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Abstract

Electromyography is a unique approach for recording and analyzing the electrical
activity generated by muscles, and a Myo-electric controlled prosthetic limb is an
outwardly controlled artificial limb which is controlled by the electrical signals in-
stinctively produced by the muscle system itself. Artificial Intelligence and Machine
learning is very powerful in every technological field along with biomedical field. The
purpose of this work is to utilize the power of Machine learning and Deep learning for
predicting and recognizing hand gestures for prosthetic hand from collecting data of
muscle activities. Although this technology already exists in the technological world
but those are very costly and not available in developing countries. So, designing
a cost effective prosthetic hand with the maximize accuracy is the major focus and
objective of this work. We have also used a data set recorded by MyoWare Muscle
Sensor which represents uninterrupted readings from 8 sensors. We have used Deep
learning with the data set for predicting the following gestures which are hand-
open, hand-close, spherical-grip, and fine-pinch. Then we used some algorithms of
Machine Learning which are K-nearest Neighbor (KNN), Support Vector Machine
(SVM), and also the combination of KNN and SVM both for feature classification on
data recorded with the 8-electrode surface EMG (sEMG) MyoWare Muscle Sensor.
Using the combination of SVM and KNN We have accomplished a real time test ac-
curacy of 96.33 percent at classifying the four gestures of our prosthetic hand. This
paper also represents 3D modeling of the robotic hand and its control system using
Autodesk 3D’s Max software, EMG MyoWare Muscle Sensor, Machine Learning and
Deep Learning.

Keywords: Electromyography, Hand gestures, K-nearest Neighbor (KNN), Sup-
port Vector Machine (SVM), EMG MyoWare Muscle Sensor, Autodesk 3D Max
software, Prosthetic
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Chapter 1

Introduction

1.1 Thoughts Behind the Thesis

Due to diseases, accidents, and congenital defects people from worldwide are losing
their body parts daily. As the road and industrial accidents are increasing in de-
veloping countries like Bangladesh, the percentage of disable people is increasing.
In a statistics review it has been known that, in the USA, there are already 2.1
million people are existing without their body parts which they have lost in many
accidents, unexpected incidents, diseases and the predicted number is going to be
doubled by 2050 [1]. Due to limb loss a person’s life become more struggling because
of facing emotional and financial lifestyle changes. But the good news is being a
paralyzed or disable does not mean living without independence in this era when
technological world that we are watching today where amputation or any disability
can be turned into power for those persons. Therefore, the challenge of this work is
to make research and study the different possible ways of using artificial intelligence
with prosthetic hands to improve the lives of amputees. But The costs of com-
mercially available myoelectric hands are very high, ranging in price from 2 to 30
Lac [12]. As a result, amputee people from developing countries like Bangladesh are
not able to effort this costly bionic robotic prosthesis. So our goal is to build a model
in a cost effective way so that poor people can afford our model to make less their
struggles in their daily life. Prosthesis types which replaces a lost body parts such as
hands, limbs and legs are called an artificial limb. There are mainly four kind of ar-
tificial limbs which are Transradial prosthesis, Transhumeral prosthesis,Transtibial
prosthesis, Transfemoral prosthesis [14]. We have mainly focused on the transradial
prosthesis as it is a prosthetic limb that can take place perfectly of a hand missing
under the elbow which is called upper limb prosthesis. While doing this work, the
challenge we have taken is to do unlimited research and studies for finding out the
different and best possible ways of using Machine Learning and Deep Learning with
EMG based prosthetic hands to do make betterment of the amputees. We selected
the unique approach electromyogram (EMG) as it is one of the sources that can be
used as a control method for a prosthetic hand and simple to use. Surface EMGs
passes information about the muscular activity by using those readings as a source
of controlling process for prosthetic limbs [24]. As our prosthetic hand is assisted
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with a sensor system it is 3D printable, affordable, easy and not unpleasant to use.
The contributions of this thesis are given below :

• Firstly, we have used a dataset recorded by MyoWare Muscle Sensor which
represents uninterrupted readings from 8 sensors.

• Secondly, for feature extraction, Variance, Waveform Length, Integral of EMG,
Zero Crossings, Slope Sign Changes, Auto-regressive Model, Integrated Aver-
age Value and other techniques are used.

• Thirdly, for feature classification SVM, KNN, and combination of KNN and
SVM algorithms are used . The combination of SVM and KNN has the highest
accuracy rate among other two algorithms for classifying the four different
hand gestures which are hand-open, hand-close, spherical grip, and fine pinch.

• Finally, after identifying different gestures, we have used the classifiers to col-
lect and transfer information and to control our prosthetic arm. We have also
used the 3D modeling and rendering software named Autodesk 3D max for
implementing our system for the software simulation system.

1.2 Problem Statement

As with the pace of modern science, the biomedical systems and devices have also
got advanced in technology and features, but the sector has not gone far enough to
provide the instruments which can perform precise data classification detection and
act accordingly with low cost production. Even in this era, many people are moving
around without hand or legs or other limbs where the problem should have been
solved by technology. Many people losing their limbs every day through accident or
medical complexity around the globe. Annually approximately 1, 85,000 individuals
are decapitated [19]. Insurgents approximately 1,558 individuals lost their body
parts in the wars in Afghanistan and Iraq [19]. Approximately 30 percent of those
with limb amputation had bipolar disorder [19]. Lifetime cost of medical care for
the individuals with hand or leg loss is approximately $509.275 in contrast of $361
million of the individuals without any body part loss [19]. In 2013, clinic expenses
totaled $8.7 billion for clients’ amputated [19]. Up to 55 percent of people carrying
diabetes who already have lower limb amputation would undergo amputation within
two or three years of the second leg [19]. Sometime within five years, approximately
half of the people with surgical removal induced by cardiovascular problems would
die [19]. So as it can be realized the numerous people around the globe are in need of
prosthetic limbs with low cost. Again prosthetic limbs with slightly lesser production
cost cannot maintain the quality of performing gestures according to users’ gestures,
as the data classification and acting according to classification is not that much
precise. So it’s kind of an one way deal, cost can be reduced but preciseness of
performance will be affected or the quality preciseness of acting according to users
data can be increased but with sacrificing the option of producing it with low cost.
As a result, most of the prosthetic limbs are out of the affordable price for most of
the general people.
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1.3 Aims and Objectives

Our research objective is to create a system where the data and information of
user will be acquired and classified precisely as well as to ensure the quality of
performing or movement of the prosthetic limb analyzing the data classification as
precisely as possible. Most of the cost effective prosthetic limbs can’t maintain
the synchronization between users’ data or signal acquired through EMG sensor
and can’t act precisely how the user wants the prosthetic hand to be performed.
On the other side, which prosthetic arm or limbs do have these kind of quality in
synchronization and performance, are not cost efficient or affordable for financially
back lagged people. As a result, our purpose is to develop a system where the
production cost will be minimized but the data classification and performance with
synchronization will be maintained as far as possible. Our data-set for training will
be larger and for that, the decision making system of our proposed model will be able
to decide suitable action according users’ new data values. We aim to implement
machine learning and artificial intelligence through using Support Vector Machine
algorithm (SVM) and K-nearest neighbor algorithm (KNN) to classify our data and
train those data set accordingly. Moreover, we are going to implement the software
system through simulation to rectify any kind of bugs and inconvenience. According
to that,the user can almost move his prosthetic hand like a real bio hand which can
be produced within low cost and greater accuracy.

1.4 Contribution Summary

The summary of the contributions of this thesis are given below :

• Hardware initialization and sensor calibration was done to integrate the EMG
sensor.

• For the hardware part the integration was done through an open source soft-
ware called Arduino.

• The dataset was collected by an online portal.

• EMG signal was preprocessed by using a software called GUMPY which is an
open source software.

• Python language was used for applying the algorithms.

• Dataset initialization using Pandas.

• We have trained the dataset using Keras on the top of TensorFlow.

• We have recognized the EMG dataset using KNN-SVM with an accuracy rate
of 96.33%.

• Autodesk 3D was used to simulate the gestures.

3



1.5 Thesis Outline

The rest of the paper has been described in the following manner. Chapter 1 dis-
cusses why we need bionic arm. Research objective is presented at Section 1.3 and
the Chapter 2 also talks about the literature review. The EMG signal and elec-
trodes placement, characteristics and nature of the signal described in the Chapter
3. Chapter 4 represents the discussion about the data-set acquisition and character-
istics. Signal processing with different methods along with feature extraction from
signal presented at Chapter 5. Chapter 6 describes about the modeling of data along
with the algorithms and kernels which are proposed. The whole system architec-
ture is discussed at the Chapter 7. System implementation with algorithms, feature
selections and necessary calculations are discussed in the Chapter 8. User interfac-
ing, visual representation and analysis of system output are described at Section
9.1 and Section 9.2, Section 9.3 and Section 9.4 show the variability of classification
rate,error percentage and accuracy rate result. Those features which were not able
to meet up by the system for various reasons and modules along with new features
that can be added in future is presented in Chapter 10. Ultimately Chapter 11
concludes our paper.
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Chapter 2

Related Works

Katsutoshi Kuribayashi et al.[2] proposed using neural networks to monitor the elec-
tromyography and form memory material using two methods. Firstly one is EMG
signal rectification and integration and the one is the cycle of the neural network.
Because of light weight and compact, SMA is used compared to the EMG signal.

Ryait et al. [7] suggested innovations throughout the field of prosthetic limbs.This
paper contains three sections, the first one to illustrate EMG signals effects, the
next to examine EMG signal on computer simulations, and even the third to de-
scribe various virtual hand models using EMG signals.

Netta Gurari et al.[9] recommended the use of positive guidance for foot, arm and
fingers. It allows people to connect with the world.Using a manipulation method
that simulates an optimal robotic prosthetic, able individuals tapped on surfaces of
different hardness by using a gyroscope vibration signal were recorded At the foot
of both the tip such vibrating input works better than in the upper limb.

R. Brent Gillespie et al. [12] suggested a process in using a novel form of tactile
stimulation including concepts in novel control. Here the electric elbow support is
being used in the form with attachment torques across the arm to feedback grasping
movements.The EMG stimulation is derived from both the movements of the fore-
arms. This will operate well with and without pressure control in several different
situations, employing reticular formation and reticular formation biceps myoelectric
indications to represent power, and used to accurately identify artifacts.Via sensory
feedback, this significantly increasing. It is applied in 7 individuals who are able-
bodied and also the outcome is effective.

Johnny L. G. Nielsen et al.[14] proposed a novel approach done with surface elec-
tromyogram to record information from an upper part of limb to generate force
using the collateral limb. They measured from the right wrist in multiple degrees
of freedom along with different movements. Isometric forces were also recorded by
themfrom the right hand in several movements in terms of degree of freedom.

5



J. Carpaneto et al. [16] proposed using the EMG signal for a physical prosthetic
limb. EMG-based stimulation is done by machine learning in the nervous system
and the use of implantation of electrodes in the muscles.The vector machine algo-
rithm is being used to predict different types of grip including grasp gestures using
both distal and proximal upper limb tissues with EMG activity.

Islam, ArifulAlam, M. et al. [22] recommended the use of support vector machine
(SVM) to classify Electromyography (EMG) signals as their designed classifier aims
and classify ten individual and combined fingers motion command into one of the
predefined set of movements. After extracting features and using those as inputs and
a linear SVM for the multiclass classification of EMG signal, recorded reports and
validation shows that support vector machine can classify EMG signals accurately
with a higher classification rate suitable for designing prosthetic devices [22].

Maamri, Hassen. et al.[24] recommended to classify hand gestures of prosthetic arms
by identifying EMG signals with Machine Learning and Deep Learning to predict
and recognize hand gestures from muscle activities. It gives an offline test accu-
racy ranging between 80 % and 90 % by collecting public online Electromyographic
(EMG) signals and preprocessing the data, extracting features, and implementing
machine learning classifiers and deep learning models. While classic machine learn-
ing methods were used with feature extraction on data recorded for the purpose of
this project with two amputees accomplishing a real time test accuracy of 75% at
classifying individual finger movements [24].

6



Chapter 3

Data Comprehending

3.1 sEMG Signal Detection

An accurate exposure of individual action in surface Electromyography is an essential
topic in the in sector of researches for the hand’s motion system, a threshold system
has been used to expose muscle’s timing on and off, analyzing the Root Mean Square
values of reformed signals to that thresholds whose result is based on the framework
of noise of each channel’s mean power [21]. Furthermore, the voltage reference has
been removed after the calculation of the set.

3.2 Electromyography and Signals

A motion starts as a signal from our brain whenever we move one of our skeletal
muscles. Then the signal reaches from the spinal cord in the brain to the respective
muscle’s main motor neuron which is shown in Fig 3.1. It creates an electrical
signal down the length of the muscle after activation of the motor neuron by the
brain and that signal creates polarization and depolarization which is known as the
possibilities for action in the muscle.That action potential expands to the muscle for
activating the muscle’s motor neuron cells, and the signal activates all the sarcomeres
along the muscle’s strands and the muscles lease. So the implication of a session on
Electromyography is to record that action potential. Electromyography can be used
in a various way. The most important use of Electromyography is medical diagnostic.
Medical diagnostic let us know about the type of signals the muscles exhibit in case
of abnormal muscle activities. Another use of EMG and controlling prosthetic arm
is rehabilitation which is the purpose of this paper and also application of this. This
is also used in bio-mechanical researches for understanding our brain controls over
our muscles and this related studies [20]. Mainly two types of electrodes are usually
used for Electromyography, surface and intramuscular. Surface electrodes at Fig 3.2
are very common among other methods such as EKG’s and EEG’s and also used in
this work. As they are used just by sticking to the skin, they are very simple to use.
For the readings of signals (SEMG) through skin, they have a metal conductor in

7



Figure 3.1: Skeleton Muscle Function

the middle with some electric jelly on the other side. They don’t cost the patient
much discomfort so they are convenient to use. The use of this type of electrodes is
as simple as putting them on and taking them off after collecting the readings. They
do not need any special training, either. They can’t take values from the muscles
which are too far below the muscles or too far from the skin because the readings are
limited to muscles that are very close to the surface of the skin. They will also take
few signals from adjacent muscles. On the other hand, intramuscular electrodes at
Fig 3.3 cause discomfort for the patient as they have to be inserted directly into the
muscle. This counts as a disadvantage of this type of electrodes. Skin conditions of
some people can be swollen by getting a needle stuck in the muscle very significantly.
But the advantage of this type of electrodes is they can measure values from any
types of muscles as well they also don’t get any signals from adjacent muscles.

8



Figure 3.2: Surface electrodes

Figure 3.3: Intramuscular electrode
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The suggested sEMG signal frequency range of frequency is (5-500)Hz which re-
quires a sampling of frequency more than or equal to 1000Hz [3]. The MyoWare
Muscle Sensor is limited to 200Hz. For processing the collected signals accurately
robust and adequate techniques are necessary. Prior to amplification, the amplitude
range of the EMG signal is 0 mV-10 mV (5 mV) [10]. The raw EMG data contains
external, removable noise. The EMG signal is bipolar, which indicates it extends in
both positive and negative directions and focuses around zero shown in Fig 3.4.

Figure 3.4: Nature of Raw EMG Sign

10



Chapter 4

Data Acquisition

4.1 Data Collection

Each dataset represents uninterrupted readings from 8 sensors. By this we get EMG
data of altogether 64. And the final column stands for the result gesture which is
collected by the recording of the given data of class 0 to class 3 [26]. So each
line has the following structure of the given below: Data was recorded at 200 Hz,

Figure 4.1: Interface of of Data set

meaning that every line is 8*(1/200) seconds = 40ms record time [26]. A classifier
can predict a class of gesture (0-3) given 64 numbers. Hand-rest-0, Hand-open-1,
Spherical-grip-2, Fine-pinch-3. Fine pinch is the index finger that hits the thumb and
extends the rest of the fingers. Spherical grip is like the posture of grabbing a tennis
ball. Gestures have been picked very randomly and subjects enlisted were naturally
limbed and without physical or neurological problems. They were implanted via the
surface electrodes and tested with a sensor EMG (MayoWare). For 20 seconds, each
movement was registered six times [26]. Each recording started with the movement
already being planned and kept. Recording stopped while still holding the gesture.
Through movement is held in a fixed position for a total of 120 seconds [26]. All of
them reported in a short time from the same right forearm. That record of a certain
type of gesture was concatenated into a .csv file [18] with a name (0-3) at Table 4.1.
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Table 4.1: Column Structure of Dataset

Data Source About This File Columns

20.csv 65 columns muscle ⊗+26.0 muscle reading 1 sensor 1

21.csv 65 columns activity ⊗+ 04.0 muscle reading 1 sensor 2

22.csv 65 columns while ⊗+ 05.0 muscle reading 1 sensor 3

23.csv 65 columns gesture 0 ⊗+ 08.0 muscle reading 1 sensor 4

⊗− 01.0 muscle reading 1 sensor 5

⊗− 13.0 muscle reading 1 sensor 6

⊗− 109.0 muscle reading 1 sensor 7

⊗− 66.0 muscle reading 1 sensor 8

4.2 Data Properties

These are just a sample of our data set which read muscle activities to classify hand
gestures. Here, a human hand muscle activity producing four different hand gestures
has been recorded.The sample of our data set shown in Fig 4.2, Fig 4.3, Fig 4.4,
Fig 4.5 sequentially :
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Figure 4.2: Hand-rest(0.CSV)
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Figure 4.3: Hand-open(1.CSV)
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Figure 4.4: Spherical-grip(2.CSV)
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Figure 4.5: Fine-pinch(3.CSV)
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Chapter 5

Data Devising

5.1 Abstract Signal Processing

In this section, the different commonly used signal processing techniques for EMG
signals are explained.

5.1.1 Noise Refining

The purpose is therefore to eliminate any unwanted noise which contaminates the
transmission. This seems to be critical because it will effect the data that we evaluate
if it has not been eliminated. The majority of EMG transmissions range from 20Hz
to 350Hz. [24]. That indicates that a pulse with a wavelength less than 20Hz or
greater than 350Hz originates from another point than a muscle [25]. The noise can
come from either the electrodes activity, or a particular high frequency transmission
from radio frequency propagation and mobile phones [25].

5.1.2 Rectification

Every EMG value would be optimistic after rectification, since all the negative values
below the x-axis are folded on the optimistic side after rectified which is defined as
full-wave rectification [24]. Another method of rectification is half-wave rectification,
whereby the negative values are set to zero rather than being transformed into an
absolute value[24].

5.1.3 Normalization

Normalization means transferring a transmission to a level which is related to a
certain amount of values. Because each and every electrode plays a part in the
output of machine learning, the range of feature values should be standard [24].
Relying on the deep learning technique used, when the importance of any of the
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variables varies significantly, this feature will overpower through the remainder and
adversely affect the output of the program [24]. That is why these functions are
standardized such that all the features can make a nearly equal contribution through
training [24]. The easiest way to do this is to update the set of functions in the min-
max algorithm to new ranges from 0 and 1 or from 1 to 1. The standard distribution
is an another option to standardize the data [24].

Figure 5.1: (a) Defiled EMG, (b) Deodorized noise EMG, (c) Prediction of noise
with filter and (d) Power spectrum density of raw EMG and deodorized noise EMG
filter

5.2 Pragmatic Data Processing

It should be recognized that the test wavelength for EMG transmission depends on
the number of tests taken in a second, when the testing rate is decreased by analog
to digital conversion. The data has used which is tested at 200 Hz and another is at
400 Hz. First of all, data are measured at 200Hz. The EMG transmissions are also
filtered as a pre-processing stage by low pass colander along with high pass colander.
[24]. Low-pass colanders are those filters, which permit the transmission to transfer
in lower frequency data and then amplify the higher frequencies [24]. On the other
hand, high-pass filters do the complete reverse; lower wavelengths are eroded [24].
Researchers say in EMG signals that the intention of using a low pass filter is to
suit the usual response rate of the muscle. In many other terms, a process delay is
generated to imitate the electro-mechanical gap by the low-pass filter [24]. Different
Feature Extraction methods have been used before passing the data into another
standard machine learning algorithms [24].
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Figure 5.2: Data visualization for an EMG signal on electrodes

5.2.1 Feature Extraction

Variance : It is explained as scope of the sEMG signal’s power consistency and is
given by [18],

α2 =
1

N − 1
Σ N
n=1x

2
n (5.1)

Where xn means the data module in the position of nth segment of electromyogra-
phy pulse including data specimen up to N numbers.

Length of waveform:It is an increasing change in magnitude over the entire time
span from sample to sample which implies the caliber of diversity over the sEMG
signal. It is done by [18],

WL = Σ N
n=1|xn − xn − 1| (5.2)

Integral of EMG : The function is an approximation of the addition of sEMG
signal infinite values. It is done by [18],

IEMG = Σ N
n=1|xn| (5.3)

Zero Crossings :The function calculates the time the signal passes through zero.
This framework is sensitive to sound, so to mitigate noise-induced zero crossing a
threshold approach is implemented. It’s done by [18],

ZC = Σ N
n=1sgn(−xn ∗ xn+1) > 0|xn − xn + 1| ≥ 0.06 (5.4)

Slope Sign Changes : The function records the times sign shifts in the slope of the
signal. Using this threshold means that the only important variations are calculated
to decrease the noise caused by changes in the slope symbol. It’s done by [18],

SSC = Σ N
n=1[(xn − xn−1) ∗ (xn − xn+1)] ≥ 0.06 (5.5)
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Root mean square: It represents mean calculation of signal potency. This is also
correlated with the constant intensity and non-tidy constriction. It’s done by [24]:

RMS =

√
1

N
Σ N
i=1x

2
i (5.6)

Mean absolute value: It provides data about muscle constriction levels [24] . It
indicates as:

MAV =
1

N
Σ N
i=1|xi| (5.7)

Auto-regressive Model: EMG signal has two type of nature which are irregularity
as well as unbound characteristic [22]. For these natures, grueling situation arises
in signal accurate inspection [22]. Nevertheless for ephemeral gap of time, EMG
signal gets entitled to undeviating arbitrary procedure of Gauss. From precursory
specimens, time sequence of EMG signal gets exemplified into linear amalgamation
for individual specimen that has been represented through [22] ,

yk = −Σ n
i=1biyk−i + gk (5.8)

Here AR is an efficient which is collaborative, the model order along with broad-
casting noise is represented through n [22]. Every orders of AR model are employed
occasionally but the most used variance is the order of 4th [22]. Catalog of vari-
able framework gets done through the modeling of EMG signal and this is the main
benefit of AR model [22]. Classification algorithms can get fed with frameworks in
place of utilizing indigenous model of EMG data for the impetus of recalling. For
this, computational frailty can get lessened [22].

Integrated Average Value: It is recognized as the aggregated magnitude of non-
negative wave signal of a particular wave sign [22]. This term represented as,

IAV =
N∑
k=1

|xk| (5.9)

=N.
1

N

N∑
k=1

|xk| (5.10)

= N.MAV (5.11)

In the above, the signal amplitude is represented by N as well as through a fragment
the signal of EMG is indicated with x [22].
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The Fig 5.3 is the graphical representation of the distribution of four hand gesture
classes after performing feature extraction methods.

Figure 5.3: Distribution of four hand gesture classes after performing feature ex-
traction methods
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Chapter 6

Data Modeling

In our proposed model, we will first collect real data through EMG signal. Then we
will do pre-processing and feature extraction of those signals using different methods.
After that, we will classify our data set for getting the most accurate value for motion
recognizing. Finally, we will feed those values to our simulated model and will test
the accuracy of our model.

Figure 6.1: Flowchart of Bionic Robotic arm
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6.1 SVM

A binary classifier, which determines whether or not a sample is in one class, can
be described as SVM. It employs the principle of optimizing structural hazards
which compromise the methodological pitfalls and the model’s intricacy [15]. The

Figure 6.2: Hyper plane with distinguishable data (linear model)

construction of a decision surface is an integral part of an SVM, so as to maximize
the distance from positive to negative examples. The judgment surface has a high
level, since Rn components are the input vectors. For data which are distinguishable
linearly, it can be separated with an optimal separator line [15]. For this the optimal
hyper plane for classification can be described by [15],

wTxi + b = 0 (6.1)

where w is a vector of weight and x a vector of input. The ideal hyper plane with
two-dimensional linearly separable information shows an example in Fig 6.2. A
particular set of input vectors is defined for this hyper plane, known as supporting
vectors. This is the ideal hyper plane. Several input vectors are positioned adjacent
to the optimum hyper plane. Categorization is then rendered. This is the ideal
hyper plane [5]. According to the following terms for any fresh specimens’ xi [5],

wTxi + b ≥ 0 yi = yi + 1 (6.2)
wTxi + b < 0 yi = yi − 1 (6.3)

Usually Support vector machine (SVM) is a straight forward as well as highly in-
nate concept. In spite of that, when the vector spaces are inseparable, difficulties
arise. Problem arises when the data point falls into the space between the ideal
hyper planes and in the moment of being the data co-ordinates plotted across hyper
planes. A variable i is used to calculate support vector machine calculation that
is responsible for changes from the ideal position of the data point. The following
optimization problem can therefore summarize the general form of an SVM briefly
[8]. Over a range of marked (xi, yi), i = 1....l pairs xiεRn and y, SVM the solution
is described to [8] :
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minw,b,ε
1

2
wTW + CΣ l

i=1εi (6.4)

Variable C presents an inaccuracy attribute that regulates a certain balance among
the complexity of an SVM and the number of not separable points. The optimization
problem includes the C function, which is a parameter that is user-defined. The user
can control the ability of the SVM to generalize using this parameter. This issue is
solved by means of quadratic optimization. Since the separation of data is an issue,
SVM architecture requires an additional element. SVM’s use a nonlinear kernel
function which transforms the defined vector into a larger dimension input space
of a vector. In this way, the chance of the input vectors being further separated is
increased. The operation of a SVM is quite simple after the optimal hyper plane
has been built. The vector for input is mapped to the functional area. The SVM
then defines the location and judgment of the function in the hyper plane. SVMs’
capacity to generalize is their exclusive benefit. With the inclusion of the vector
discrepancy in its optimization algorithm as a variable, SVM’s can compensate for
some input vector heterogeneity which further makes them a good candidate with
which to classify EMG.

6.1.1 SVM kernel

SVM incorporates a kernel which organizes input parameters into function compat-
ibility. Three kernels are typically used. There are no strategies to choose a kernel
feature to use for the SVM or identify the functionality of the kernel for a specific
application. The RBF feature should be first preference. One explanation is that
RBF kernel that functions like sigmoid and linear kernels with certain parameters
C and Y [8]. A further justification to use the RBF kernel is that numerical compu-
tations are less daunting. The RBF kernel throughput fluctuates from 0 to 1, with
a polynomial kernel vaguely resembling infinity or 0.

6.2 KNN

K-Nearest Neighbor (KNN) plays a significant role in pattern recognition. This
method identifies the homogeneous things that are close to each other. It is mainly
used to solve regression and classification problems which need predictions. For ease
of interpretation and low calculation time the KNN method gives a very good as-
sumption. KNN classification is used to perform statistical analysis using a discrim-
inant function when stable parametric estimation is quite unknown or determining
is tough. This algorithm uses the Euclidean distance between two information (in
n-dimensional space two of the given points) is defined by the given formula.

dist(x1, x2) =
√

(
n

i = 1
(x1 − x2)2) (6.5)

Here, x1 and x2 are two information [11]. It measures the distance between x1 and
x2 corresponding to the n attributes [11]. This Euclidean distance is used to get
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the closeness of the objects in the algorithm. The steps which are used in KNN
algorithm are [11]:

1) Determination of the parameters for K.

2) Sorting the distance and finding out the nearest neighbors.

3) Nearest neighbors category Y is gathered.

4) Nearest neighbors simple majority is used.

As our proposed model deals with human motion data we have used this method
to get a better result. The electromyography (EMG) signals influences the artificial
hand’s grabbing and hand grasp opening which is achieved by multiple parameters
of different movements of test subjects using KNN rule [11]. Hamming distance or

Figure 6.3: K-nearest Neighbor

flap metric can be used here to get better result. In the test sample where the green
dot is situated that should be labelled as 1st class and the triangles which are red
or the squares which are blue can be labelled as 2nd class. If k=3 then it can be
found that two of the red triangles and one of the blue squares is present in the
circle which leads to it as second class [23]. And if k=5 that leads to the two of
the red triangles and three of the blue squares which declares the first class inside
the outer circle [23]. Collection of the trained characteristic vectors along with class
tags, this is done by the algorithm’s training. Inside the substantial categorization
phase the unknown class is regarded as the vector in the marked area. The samples
which are close to k are chosen using the respite of different vectors [23]. Detecting
the new vector with prediction amongst the K nearest neighbors is one of the most
common systems [23]. But this system has a drawback and that is, it depends on
the common examples which leads to it’s new vector prediction [23]. Hence, this
problem can be solved if all the distances of each K nearest neighbors are recognized
along with the vectors which are newly categorized and guess of these classes will
be based on the distance values [23].
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Chapter 7

Architectural Analysis

7.1 System Architecture

Based on the embedded micro-processor structure, the system depends on reason-
able and high speed micro-controller is an equating for signal processing and it is
convenient for the kind of project needs to inaugurate a higher aptitude along with
impressionable and suitable control system. In Fig 7.1 a block diagram demonstrates
the versatile control system which is based on the reasonable can be used with the
capacity to serve personalized hand postures which suits the lifestyle of the users.

Figure 7.1: The Architecture of System Block Diagram

7.1.1 Physical Architecture

The physical architecture is the representation and layout of a project and its mod-
ules in a schema. This architecture indicates the layout of the structure or ar-
rangement of the physical modules of a system. One of its aims to compliment the
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logical architecture part and project requirements. In this system the module that
represents the physical architectures are EMG sensor for taking input; micropro-
cessor, filtering and simulation processor for processing and simulation preview for
increasing the accuracy.

Figure 7.2: Physical Architecture

7.1.2 Logical Architecture

In order to represent the logical machine view, the MVC architecture is used all over
[24]. By using this architecture, one can represent distinction among the presenta-
tion, the data and the processing. MVC gives three rudimentary fragments whose
parts are illustrated :

• Model: Includes all the data for displaying [24].

• View: Encompasses presentation of data to user and interface [24].

• Controller: Controls user inputs and encompasses them to process and sends
command for updating model[24].

For interactive application, this kind of architecture is perfect in order to fulfill the
requirements [24].

Figure 7.3: Logical Architecture
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Chapter 8

System Implementation

8.1 Aperture Size Selection

The data gathered from the EMG is aperture sized, and each window extracts
features. The functions derived are often connected to build a broader collection of
features. Choosing the best aperture size multiple sliding apertures are selected as
128ms to 1024ms with an interval of 128 aperture and their execution was tested
precisely for exactness of EMG signal ramification [22]. The enhancement of the
aperture was declared to 128 ms . Ramification of hand activity with each of the
aperture sizes has been measured 5 times for each subject. It has then determined
the overall ramification rate [22]. Then, it determined the mean of all subject details
for every aperture [22].

8.2 Feature Parameters Selection

Classification accuracy is agitated by the possibilities of feature parameters. Ta-
ble 8.1 determines the time domain traits which are molded into eight feature po-
sition for the representation of evaluation. To determine each feature set combined
finger movements of individual and the mean sorting of distinct is calculated. The
process is repeated for each subject. After that for the certain feature set over all
an aggregate classification average rate is found. For the aspect of eight sets the
process is iterated with all of the sets inaccuracy or the aggregated classification
average rate.

8.3 Feature Vector Calculation

EMG signals sorting mainly lean on the detection of right attribute of vectors which
are exclusively for them. Incompatible attribute parameters like ZC, MAV, RMS,
WL and etc model are assessed, within each aperture attributes are extracted from
EMG data. By using these feature parameters from each EMG data channel features
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are being calculated. First of all, by choosing the apertures of data then a feature
parameter assessed are estimated for that particular aperture. Afterwards sliding the
aperture away to review a new aperture of data and then the computation of feature
values for each factor parameters is replicated. The computation features from one
class of EMG data for example Hand Close of 1st aperture, 50th aperture, 100th
aperture and 150th aperture as an example is shown on Table 8.2 and Table 8.3.
Concatenation of the calculated feature values are then used to form a substantial
attribute vector [22].

Table 8.1: Attribute Sets

Attribute Set Attribute Parameters

First ARM(order 4), WL

Second WL, ARM, MAV

Third MAV, ARM(order 4), RMS,

Fourth RMS, ARM (order 4), WL

Fifth RMS, WL, IAV, MAV

Sixth WL, RMS, ARM (order 4), IAV

Seventh MAV, ARM ,WL, RMS,

Eighth ARM, WL, MAV, IAV, RMS

Table 8.2: 1st and 50th aperture attribute parameter values calculation

Attribute
Parameter

Aperture 1 Aperture 50

Chn no. 1 Chn no. 2 Chn no. 1 Chn no. 2

MAV 0.000258 0.000451 0.000303 0.000497

RMS 0.000373 0.000562 0.000296 0.000501

WL 0.012994 0.017981 0.014003 0.013027

IAV 0.139863 0.219958 0.141967 0.201129

ARM(order 4) -1.39889 -1.9117 -2.02136 -3.10024

0.299758 0.714381 0.809527 3.001324

0.286628 0.399899 0.340131 -1.20913

-0.03101 -0.24217 -0.20142 0.121514
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Table 8.3: 100th and 150th aperture attribute parameter values calculation

Attribute
Parameter

Aperture 100 Aperture 150

Chn no. 1 Chn no. 2 Chn no. 1 Chn no. 2

MAV 0.000312 0.000231 0.000251 0.000221

RMS 0.000398 0.000292 0.000301 0.000247

WL 0.009352 0.006997 0.008125 0.006507

IAV 0.156218 0.12597 0.114012 0.110201

ARM(order 4) -2.52587 -1.9543 1.80252 -2.924

2.49896 0.918212 0.656075 3.012529

-0.91074 0.321091 0.298457 -1.58325

0.059786 -0.2318 -0.16286 0.271091

Table 8.4: Interconnected Attribute Values

Attribute
Parameters

1st Aperture

MAV 0.000258 -1.39889

0.000451 0.299758

RMS 0.000373 0.286628

0.000562 ARM (order 4) -0.03101

WL 0.012994 -1.9117

0.017981 0.714381

IAV 0.139863 0.399899

0.219958 -0.24217
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Channels computed feature values are interconnected solely underneath one another.
Interconnection of feature values of channels for 1st aperture is shown on Table 8.4.
Then the feature vector is formed by all the integrated feature values of all aspect
frameworks which are solely underneath one another. All 4 aperture feature vectors
are shown on Table 8.5 for example:

Table 8.5: 1st-150th, 4 aperture aspect vectors

Aperture 1 Aperture 50 Aperture 100 Aperture 150

0.000258 0.000303 0.000312 0.000251

0.000451 0.000497 0.000231 0.000221

0.000373 0.000296 0.000398 0.000301

0.000562 0.000501 0.000292 0.000247

0.012994 0.014003 0.009352 0.008125

0.017981 0.013027 0.006997 0.006507

0.139863 0.141967 0.156218. 0.114012

0.219958 0.201129 0.12597 0.110201

-1.39889 -2.02136 -2.52587 1.80252

0.299758 0.809527 2.49896 0.656075

0.286628 0.340131 -0.91074 0.298457

-0.03101 -0.20142 0.059786 0.16286

-1.9117 -3.10024 -1.9543 -2.924

0.714381 3.001324 0.918212 3.012529

0.399899 -1.20913 0.321091 -1.58325

-0.24217 0.121514 -0.2318 0.271091

8.4 KNN-SVM

A new approach is introduced the new category that blends algorithms such as
support vector machine along with the k-nearest neighbors. The method is based on
the classification of SVM along with KNN where only one specific point for each class
is picked. The method counts radial length among the feature group. Appropriate
super-plane of support vector machine in feature space throughout the class step.
The test procedure will be listed on support vector machine when the length is bigger
comparatively from threshold calculated previously [4]; k-nearest neighbor algorithm

31



would instead be utilized. In the KNN algorithm, each support vector is chosen for a
specific region and length among the experimental samples together with all support
vectors is being collated [4]. The experimental modules get distinguished through
identifying k-nearest reference neighbor. Computational analysis shows that the
combined algorithm not only increases precision in comparison with SVM alone, it
can also resolve the issue of choosing the kernel parameter for SVM [4].

8.5 KNN

KNN is admired nowadays because of its processing speed. Not only this simplicity
in the process of recognition is really amazing but it increases the classification
accuracy [13]. If the test specimen’s distance to the super plane which is optimal in
support vector machine is not greater than the threshold value computed by SVM,
the responsibility falls on KNN to do the classification. In terms of time it can
perform really well and has better accuracy in classification. EMG signals recorded
from muscles of the user’s and activation from these muscles were used in order to
control a prosthetic arm. From the point of accuracy, simplicity KNN is very good
to be implemented on many types of medical related appliances such as artificial
limbs and high accurate robotic appliances where human interacts with robot. But
KNN has to maintain a simple rule and that is, its algorithm is fully based on the
k data point in the data which it will be trained. There it can predict because of
its nearest neighbor. For this reason, the selection of k needs to be handled very
cautiously as it has supremacy towards the interpretation of classification [17]. K
mainly relies on the set of data and the model it has been exposed to. Province of
k is from one to ten [17].

Table 8.6: KNN Standard classification accuracy rate

Data
Sub

1 2 3 4 5 6 7 8 9 10 Avg.
in %

1st Sub 79 90 87 79 82 93 74 80 92 90 84.60

2nd Sub 93 87 87 87 87 77 73 73 84 84 83.20

3rd Sub 91 95 90 82 78 72 72 72 82 92 82.60

4th Sub 95 75 90 100 90 90 90 90 90 95 90.50

5th Sub 88 93 87 86 85 82 92 90 90 90 88.30

Avg. 85.84

Though the accuracy rate is lesser than SVM, it efficient in certain field where the
classification rate of SVM is lower and overall it increases the accuracy of classifica-
tion by supporting SVM. When the efficiency or feature distance in the plane gets
lower for SVM, The KNN code gets the opportunity to run. Here is a glimpse of
KNN classification code of our system at Fig 8.1.
Without any due it can be said that KNN algorithm is efficient and fast regarding
of its simplicity. Although K-value is the main key point of KNN’s performance
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Figure 8.1: System Classification Code (a)

[13]. Here the k differs for the variety of data sets which is why k-value of several
subjects are done. K=1 is regarded as the ideal point which leads to accuracy where
it has gained optimal categorization. Not only this, a quality deviation value is
being prepared by its reliable result. In KNN when k=1, it performs the best result
by its features.

8.6 SVM

The EMG categorization accuracy rate invariably exceeds 90 percent by using an
SVM. The only lingering and challenging task is the selection of configuration of the
SVM and the selection of feature extraction from the EMG signal of the functional-
ity. Although SVMs are binary classifiers, only two categories of gestures might be
distinguished by a unified SVM. A multi-class SVM is expected to interpret multi-
ple gestures, which can be conducted in one of two ways. Very first methodology
could be to solve the interoperability problem that includes details from all multi-
ple classes. The second alternative certainly postulates the multi-class SVM from
a binary SVM confluence. The juxtaposition of binary SVMs is much simpler and
does not impede the classification performance [6]. There are two plausible schemes
using binary SVMs for enacting multi-class SVM which are: “one against all” (OAA)
or “one against one” (OAO) [6]. OAA implements n binary classifiers to train each
classifier to distinguish from the residual classes. OAO entails (n(n − 1))/2 binary
categories in which each category deviate from one pair of categories [6]. The penul-
timate classification in OAO is contingent on a voting mechanism, which comprises
all the outputs of all classifiers. The ultimate outcome is the incident with the most
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votes. There is a more or less equivalent efficiency across both schemes as indicated
in [6]. Nonetheless, the OAO scheme derives a stronger probability approximation
across each class through evaluating all group pairs. This research incorporated
with the EMG classification system with the OAO regime. We have first collected
real data through EMG signal. Then we have done pre-processing and feature ex-
traction of those signals using different methods. After that, we have classified our
data set for getting the most accurate value for motion recognizing. Finally, we have
feed those values to our simulated model and have tested the accuracy of our model
which is represented in Table 8.7.

Table 8.7: Using support vector machine standard classification accuracy rate

Data
Sub

1 2 3 4 5 6 7 8 9 10 Avg. in
%

1st Sub 91 86 84 89 86 92 86 88 89 96 88.70

2nd Sub 89 94 85 96 79 97 89 87 88 97 90.10

3rd Sub 87 90 100 89 96 89 95 85 88 90 90.90

4th Sub 96 92 100 97 97 86 97 93 97 92 94.70

5th Sub 91 96 96 96 97 96 89 100 96 92 94.90

Avg. 91.86

Here are some glimpse of the python code we applied in predicting the states at Fig
8.2.

Figure 8.2: System Classification Code(b)
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For different hand gestures, we are predicting the possibilities of crossing the thresh-
old which is determined by the algorithm itself. After the prediction, later on the
value gets passed in the variables which is used for determining the state of hand
simulation and giving command to the simulation after getting the online values
from EMG sensor. After determining, the code sets the value of the variables for
decided state by if else condition which sets commands the hand to be in different
gestures, a glimpse of that code is shown below in Fig 8.3.

Figure 8.3: System Classification Code(c)
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8.7 Hardware Interfacing

To attain the value from the EMG sensor it was attached with an embedded micro-
processor. The EMG sensor had 8 probes which were put on to different part of the
arm. The probes got raw data from the arm and the sensor optimized it and sends
it to the microprocessor. And the microprocessor sends that data for processing
to the processing device. The embedded microprocessor which is used with EMG

Figure 8.4: EMG Interfacing Code

sensor is mainly bound by the analog pin 1. Before using the EMG sensor it was
calibrated so that sensor can give accurate results.
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Chapter 9

Result Analysis

9.1 Simulation

The EMG sensor has 8 electrode and the raw EMG data stand in for an 8-column
matrix. Trial starting time and the values representing the label of each trial are
declared by variables in the Autodesk file. After that the animation and python
script was applied instead of any additional system for the simulation. To make
sure our design could work well in real life, a simulation software named Autodesk
3D max is used in this work. 3D max is software for 3D modeling and rendering
software for visualization, games, and animation. We did our simulated tests of 4
gestures accuracy in this software. We have shown our 3D models accuracy easily
using 3D max’s tool kits and motion techniques. However firstly, the 3D model of
our prosthetic hand were made and then we have modified the model according to
our work to meet the need for calculation and kept the most dimensions. We can get
the test result by connecting the MyoWare Muscle Sensor with the embedded micro-
processor by analogue pin. When the electrodes will collect muscle value from the
subject the values pass through the processing unit by embedded micro-processor.
The simulator checks if the variable from python script for deciding states. When
collected value gets bigger comparing to threshold value, that certain variable sets
its value to the right state. We have tested our gestures accuracy in the model and
we have got accurate 4 gesture movement from our prosthetic model.
In Fig 9.1, when the online value from EMG sensor gets higher than the threshold
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Figure 9.1: Hand-Rest Simulated
view

Figure 9.2: Hand-Open Simulated
view

Figure 9.3: Spherical-Grip Simulated
view

Figure 9.4: Fine-Pinch Simulated
view
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value of “Hand-Rest” state, the variable determines the state by prediction from
algorithm and sets the state in “Hand-Rest” posture of hand. As a result from the
python script, Autodesk gets the command of the posture hand rest and represents
it virtually through animation. For Fig 9.2, Fig 9.3 and Fig 9.4 the prediction,
decision along with presentation is previewed in the simulation acquired in the same
way.

9.2 Aperture Size vs. Classification Rate

Changing the aperture area, the divergence of classification rate is shown in Fig
9.5. Observing the aperture area change it is found that the expand of classification
rate happens due to the increase of aperture with fixed aperture enhancement. 512
ms aperture area is the highest rate of classification rate. Substantial aperture
takes substantial processing time and 512 ms aperture renders better classification
percentage. In this study 128 ms as aperture size with fixed aperture enhancement
has been chosen.

Figure 9.5: Relation between classification rate and aperture sizes
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9.3 Characteristic Framework vs. Classification Per-
centage

Selection of characteristic frameworks assigning error rate or classification rate is
shown on Fig 9.6. Standard error rate decreases due to the expanding characteristic
parameters. Characteristic frameworks of characteristic set seven and eight from
Table 8.1 manifests more fascinating outcome.

Figure 9.6: Error percentage and classification set relevance

According to categorization 7th and 8th combination, deduction of mean inaccuracy
percentage is lesser. Error percentage does not lessen if classification set eight is
used which also includes AR model. It has been found that classification set eight’s
classification parameter has been recon to systematize EMG patterns.
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9.4 Average Categorization Rate

Comprehensive to All subject’s average categorization rate is 96.33 percent. Fig
9.7 shows mean categorization rate for each subject where x-axis stand for specific
subject and y-axis specifies each value according to the categorizing of each subject
along with a horizontal line which represent overall mean categorizing rate.

Figure 9.7: SVM-KNN classifier based mean categorization accuracy rate
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Chapter 10

Limitations and Future works

10.1 Limitations

Though this system has an accuracy level close to 100 % and this is one of the
precise predicting system, it has some limitations too. These are the limitations
which were not possible to remove within the time binding we got and within the
system budget we got. Some of the system limitations are stated bellow:

• Accuracy: The system has 96.33% of accuracy which concludes that the system
is not 100% accurate and the inaccuracy rate is 3.67% which is certainly very
low comparing other comparable system but it is not null.

• Feeling objects and temperature: The system has not described any solution
about feeling objects, temperature and feeling texture of a surface just like the
real organic hands.

• Gesture Variance: Unfortunately only four gestures were described through-
out the whole project. Though classifying other gestures is very similar like
classifying the four gestures.

• Rigidness about placements of electrodes: To place the electrodes on the mus-
cles surface, the points has to be precise for every subject. It may work
inaccurately in case of not placing the electrodes precisely on the designated
point of muscle which is already described in the system documentation.

• Two algorithms: More algorithms could be used to experiment the accuracy
variance by merging them together, though it is still a conceptual concept
among the researchers.

• Degree of movement: The system has not accounted the fact of degree of
movement. Degree of movement allows every move of hand or any parts of
body with a variance of precise angle.

• Dataset: As we tried to keep the system budget friendly, we couldn’t afford to
buy more costly datasets for the system.
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• No hardware implementation: The implementation is only shown through the
simulation software, not through hardware implementation.

• Required hand portion: The system is valid for those people who have at least
up to the elbow part of their hand. Unfortunately this is not valid for those
amputees who lost their whole hand portion.

10.2 Future Works

The implemented prosthetic hand with 4 gesture movement control system is specific
to biomedical applications which can be further extended. Recommendations for
future works and major improvements is suggested below:

• Exploring another algorithms of Machine Learning which are related to the
problem of hand gesture classification for comparing our existed results for
experimenting the accuracy variance and merging them together if needed.

• Building a 3D printed hand and implementing our classifier as for now our
implementation is shown only by software simulation system.

• Working on the points for placing the electrodes to be more precise for every
subject.

• Increasing the accuracy to 100% for our classifier as now it has accuracy of
96.33%, so focusing more on the algorithms to get rid of inaccuracy of 3.67%.

• Replicating the results presented in this thesis in trials with actual amputees.

• Introducing gesture recognition system for both hand and also enabling the
more natural interaction environments for amputees.

• Extending our results to other types of movements as in our thesis we have
worked on 4 specific gestures only.

• Considering the Degree of Freedom in our classifier as this allows every move
with a variance of angles.

• Introducing feedback system in our prosthetic hand so that amputees feel this
hand as a part of their body by placing pressure sensors on the tip of the
fingers.

In conclusion, we can say that although there are still much to do for the betterment
of this system but the implemented classifier and the system is good and strong
starting point for developing prosthetic hand systems.
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Chapter 11

Conclusions

To conclude, we have used a unique approach named electromyography for our pros-
thetic hand which is controlled by the electrical signals instinctively produced by a
person’s muscle system. Using the Machine learning and deep learning the EMG
based prosthetic hand movement control is designed, developed and represented
in Autodesk 3D max software. At first, the system is implemented with different
methods of extraction and classification of features. Three Algorithms are imple-
mented using the methods of machine learning as well as classification accuracy is
achieved in this work. For feature extraction, Variance, Waveform Length, Integral
of EMG, Zero Crossings, Slope Sign Changes, Auto-regressive Model, Integrated
Average Value and other techniques are used. In addition, for feature classification
SVM, KNN, and combination of KNN and SVM algorithms are used.But the combi-
nation of SVM and KNN has the highest accuracy rate among other two algorithm
as we get the accuracy rate of this classifier 96.33 percent while classifying the four
different hand gestures which are hand-open, hand-close, spherical-grip, and fine-
pinch. So, it can be easily concluded that the mix combination of KNN and SVM
algorithm is more suitable for classifying different hand gestures with highest clas-
sification rate. We have also used the 3D modeling and rendering software name
Autodesk 3D max for implementing our software simulation system. Output can
be seen through the motion of our designed prosthetic hand model which performs
accurately the intended action of the subject based on EMG signal test data. This
model also takes muscles time for processing the motions according the data which
is collected by MyoWare Muscle Sensor. In the near future, our 3D cost effective
printable prosthetic hand with the accurate hand movement control system can be
used by amputees to do the necessary activities in their daily regular lives to make
their life easier.
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