an
effective Intrusion Detection mechanism. This concept of attack detection first ap-
peared in 1980 intending to improve computer security and prevent unauthorized
access to computer information [6]. Researchers are trying to provide new meth-
ods to combat with dangerous online invasions. This field is emerging due to the
changing nature of Cyber-attacks and more consciousness among the users to pro-
tect themselves virtually. Online security seems to be fatal, to some, a priority over
offline security. However, for independent researchers, it has been cumbersome due
to lack of valid datasets since Intrusion Detection System is highly data dependent.
Study of new types and signature of attacks are compulsory. We have found that
CSE-CIC-IDS2018 [7] is the most recent dataset available in this field which is based
upon network flow data. This dataset contains six types of intrusion labeled inside.
Humanly it is not possible to study high dimensional statistical data and find pat-
terns of an attack. Machine Learning and Deep Learning has come forward in last
decade to ease the problem. These techniques allow researchers to extract, analyze
and find pattern in data which would take years for an analyst to do manually.
Moreover, We and our supervisor have our utmost faith that we could come forward
with an efficient Deep Learning Model that would detect an attack and accurately
classify.
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1.2 Problem Statement

Cyber-attacks are the virtual equivalence of real-life crimes. It is threatening con-
sidering that we frequently are not conscious of an attack until it is too late. An
intrusion can be seen as a burglary or invasion to our houses. There have been an
increased number of network breaches and data theft in recent years. On Febru-
ary 4, 2018 Bangladesh Bank faced the one of the biggest security breaches popu-
larly known as Bangladesh Bank cyber heist. The attackers made a breach to the
Bangladesh Bank System altering the software that connects to SWIFT network
and made 35 transaction requests from Bangladesh Bank SWIFT account at Fed-
eral Reserve Bank of New York to send one billion dollars to different bank account
around the world [8]. However, they were only successful in transferring $81 million
dollars and rest of the transactions were denied. Still $81 million for any country
is a fatal damage and this robbery did not require a team of robbers or a heist
team, the entire heist was carried out remotely. In This unfortunate event exhibits
the severity of intrusions and cyber-attacks. Data theft is another major concern
that have been emerging recently in large. In February 2019, 617 Million online
identities were stolen through few different network attacks and they were put up
for purchasing on Dark web which can be seen as the black market of internet. The
database was enlisted on Dream Market, a dark web market place that provides
drugs, weapons and other illegal commodities. These accounts range from fitness,
photography to heritage services. This growth in personal data have seem to scare
the customers and lose their trust over the services causing many of the businesses
to lose their users. Therefore, it is indispensable for any network to identify an
attack and notify the network administrator to take commendable actions to ob-
struct treacherous online invasions [9]. However, it has been noticed that most IDS
models are only able to detect and not identify the type of an attack as a result of
binary classifiers. There are not a lot of proposed models based on latest intrusion
data that provide very high accuracy in terms of multiclass attack classification. It
is crucial for system administrator to understand what type of attack the system
is undergoing to act on it since cyber-attacks are tricky and time is influential on
the damage. The higher time it takes to act on it, the bigger the damage usually
is. Therefore, we cannot argue with the fact that classification of attacks is vital
for Intrusion Detection System. This paper proposes a Deep Learning Model using
that is efficiently, effectively able to achieve a very high accuracy in detecting and
classifying the major attack types.
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1.3 Objectives and Contribution

Our thesis focuses on applying Convolutional Neural Network (CNN) architecture
in intrusion detection and classification. Some modifications and tweaking were
made such as using mish activation function, Ranger optimizer to yield the finest
performance. We have used an up to date dataset available from CIC (Canadian
Institute of Cybersecurity) named CIC-IDS-2018 that is a successor to CIC-IDS-
2017 dataset and resolved the flaws with the previous one. In our research, we
have trained other previously used machine learning algorithms that performed well
with this dataset such as Random Forest Classifier, Extra Tree Classifier, Decision
Tree Classifier, Bagging Classifier to compare with our model. We also present a
Deep Neural Network (DNN) architecture that performs better that the classical
machine learning algorithms but cannot outperform the CNN model. We believe
this model can be implemented in any networks with the help of correct framework
to accurately identify any attacks in real-time.

1.4 Thesis Structure

Chapter 1: Introduction where Motivation, Problem Statement, Objectives and
Contributions are discussed

Chapter 2: Related Work where background and literature review is discussed. The
background has two more parts, these parts are divided into Intrusion Detection
System where history of IDS has been discussed and Machine Learning and Deep
Learning Algorithms where we provide detailed description about the implemented
algorithms.

Chapter 3: Dataset where Dataset Description, Type of Attacks, Class Imbalance
in Dataset and Features in Dataset are discussed

Chapter 4: Methodology where work plans are discussed. In the work plan sec-
tion, we have splitted the plan into Dataset Pre-processing, Feature Selection, Split
Dataset into Training and Test Set, SMOTE oversampling, Training the Classifier,
Evaluating the Performance.

Chapter 5: Our Implemented algorithms where we have talked about DNN archi-
tecture, Random Forest Classifier Parameters, Extra Tree Classifier Parameters,
Decision Tree Classifier Parameters, Bagging Classifier Parameters and our pro-
posed CNN structure which would have also three parts and they are Proposed
CNN Model Parameters, Activation Function and Optimizer.

Chapter 6: Evaluation includes Experimental Setup, Results where we show result
of CNN Model along with the other models and after that we have analyzed the
result.

Chapter 7: Conclusion, we have concluded the research till now and talked about
our future plans.
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Chapter 2

Related Work

This chapter has been divided into background and literature review.

2.1 Background

2.1.1 Intrusion Detection System

Network base services have become a common thing in our lives because of huge
level of using computers in all over the world. With increasing of the usage, dif-
ferent types of problems also started growing and for preventing these problems
people started using Anti-Virus, Firewall, Intrusion Detection System (IDS) and
many more tools [10]. Basically, system administrator would detect malicious activ-
ities by carefully monitoring user’s actions. The following advancement in detecting
intrusion included audit logs which were checked by system administrators for signs
of suspicious movement. In late of 1970 and earlier in 1980, administrators usu-
ally printed audit reports on paper which frequently assembled in a shape of man’s
height after the end of the week. This manual procedure was not effective at all to
stop attacks. The time when storage became easily available, audit logs migrated
online. In spite of developing programs by researchers, analysis was slow. In early
of 1990, real time intrusion detection began. This has allowed the identification of
attacks and failed attacks as they occurred and that was needed to be solved by real
time response. More recent efforts in intrusion prevention activities have focused
on designing technologies that consumers of large networks can deploy effectively.
It is not a simple task to consider the growing security issues, endless new types of
attack and constant changes in the computer environment surrounding it [11].
Intrusion detection is divided into two forms based on their placement: 1) Network
Intrusion detection 2) Host Intrusion Detection. Network intrusion Detection sys-
tems (NIDS) are ideally positioned to make a judgment about whether there has
been an unauthorized or unusual interference in the network. This contributes to
the system reminding the administrator of the attack. HIDS works inside a net-
worked system by monitoring and analyzing their host’s application and system.
A HIDS just tracks the data that comes in and out of the system and notifies the
administrator or client about any bizarre behavior. Intrusion can usually be identi-
fied by 1) Signature-based IDS and 2) Anomaly-based IDS, A signature-based IDS
tracks all network packets and identifies threats by looking for unique patterns or
identified malicious instructions. An anomaly-based IDS tracks network traffic and

5



correlates it to an defined standard to decide what the network considers natural
in terms of latency, protocols, interfaces and other resources. Hybrid monitoring
blends exploitation with the identification of abnormalities. It helps to raise the
identification rate of documented intrusions and to lower the false positive rate of
attacks which are not known. Based on reaction we can categorize IDS in active IDS
and Passive IDS. Active IDS will take prompt action and notify the administrator
of every threat. At the other side passive IDS stores intrusion log information and
only notifies the user after that. The IDS can be broken down into Online IDS and
offline IDS depending on frequency use. Offline IDS is used to evaluate pre-logged
data to detect attacks where Online IDS is Offline IDS analyzes pre-logged data to
detect intrusion while Online IDS utilizes fresh data to detect an assault [12].

Figure 2.1: Basic design of IDS system
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2.1.2 Machine Learning and Deep Learning Algorithms

2.1.2.1 Convolutional Neural Network

Convolutional Neural Network is a deep learning algorithm which is very effective
in computer vision sector such as recognizing persons, digits and various types of
classification. Convolutional Neural Network derived its name from Convolution
operation that is used to extract information from predefined kernel or window.
Small Matrix Numbers are taken in this process or also known as kernel and Move
it over the image and convert it according to kernel values. In this process subsequent
feature maps are calculated in following way:

G[m,n] = (f ∗ h)[m,n] = f(x) =
∑
j

∑
k

h[j, k]f [m− j, n− k] (1)

In this case, the input image is f and the kernel is h. The matrix rows and column
indexes are respectively m and n.

Figure 2.2: Convolutional Neural Network Structures [13]
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2.1.2.2 Deep Neural Network

Neural networks are very much similar to neurons in human brain. The architecture
of artificial neural network is that it consists of one input layer, one output layer,
and there are one or more hidden layers in between of those. Neural network was
first introduced in 1943 and it has been improving ever since. Figure 2.3 shows
the configuration of a multilayer perceptron (MLP) with two hidden layers which is
the feed forward neural networks architecture. The signals are propagated via an
activation function from the input layer to the output layer. Outputs of a neuron
are calculated as (2) where z is the output of a neuron determined by input x and
weight w. So, it is the sum of multiplication of input and weight. This output then
passes through an activation function. The input for next layer is the output from
activation function (3). These weights are updated by the back propagation (BP)
algorithm. A Deep Neural Network (DNN) is also a BP multilayer percentron but
with more than two hidden layers.

z = wTx+ b (2)

y = σ(z) (3)

Figure 2.3: Multilayer perceptron with two hidden layers [14]

2.1.2.3 Random Forest Classifier

One commonly utilized algorithms for grappling with both categorical targets or
grouping problems as well as continuously defined (numerical) targets such as re-
gression problems is Random Forest. The algorithm uses multiple decision trees,
each with the same nodes, but with different data leading to specific leaves. It
merges decision-making from different decision trees to find a solution that reflects
the sum of all those decision trees. Actually, this algorithm uses randomly splits the
entire data. After that, it uses a variety of decision trees for each data sample and
grabs predictions from each tree. Finally, there is a voting system; prediction with
most votes is selected as the final prediction. So, it increases the predictive power
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of algorithm along with preventing overfitting. This is an assembly of randomized
decision trees that are in turn used for classification and regression.

2.1.2.4 Decision Tree Classifier

Decision tree can be defined as a supervised learning algorithm that can measure as
well as evaluate problems of regression and classification. This tree is best equipped
to be able to predict the response for a given data. The decision tree structure
begins from the root node that defines the tree’s principal junction. It represents
all the given samples and will be further divided into sub nodes. Dividing a node
to sub-node is known as splitting. The resulting sub-nodes divide into more sub-
nodes, these are called decision nodes. Leaf nodes are those nodes which are unable
to divide anymore. Pruning is the process of removing a node from its tree whereas
splitting is the addition of a node.

Each node in the tree describes the test case specific attributes and the outgo-
ing/descending edge represents the answers to the question. This action is repeated
for every node in the tree until each test case is classified. Decision tree uses multiple
algorithm to divide a specific node in order to create multiple sub-nodes. The homo-
geneity of the resultant sub-node increases with the increase in creation of sub-nodes.

In decision tree selecting the attribute for the root node has to be identified. The
best methods to identify these attributes are:

1) Gini Index: Gini Index measures the probability of an randomly chosen variable
could be wrong misclassified.

Gini = 1−
C∑
i=1

P 2
i (4)

2) Information gain: When the root node splits into sub nodes, the Entropy changes.
The Entropy is the randomness of an attribute of set S.

IG(A, S) = H(S)−
∑
t∈T

P (t).H(t) (5)

H(S) =
c∑

i=1

pi.log2(pi) (6)

2.1.2.5 Extra Tree Classifier

Another name for Extra Tree classifier is Extremely Randomized Trees classifier,
which is an adaptation of a random forest. The whole sample is used for each stage
and decision boundaries are selected at arbitrarily instead of the best like Random
Forest. Considering the use case scenarios, output might be like a regular random
forest, often just a little bit better.
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2.1.2.6 Bagging

”Bagging” or bootstrap aggregation is a kind of Machine Learning method used by
ensemble learning which build platform for machine learning. This is very simple
but a powerful ensemble method. This idea comes on a hope of getting better
fitting for models. Main thinking of bagging is to consider each bagging part as
an individual brain. Machine Learning might have a single smart brain without
bagging to work but with bagging the process is done by many weak brains or less
strong brains together. As different brains would have different domain of thinking
and sometimes those thinking may be overlapped, we would get a better result that
we would get from a single brain.
Overfitting the training data with individual trees while bagging with decision trees
is not that distressing. To ensure effectiveness, every decision trees tend to be grown
to the depth and trees are not removed as well. Those trees should have strong
variance as well as low bias. The bagging parameter is the amount of samples
and therefore the amount of trees to be used. These numbers are determined by
growing the sum of trees that continues running until precision starts to demonstrate
improvement.
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2.2 Literature Review

Ambwani et al. [15] implemented SVM for multiclass classification using KDD’99
dataset. This multi class classification model was used to correctly classify five
classes in the given dataset.
Gao et al. [16] used the KDD’99 dataset by DARPA to implement an intrusion
detection system. In the study, Deep Belief Networks (DBN) was used to perform
malicious software classification. Comparing the results of DBN to ANN and SVM,
DBN has an accuracy of 93.49% while the other two yields accuracy of 82.30% and
86.82% respectively.
Zhang et al. [17] proposed a LeNet-5 and LSTM neural network-based model for
intrusion detection. It is found that CNN+LSTM2 model has the best performance
in binary classification with an accuracy score of 0.999.
Babenko et al. [18] worked with only DDoS (Distributed Deny of Service) Attack
with LVQ Model (Learning vector quantization) and claimed that the identification
system failure does not exceed 10% in the sample series. The average number of
identification errors is 84% . The usage of LVQ neural network based DDOS recog-
nition models to tackle the problem of event classification is a viewpoint for use of
intrusion detection systems, enterprise information protection management systems,
and decision support systems.
Zhou et al. [19] in their literature have compared several machine learning algorithms
to test their performance on classification of the attacks in CSE-CIC-IDS2018 in a
one-vs-one procedure. This paper compares the performance between six machine
learning algorithms to recognize unknown attacks where they have used the dataset
CSE-CIC-IDS2018 for training and created a dataset with new attacks to test the
performance of the models.
Kanimozhi et al. [20] describes an ANN model using the CIC-IDS 2018 dataset for
binary classification of intrusions. The study shows classification of the packet data
into two categories, malicious and normal. The model provides 99.97% accuracy
score and very low FPR. The observed area under ROC curve for this model is
found to be 0.999.
Ullah et al. [21] presents a two-stage model for anomaly-based intrusion detection.
CICIDS2017 and UNSW-15 datasets were used for evaluation of the model. This
study shows the implementation of SMOTE oversampling and various SMOTE tech-
nique. However, borderline1 algorithm provided the best outcome. In first stage,
network anomalies or new attacks can be recognized implementing a decision tree
classifier while the second level is held for classifying into trained classes implement-
ing a random forest classifier. The authors used Precision, recall, and F score as
metrics of evolution. After completing the training process, the CICIDS2017 dataset
scores 100% and the UNSW-15 dataset scored 97% at testing phase.
Lin et al. [22] used LSTM for constructing an attack detection and attack type
classification model. The model provides an accuracy of 96.2% on the CICIDS-2018
dataset. SMOTE oversampling technique was used to handle to class imbalance
by generating synthetic samples for the minority classes. An Attention Mechanism
(AM) was used to enhance the model performance.
Kim et al. [23] studied a CNN model for the purpose of utilizing for intrusion
detection. The model in the literature is trained and evaluated on CICIDS-2018
dataset. The studied model shows two convolution layers, two pooling after each

11



of them and lastly a fully connected layer for classification. The data was reshaped
into an image of size 13x6 and fed into the model. Instead of training one model on
the entire dataset, the subsets of the dataset were trained. The literature provides
performance measure of their proposed model on ten separate subsets instead of the
entire dataset. So overall accuracy of the model is not measured.
Azwar et al. [24] differentiated multiple machine learning approaches and found
their limitations and drawbacks while running the algorithm on the CIC-IDS 2017
dataset. This literature underlines the utilization of Random Forest, Decision Tree,
Xgboost on the dataset. The final accuracy accomplished from the mentioned strate-
gies is 92%.
Panigrahi et al. [25] used Deep Enforcement Learning Algorithm. Basically, they
used Deep Q Network Algorithm, which is mainly value-based Re-enforcement Learn-
ing Algorithm Technique. Their Main goal was detect attack without depending on
past experience. They worked on 85 different attributes which considered as an
effective way of detecting different types of attacks.
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Chapter 3

Dataset

3.1 Dataset Description

Our focus in this study is the working with the dataset CSE-CIC-IDS2018 [7] that
was created by the Canadian Institute of Cybersecurity (CIC) in 2018. It is hosted on
amazon webserver and has to be downloaded using the AWS CLI as a package that
includes data of network (PCAP), comma-separated values file (CSV) and log files.
We used the csv files for this study. Total size of the data is 6.89 gigabytes which
is distributed across ten csv files. Other existing intrusion datasets are DARPA98,
KDD99, ISC2012, ADFA13 and UNSW-15. But they are dated and the attacks
described are not applicable for current time. CSE-CIC-IDS2018 is a comparatively
newer dataset that contains attack data properly labeled with 80 features and a total
of approximately 16.23 million rows. The eighty features in this dataset are based
on the statistics of network flow. The author and creator of the dataset, Sharafaldin
et al. illustrates the importance of network traffic flow in intrusion detection in their
study [26]. Many other researchers also believe that flow data can give us a better
insight into the network traffic [27]. The features are extracted using CICFlowmeter
from network packet data (pcap) files included in the package. This dataset contains
14 attack labels and 6 sort of attacks that have been described in Figure 3.1.
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Figure 3.1: Heatmap of the dataset
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3.2 Type of Attacks

The dataset contains six types of well-known and up-to-date attacks. It is very im-
portant to work with recent attacks that previous datasets lack due to the changing
nature of attacks with time. There are fourteen labels mentioned in the dataset
based on the tools used. The available attack types are Denial of Service (DoS),
Distributed Denial of Service (DDoS), Bruteforce, Botnet, Infiltration and SQL In-
jection.

Attack Type Labels Description

DoS (Denial of Service)

DoS attacks-Hulk DoS is a type of attack where the at-
tacker tries to cease the resources mak-
ing it unavailable for the user to use.
The attacker usually sends and unusual
number of requests making it crash.

DoS attacks-SlowHTTPTest
DoS attacks-Slowloris
DoS attacks-GoldenEye

DDoS (Distributed Denial of Service)
DDoS attack-LOIC-UDP A DDoS attack resembles denial of ser-

vice attack but here attackers uses mul-
tiple system to flood the bandwidth of
target network to make it unservice-
able.

DDoS attack-LOIC-HTTP
DDoS attack-HOIC

Bruteforce attack

SSH-Bruteforce Bruteforce attacks are used to gain
unauthorized access into a network by
decoding a weak password. Bruteforce
attack uses a dictionary to match with
the victim’s password and tries differ-
ent combinations.

FTP-Bruteforce
Bruteforce -XSS
Bruteforce-Web

Botnet Botnet A botnet deploys a number of bots
to a system to run malicious activities
such a keystroke logging,screen captur-
ing, spying using the webcam, starting
multiple malicious activities on victim’s
computer.

Infiltration Infiltration Infiltration from inside attack is
demonstrated as an attacker sends a
malicious file to the target via email
which upon opening deploys a back-
door on target system for the intruder
to access. After that the attacker have
full access to victim’s computer and
access the data.

Web attacks SQL Injection Web attacks described in the dataset
use vulnerabilities of MySQL web ap-
plication to access the system and run
malicious activities

Table 3.1: Type of attacks in CSE-CIC-IDS2018 dataset.
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3.3 Class Imbalance in Dataset

Class imbalance in a dataset means that number of instances of classes not having a
balanced proportion. Imbalance of classes is visible in a lot of classification problems
with real life data.
CSE-CIC-IDS2018 dataset has class imbalance where ’Benign’ class has the most
amounts of data in the entire dataset. This imbalance makes it difficult for accu-
rate classification. Imbalanced datasets often seem to make the classification biased
towards class with majority instances causing misclassification of the class with mi-
nority instances [28]. We have used SMOTE oversampling technique to resolve the
issue of class imbalance. SMOTE is seen to have improved the performance of the
classifier in many literatures [21], [22], [29]. Figure 3.2 displays a bar chart of the
percentage per class instance to give a better understanding of the imbalance.

Attack Type Count
Benign 13484708
DDoS 1263933
DoS 654300

Bruteforce 381790
Bot 286191

Infiltration 161934
SQL Injection 87

Table 3.2: Number of occurrences of each attack type in CSE-CIC-IDS2018

Figure 3.2: Percentage instance of classes in CSE-CIC-IDS2018
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3.4 Features in Dataset

CSE-CIC-IDS-2018 contains 79 features and one target label. Features were ex-
tricated utilizing CICFlowmeter that creates Bidirectional Flows, where the first
packet moves in both the forward (origin to goal) and backward (goal to origin)
direction. Subsequently, the measurable features such as Duration, No. of bundles,
No. of bytes, Length of bundles, and so forth are likewise determined independently
in the forward and backwards [10]. Features in this dataset are mentioned in Table
3.1.
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Figure 3.3: Features in CIC-IDS2018 dataset
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Chapter 4

Methodology

4.1 Work Plan

Our workplan for this paper can be visualized in Figure 4.1.

Figure 4.1: Work Plan for proposed model
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4.1.1 Dataset Preprocessing

Like any other real-life datasets CSE-CIC-IDS-2018 contains noisy data and errors.
Preprocessing of the dataset is required to make it usable for classification. The
following steps were carried out in dataset preprocessing part:
1. Convert to pickle: The dataset is initially available in csv format but was con-
verted to pickle format to reduce memory usage and faster processing. Python pickle
package is used to serialize and de-serialize an object.
2. Replace NaN values: NaN, stands for Not a Number. It is a data type where the
value is undefined and cannot be used as a floating-point number. NaN values in a
dataset often gives NaN value error in many classifiers or negatively affect the result
since numeric values are required. All the NaN values were replaced with zero.
3. Replace Infinity values: Some points in the dataset were Infinity. They were
replaced by maximum value of the column.
4. Standardization: Standardizing the features of a dataset is required for many
classifiers. Features are standardized by eliminating the mean and scaling to vari-
ance of 1. For a sample x, it is defined as:

z =
(x− µ)

σ
(7)

Here, µ denotes the sample mean and σ denotes the standard deviation. Sci-kit
learn StandardScaler function was used for standardization in this paper.
5. Drop duplicate rows: We have used drop duplicates function in pandas library
to remove all the reoccurring rows in the dataset.

4.1.2 Feature Selection

Careful selection of features is really important as it affects the performance, training
time of a classifier. There are some redundant features which degrade the training
performance and use more resources. Feature selection should be logical and done
carefully. The dataset has 79 features as mentioned before.
Timestamp was removed as time of attack should not matter for classification. Af-
ter that we looked for features with zero variance. Zero variance features have no
change in data points throughout the dataset so keeping them would be irrelevant.
We have found such eight features which are given in Table 4.1. After removing
these features, we are left with 68 features that we have used in our experiment.

Figure 4.2: Zero variance features in CSE-CIC-IDS2018 dataset
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4.1.3 Split Dataset into Training and Test Set

We need a portion of data for our classifier to train with and the rest for testing the
performance of the classifier. The general convention is to train with largest portion
and test with a smaller portion of data. We have use Train test split function from
Sklearn Library in python with train-test ratio of 70:30 to split our dataset. Stratify
parameter was turned True to make sure all classes maintain this ratio of train and
test data.

4.1.4 Synthetic Minority Oversampling Technique (SMOTE)

We have previously mentioned that the dataset has class imbalance issue. To over-
come that we have implemented the Synthetic Minority Oversampling Technique
(SMOTE) [30] to oversample the minority classes to bring balance throughout the
dataset. This technique generates new instances of the class with low number of data
points. The next data points are synthesize by recognizing the K-Nearest Neighbors
in a class and measuring the distance between neighbor and the sample. The dis-
tance is multiplied by 0 or 1 to synthesize the next data point. SMOTE generates
data points that are similar to its neighbors. One good side of this technique is that
it does not generate the same instance multiple times unlike it’s other alternative
Random Over Sampler that randomly picks value and duplicates it.
In our thesis, we have used the imbalanced-learn library in python to oversample the
minority classes. It is to be noted that, oversampling was done after the train-test
split of the dataset and only applied to the minority classes of the training set and
not test set.

4.1.5 Training the Classifier

In our thesis, we propose an architecture of Convolutional Neural Network which
we have trained with the CICIDS-2018 dataset. We have trained a few other deep
learning and machine learning models that have been used in previous literatures
to assess the performance of the model. The selected classifiers are Deep Neural
Network, Random Forest Classifier, Extra Tree Classifier, Decision Tree Classifier,
and Bagging.

4.1.6 Evaluating the Performance

For multiclass classification only accuracy does not give us the correct evaluation.
Precision , Recall , F1-score are some appropriate metrics for evaluation machine
learning model [31].

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(11)
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Chapter 5

Implemented Algorithms

5.1 Proposed CNN Model Structure

In our proposed CNN architecture for intrusion detection, we have to reshape our
feature vector into a 2-dimensional image. Since we have a 68 feature vector, it
was reshaped into image of size 17 x 4 as input for our model. This input is fed
into our convolutional neural network. It can be split into two sections – firstly, the
Convolution layers and secondly, fully connected back propagation layers. Two 2d
convolution layers were used with filter 32 and 64 respectively with padding and
kernel size of 3x3. A Batch Normalization and a max pooling layer was used after
both of the convolution layers. The output was then reshaped into a vector using a
Flatten layer. Flatten layer output was then fed into the fully connected layers for
classification. The fully connected layers have 4 hidden layers with (8,64,128,256)
neurons. Usually ReLU (Rectified Linear Unit) is used as activation function and
Adam as optimizer in CNN as we have seen in previous literatures. In our model, we
have made changes to that and used mish [32] as activation function for the hidden
layers and Ranger [33] as optimizer for the model to enhance the performance.

5.1.1 Proposed CNN Model Parameters

Hyperparameters regulate the performance of a model. This requires a lot of tweak-
ing and experiment to find the right parameters to achieve the best results. We
have found the parameters that provides the most optimal result through a lot of
trials and errors. The hyperparameters as well as the arrangement of the layers are
mentioned in Table 5.1 and 5.2.
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Figure 5.1: Structure of Convolution Layers in proposed CNN model

Figure 5.2: Structure of Fully Connected Layers in proposed CNN model
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5.1.2 Activation function

We have used Mish as our activation function in place of mostly used ReLU acti-
vation function. It is defined as (8). Figure 6 shows the graph of Mish activation
function.

f(x) = x.tanh(ln(1 + ex)) (12)

Figure 5.3: Mish Activation Function [30]
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5.1.3 Optimizer

In our model we have used Ranger optimizer that is formed by merging Rectified
Adam (RAdam) into recently introduced LookAhead optimizer. This seem to give
a better result than Adam optimizer. One of the reasons being Adam can fall into
local minima without proper warmup where Rectified Adam outperforms imple-
menting a Rectifier that dynamically controls the adaptive momentum throughout
the training [33]. Look Ahead optimizer which was recently introduced, updates
two sets of weights and looks ahead at the sequence of fast weights provided by a
secondary optimizer choosing the search direction. LookAhead provides faster train-
ing and better convergence than other optimizers [34]. When these two optimizer,
RAdam and LookAhead are combined together, they tend to co-operate and work
well together minimizing and variance and lowering the convergence time. The hy-
perparameters used for the optimizer are given in Table 7.

Figure 5.4: Hyperparameters for the optimizer

5.2 DNN Architecture

DNN model used in this literature is a Back Propagation Neural Network with four
hidden layers of size 8, 64, 128 and 256. We have used Mish as our activation
function of the hidden layers and Ranger as the choice of optimizer for the model.
The structure is the same as the fully connected layers of the CNN model presented
in this paper displayed in figure 5.2.

5.3 Random Forest Classifier Parameters

Random Forest classifier parameters used in this paper are displayed in Figure 5.4.

Figure 5.5: Parameters for Random Forest Classifier

5.4 Decision Tree Classifier Parameters

Decision classifier parameters used in this paper are displayed in Figure 5.5.

Figure 5.6: Parameters for Decision Tree Classifier
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5.5 Extra Tree Classifier Parameters

Random Forest classifier parameters used in this paper are displayed in Figure 5.6

Figure 5.7: Parameters for Extra Tree Classifier

5.6 Bagging Classifier Parameters

Random Forest classifier parameters used in this paper are displayed in Figure 5.7.

Figure 5.8: Parameters for Bagging Classifier
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Chapter 6

Evaluation

6.1 Experimental Setup

The experiments were carried out on a local machine with 16 gigabytes of RAM,
AMD Ryzen 5 2600 CPU and Nvidia GTX1050Ti GPU on python version 3.7.
Python is the most used language in machine learning and data science because
of its vast available library. Python libraries used to build our classification model
are Pandas, Numpy, Tensorflow, Keras, Scikit-Learn and Imbalanced-Learn. Keras
is a high-level neural network API for tensorflow. Tensorflow is a computational
library in python created by Google that can be utilized for implementation of deep
learning and machine learning models.

6.2 Results

For comparing the performance of the algorithm, we have used Accuracy, Precision,
Recall, F1-score, macro average and weighted average for empirical evaluation of
the models. We have used classification report function from Sci-kit Learn library
in python to calculate the performance metrics.
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6.2.1 Result of CNN model

Performance summary of our proposed CNN model is displayed in Table 6.1. The
model has been able to yield an accuracy of 0.99 on test set.

Label Precision Recall F1-score
Benign 0.99 1 0.99
DDoS 0.99 0.99 0.99
DoS 0.99 0.98 0.98
Bruteforce 1 0.99 1
Bot 1 0.99 0.99
Infiltration 0.96 0.93 0.95
SQL Injection 0.87 0.81 0.85
Accuracy 0.99
Macro avg 0.97 0.96 0.96
Weighted avg 0.98 0.99 0.98

Table 6.1: Performance summary of CNN model

6.2.2 Result of DNN model

Performance summary of our DNN model is displayed in Table 6.2. The model has
been able to yield an accuracy of 0.98 on test set.

Label Precision Recall F1-score
Benign 0.98 0.99 0.99
DDoS 0.96 0.98 0.97
DoS 0.96 0.96 0.96

Bruteforce 0.98 0.99 0.99
Bot 0.93 0.98 0.96

Infiltration 0.86 0.78 0.83
SQL Injection 0.82 0.72 0.76

Accuracy 0.98
Macro avg 0.92 0.91 0.92

Weighted avg 0.97 0.98 0.98

Table 6.2: Performance summary of DNN model
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6.2.3 Result of Random Forest Classifier

Performance summary of Random Forest Classifier is displayed in Table 6.3. The
model has been able to yield an accuracy of 0.95 on test set.

Label Precision Recall F1-score
Benign 0.93 0.97 0.95
DDoS 1 1 1
DoS 0.96 0.94 0.93

Bruteforce 0.84 0.94 0.89
Bot 0.99 1 1

Infiltration 0.67 0.58 0.53
SQL Injection 0.92 0.42 0.58

Accuracy 0.95
Macro avg 0.9 0.84 0.84

Weighted avg 0.95 0.95 0.95

Table 6.3: Performance summary of Random Forest Classifier

6.2.4 Result of Decision Tree Classifier

Performance summary of Decision Tree Classifier is displayed in Table 6.4. The
model has been able to yield an accuracy of 0.93 on test set.

Label Precision Recall F1-score
Benign 0.92 0.94 0.93
DDoS 1 1 1
DoS 0.97 0.9 0.93

Bruteforce 0.84 0.94 0.89
Bot 1 1 1

Infiltration 0.5 0.43 0.46
SQL Injection 0.79 0.73 0.76

Accuracy 0.93
Macro avg 0.86 0.85 0.85

Weighted avg 0.92 0.93 0.92

Table 6.4: Performance summary of Decision Tree Classifier
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6.2.5 Result of Extra Tree Classifier

Performance summary of Extra Tree Classifier is displayed in Table 6.5. The model
has been able to yield an accuracy of 0.92 on test set.

Label Precision Recall F1-score
Benign 0.92 0.94 0.93
DDoS 1 1 1
DoS 0.96 0.9 0.93

Bruteforce 0.84 0.92 0.89
Bot 0.99 0.98 0.99

Infiltration 0.51 0.38 0.43
SQL Injection 0.75 0.58 0.65

Accuracy 0.92
Macro avg 0.85 0.81 0.83

Weighted avg 0.91 0.92 0.91

Table 6.5: Performance summary of Extra Tree Classifier

6.2.6 Result of Bagging Classifier

Performance summary of Bagging Classifier is displayed in Table 6.6. The model
has been able to yield an accuracy of 0.93 on test set.

Label Precision Recall F1-score
Benign 0.92 0.96 0.94
DDoS 1 1 1
DoS 0.96 0.9 0.93

Bruteforce 0.84 0.94 0.89
Bot 1 1 1

Infiltration 0.54 0.36 0.43
SQL Injection 0.79 0.58 0.67

Accuracy 0.93
Macro avg 0.86 0.82 0.84

Weighted avg 0.92 0.93 0.92

Table 6.6: Performance summary of Bagging Classifier
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6.3 Analysis

Metrics of each of the classifiers have been summarized in Table 18. From this table
we can analyze and come to a verdict of which model performed the best for our
IDS.

Model Precision Recall F1-Score
Accuracy

WeightedAverage MacroAverage WeightedAverage MacroAverage WeightedAverage MacroAverage
CNN 0.98 0.97 0.99 0.96 0.98 0.96 0.99
DNN 0.97 0.92 0.98 0.91 0.98 0.92 0.98

RandomForest 0.95 0.9 0.95 0.84 0.95 0.84 0.95
Decision Tree 0.92 0.86 0.93 0.85 0.92 0.85 0.93

Extra Tree 0.91 0.85 0.92 0.81 0.91 0.83 0.92
Bagging 0.92 0.86 0.93 0.82 0.92 0.84 0.93

Table 6.7: Summarized result of all trained model in the thesis

Figure 6.1: Accuracy comparison of CNN and other models.
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Figure 6.2: Precision comparison of CNN and other models.

Figure 6.3: Recall comparison of CNN and other models.

Figure 6.4: F1-score comparison of CNN and other models.
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From the Table 6.7, Figure 6.1 and Figure 6.3, it is visible that CNN has the highest
accuracy (8) as well as weighted and macro average recall. If we look at formula
of Recall (10), it is the true-positive-rate or sensitivity of a model. Also, this can
be called detection rate in case of intrusion detection system. It is necessary for
any model to have high detection rate if we want to deploy in a real network sys-
tem. Therefore, we can say that our proposed CNN model works better than other
classification model providing the highest accuracy and detection rate. So it is
implementable in real-life scenarios to detect intrusions and properly classify them.

35



Chapter 7

Conclusion

We believe that the Convolutional Neural Network model is better than other Intru-
sion detection models with the advantage of a successful classification of six different
types of intrusion. However, we faced a few challenges while conducting this thesis.
Firstly, the codes and implementations were carried out on a local computer. The
training process is very time-consuming because of the limited available resources
such as memory, processor and graphics card. Also, the parameters for our model
was set based on multiple trials and errors and comparison of results. This ex-
periment process could be accelerated on cloud computing systems such as Google
Cloud Platform that could enable us to do more experiments based on trials and
errors.
We hope that this model will perform well on newer flow-based datasets as well.
We want to construct a framework for future implementation to build a fully func-
tional Intrusion Detection System for real-time intrusion detection and classifica-
tion. Firstly, raw network packet data will be captured and processed through
CICFlowMeter for feature extraction. After that, this data will then be prepro-
cessed removing noisy values. Finally, this processed data can be run through our
CNN model to detect and classify the intrusion type in real time.
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