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Abstract

Transaction fraud has become a fast growing issue in the world of modern tech-
nology which has become a serious threat to the financial sectors. Although these
fraudulent actions have several categories or type but online financial fraud has been
a dominant issue so far. In reality, a profoundly precise procedure of identification
of fraudulent transaction is required since it is causing a extensive wealth related
depletion. Therefore, we have conducted research on financial fraud record using
machine learning models and proposed a procedure for precise misrepresentation
recognition dependent on the points of interest and restrictions of each exploration.
In our initial stage, we implemented machine learning classifiers such as Logistic
Regression, K-Nearest Neighbor, Support Vector Classifier, Näıve Bayes, Gaussian
Näıve Bayes Classifier, Random Forest Classifier, Extra Tree Classifier, Neural Net-
work and Adaptive Boosting to see how all of them performs separately. We also
balanced the dataset that we used in order to overcome the overfit issue. Then again
we tested the above mentioned classifiers on the balanced dataset. After that we
tried our final step which is the implementation of Stacking technique. The accuracy
that stacking method came up with were the best along with very less overfitting
issues since K-fold cross validation was applied. To further boost the accuracy, we
implemented Grid Search Hyperparameter tuning to get the best possible outcome
at a much lower error rate. Therefore, to give a superior outcome for different sorts
of online money transaction frauds, we have been keen on working with this issue
and build a solid and defensive platform for safe transactions of money.

Keywords: Transaction fraud, Neural Network, machine learning classifiers, Over-
fit, Stacking technique, K-fold cross validation, Grid Search Hyperparameter tuning
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Chapter 1

Introduction

According to Oxford Learner’s Dictionary, the word fraud signifies a person or
a group who are involved in crimes of cheating other individuals in order to obtain
wealth or goods illegitimately. The fraudulent actions can be categorized into many
different types based on the types of the actions taken by a single individual or
a group of people. Among those categories of frauds, transaction frauds have be-
come a serious threat to the financial sectors. With the advancements of technology,
transaction frauds have increased by several folds. Consistently online frauds and
computerized data fraud bring about misfortunes in the millions for the budgetary
part, also e-commerce business or telecommunications. This issue of transactions
frauds not only occurs in developed countries like USA where online payments have
become a daily work for the people but also in well technologically developed Eu-
ropean countries as well. According to the information from July 2016 in Great
Britain, one out of ten individuals give in to online burglary and crime [1]. More-
over, the expanding applications of mobile phones to operate financial transactions
and online buying and payment from different e-commerce sites didn’t go unnoticed
from the eye of the hackers. During Clab 2016, organized in Peru in September
2016, the most recent data as for portable misrepresentation was represented: it has
extended by 170% from the prior year and now addresses 62% of all online extortion.
Among this numbers, 95% of the attacks are based on identity thefts. This type of
fraudulent activity is very common alongside phishing (fake emails) and hackings
[1].

1.1 Motivation

This is a very critical problem which needs the attention of data science and machine
learning by which the solution to this problem can be automated. This problem is
difficult from a learning context as it is characterized by various factors such as
class imbalance. There are considerable amount of fraudulent transactions which
are valid in terms of the given datasets. Moreover, in this era of physical and virtual
card purchases customers prefer the most accepted payment method via the card
which is the most accessible and convenient for the day to day users. This is where
the risk of credit card use comes into scene and it is a major problem to avoid the
possibility of unauthorized purchase using credit cards. Several data mining tools
and machine learning approaches are available to effectively reduce these risks.
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Financial fraud in IoT environment is growing fast because of the advancement in
IoT field and it has been easier as almost any kind of payment can be done via mobile
channel. Mobile payment has emerged enormously with the growth of internet
trading and expansion of the IoT environment which conduct to a greater emergence
of financial fraud in mobile payment system. Merchants started to endorse mobile
web or mobile online service through application or web and more than 87 percent of
them use any of these two [2]. Moreover, with the advancement of mobile payment
in IoT world, mobile wallets have become more demotic with the increase demand
of the society in the IoT field. With the overgrowing demand of mobile payments,
financial fraud has reached a fearsome level resulting in a massive fall in the overall
economy. Financial fraud can happen in several aspects, but the most common case
in a mobile payment is unauthorized use of credit card number and its certification
number. Detection of online credit card fraud and its mitigation will result in
unhesitating use of its feature and save up all these financial amount to our economy
rather than ruined up in the financial fraud loop.

1.2 Problem Statement

If the banking sector is considered, it is a great target for fraudulent activities.
At present, banking services have become automated for which this sector is being
targeted constantly. In February 2016, hackers managed to steal $101 million from
Bangladesh Bank with the Federal Reserve Bank of New York. Out of the total
sum, $81 million was distributed among four accounts with RCBC in Manila and
the remaining $20 million to a bank in Sri Lanka even though the transfer of money
to Sri Lanka’s bank failed because of some errors done by the hacker [3].

Recent incidents state that, serious cyberattacks took place in three of the private
banks in Bangladesh in May 01,2019. Even though two of the banks named NCC
and Prime Bank were the victims but they were able to back up their financial losses
as the amount was not big. But in case of Dutch Bangla Bank Limited they faced a
terrible loss. This cyberattack affected them so severely that it cost them $3 million
which is almost TK.25 crore. An unorthodox method was used where the hacker
set up a malware in the bank’s card management system prior three months. As a
result, a perfect replica of the bank’s switch was made. For this reason, when the
hacker went for the transaction and the proxy switch made by the hacker did the
function and the bank was unable to detect [4].

Methodically, to commit a credit card fraud offline, the intruder must steal the credit
card physically to carry out the fraudulent transactions. Accordingly, in cases of
IoT system the customer does not need a physical payment tool, rather it needs the
information from the credit card such as expiry date, card verification code and one-
time password sent to them via mobile or email with a fixed amount of time of its
effectiveness. And correspondingly fraudster gets it easy making fraudulent payment
online rather than physically making the fraud by abducting the credit card. As
a consequence, the most common form of financial fraud which normally occurs in
IoT environment involves collecting or changing information on credit cards.
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1.3 Objectives and Contribution

We are living in an express train to a cashless society where alternates of cash are
preferred the most. According to the World Payments Survey, there has been a
rise of non-money exchanges by 10.1% from 2015 for an aggregate of 482.6 billion
exchanges in 2016 [4]. Moreover, the number of non-cash transactions is expected to
increase gradually in future years. While the effect of credit card fraud is restricted
to approximately 0.1 percent of all card transactions, it has contributed to enormous
financial losses as large-scale fraudulent transactions. In 1999, of the 1,200 transac-
tions a year about 10 million were fraudulent or one in 1,200 [5]. Moreover, 0.04%
of all monthly active accounts (four out of 10,000) were also fake. Although since
that point, the credit card transactions have risen tremendously in volume and size,
the proportions remained the same or decreased due to advanced fraud detection
and prevention mechanisms. The fraud detection mechanisms currently in place are
designed to prevent 1/12th of all transaction processes which still results in losses
of trillions of dollars [6].

65 percent of fraud happened through technology-driven systems like ATM, credit
cards and Internet banking [7]. Allegations of credit card and ATM have occurred
in number of banks in Bangladesh including a foreign bank. Moreover, there was
also a record of transfer about 1,50 billion in a third-generation bank during the
software process. With the advancement of technology banking sector has started
to use technology extensively with the introduction of new ATMs, POS (sales point),
internet and mobile banking etc. Despite the fact of the customers becoming more
tech savvy, there lies a group of fraudsters who are taking advantage of the tech-
nical loopholes. Ability of detect fraud in these systems will result in much more
irresistibility and freedom in using these tech amenities. Fraud is an illegal act in
which services, goods and funds are obtained. Fraud has encompassed many illegal
practices and actions in last ten years. The main reasons for data theft are skimming
and card traps [8]. Fraud has caused huge financial losses, data loss, destruction
of financial institutions and its reputations. It is important to detect fraud trans-
actions to mitigate the obstruction. In order to detect transaction fraud there has
been already several statistical model existing [9], [10].

3



1.4 Thesis Structure

Chapter 1 –. Introduction part where motivation, problem statement and objective
is included.

Chapter 2 – Background where the literature review indicates the previous works
and researches of our thesis topic and also the theoretical explanation of all the
algorithms that are being used.

Chapter 3 – Dataset Analysis which contains data visualization, dataset features,
data imbalance issues and its solutions.

Chapter 4 – Result Analysis which contains all the experimental values and graphs
including comparison between the algorithms

Chapter 5 – Conclusion and the researches and application that will be done in the
future is discussed in the chapter.
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Chapter 2

Background

2.1 Literature review

The exponential development of the Internet has offered enormous market potential
for the present business including e-banking industry. Although e-banking industry
has provided many benefits for the business end but it imposes traditional bank-
ing needs and several security issues. Convenience, trust, and social impact were
significant influencers to the reception of E-Banking. Very much established trust
in paper-based exchanges and change-shirking society still an unclear term in the
e-banking area to be utilized on a more extensive territory [11]. However, e-banking
consistency inclusion has been eclipsed by the poor notoriety of web based business
normality issues. Researchers proposed differing systems for confirmation where
multi strategy is prescribed while using biometric strategies in security [12]. All
things considered, extortion identification faces more issues when managing new
conditions like distributed computing. As per their surveys ”Exchange Monitoring”
trailed by ”Short Message Service (SMS)” and ”One-Time Password Tokens” are
the best models and respondent’s conclusions are ”Virtual Keyboards”, ”Browser
Protection”, and ”Device Identification” are the most noticeably awful model.

In the research paper done by Emad Abu-Shanab and Salam Matalqa, they argued
that fraud detection domain, fraud catching rate and bogus alert rate are preferable
measurements over the general exactness while assessing the scholarly fraud classi-
fiers. They used meta-learning to join various classifiers to keep up and improve the
exhibition of the classifier. In their test, the preparation information was examined
from before months, the approval information (for meta-learning) and the testing
information were inspected from later months. The instinct behind this plan is that
they reenact this present reality condition where models was prepared utilizing in-
formation from the earlier months, and ordered information of the present month.
Additionally, they utilized just a bit of their unique database for learning instead of
loading the entire training data in the main memory and compared the information
learning on the adapted information versus the first information and came about
no misfortune in exactness. Since their information had a slanted class dispersion
they train on data that has higher fraud rate and determined 80% overall accuracy.
They kept their rate of fraud misrepresentation catching comparatively lower along
with a higher rate of fake caution in the fraud detection domain that countless false
exchanges experiences and an enormous number of genuine exchanges gets hindered
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by their recognition framework interceding human exertion in approving such ex-
changes. They likewise considered misrepresentation getting rate as significantly
more significant than false caution rate.

Financial fraud activities under IoT domain is the quickly developing issue through
the ascent of cell phone and online progress administrations [11]. Right now, the
researchers have overviewed fraud detection techniques by utilizing machine learn-
ing and deep learning technology, fundamentally during the timeline between 2016
and 2018, and suggested a procedure for precise fraud detection dependent on the
favorable circumstances and impediments of each exploration. The exploration addi-
tionally actualized both machine learning and deep learning strategy to think about
the effectiveness of recognizing the transactions which indicates fraudulent activi-
ties. Additionally, the exploration has played out the general procedure of financial
fraud recognition in functional point of view dependent on supervised and unsuper-
vised machine learning strategy [12]. Likewise, they are proposing a down to earth
technique by applying sampling procedure and selection of dataset feature process
for taking care of data imbalance issue and quick identification in reality. The pro-
posed model comprises of data preprocessing, testing, highlight determination, use
of arrangement, and bunching calculation dependent on machine learning. The pre-
processing performs information connection examination and information cleaning
process [12]. Inspecting process assesses dataset with different proportions for check
through arbitrary oversampling and undersampling technique. Clustering method
with the proposed calculation is performed and this outcome is utilized as a prepa-
ration set in the arrangement procedure. The model approval process is performed
with exactness and review rate through F-measure. An artificial intelligence network
copies the actions done by human mind in handling information and makes designs
for use in dynamic territory, through the capacity of solo gaining from information
that is unorganized or unregulated. The exactness of every calculation utilizing the
element separated through the proposed highlight choice technique was estimated
[12]. Notwithstanding real datasets, open information were likewise applied also for
progressively exact check of their proposed strategies. The examination was directed
utilizing 270,000 bits of information which was extricated into 21 attributes. In the
outcome, it was discovered that the notable AI strategy has a higher misrepresen-
tation recognition rate than the fake neural system in spite of the fact that the
procedure takes moderately longer than the machine learning procedure.

In 2014, D.Olszewski proposed a method of detecting fraudulent activities by using
an algorithm known as Self-Organizing Maps [13] which is based on dimensionality
of a dataset. It is a kind of machine learning that falls under unsupervised machine
learning and also uses neural network technique. Its basic function is to anticipate
the datasets from high to low dimensionality. SOM also works in real time situ-
ations that means output is shown during the actual time of the work. No used
dataset in used in this algorithm. As a real time dataset, information of 200million
customer is used to work on this algorithm. The function of this machine learning
algorithm is that it can identify new hidden data patterns in the training dataset
which becomes very crucial when it tests the dataset designated for testing. As a
result, the processing time decreases as well as the processing costs.
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P.Ravishankar in his paper which was published in 2011 showed the use of another
unsupervised machine learning technique called Group Method of Data Handling
[14] to detect financial fraud statement along with feature selection of the dataset.
This technique is used to construct complex architecture or system. It examines
different complex models and based on the criterion of different parts of data sample,
it estimates all the models and gives a suitable output. According to the observation
done by using the algorithm, it is seen that the accuracy reaches 95.09% which is
undeniable a great result but there is a backlash in using this method. The major
issue with this algorithm is that the processing time is very slow since it evaluates
through various complex models to give an output. As a result, the processing costs
also increases in proportion to the processing time. In 2007, B.Hoogs and T.Kiels
also researched on detecting fraudulent activities in financial statements. They
proposed genetic algorithm [15] as their solution. The accuracy of this algorithm is
95% and this algorithm can accurately detect biased patterns within the dataset.

E.Duman and H.Ozcelik in their paper [16] which was published in 2011 demon-
strated the an algorithm called Scatter Search. It follows the iterative method in
which each best solution is being clustered in a set and analyzing those outputs in
that set the best result in being produced. This algorithm has some similarities
with Genetic Algorithm. They used 100,000 fraudulent transactions dataset in their
research. In another research paper written by S.Pangrahi, A.Kundu and S.Sural
[17] they used the model called Dempstar Shafer Theory (DST). This model can
calculate the overall belief values form each of the transaction found in the datasets.
This value is used to generate the final output to detect fraudulent transactions
among all the transactions done. The best thing about this method is that any new
rules can be adjusted with the existing framework of DST. As a result, more unique
models can be generated to give better output. O.Adewumi and A.Akinyelu in their
paper [18] used hybrid machine learning models to determine credit card transaction
frauds. They also used the application of big data technologies. They did research
on different types of machine learning algorithms to come up with a hybrid solution
for better performance.

A.Mubalik and E.Adali in their research paper [19] based on detection fraud transac-
tions used Multilayer Perceptron Neural Network (MLP). This model uses layers of
perceptron which can feed information forward to the neural network for further pro-
cessing. From their analysis they were successfully able to enhance the performance
of their algorithm and was also able to decrease error rate in detecting fraudulent
transactions from 19% to 12.23%. K-nearest Neighbors (KNN and Outlier detection
was another method of fraud detection technique used by N.Malini and M.Pushpa.
In their research paper [20] which was published in 2017, concluded with the infor-
mation that outlier detection can give better results if applied on a large transaction
dataset. On the other hand, KNN can perform fraud transactions analysis easily on
a limited memory. In another paper written by N.S. Halvaiee and M.K.Akbari [21]
which was published in 2014, took a unique approach in order to solve the transac-
tion fraud detection issues. They used Artificial Immune Systems (AIS) and Cloud
computing in order to detect the fraud transactions more accurately. The dataset
that is used in this research contains about 3.74% transactions that are marked as
fraud transactions. AIS generates output based on the performance of the number

7



cell. If this performance can be improved by any ways then the detection rate can
also be improved.

2.2 Algorithms

From the related works that we studied, we have seen many different types of ap-
proaches along with the observations and shortcomings. In this section, our proposed
models to detect whether a transaction is resulted in fraud or not are discussed. Our
proposed models include Decision Tree, Extra Tree Classifier, Random Forest Clas-
sifier, Naive Bayes Classifier, Support Vector Classifier (SVC), K Nearest Neighbor
(KNN), Naive Bayes (Gaussian) Classifier, Logistic Regression Classifier, Adaptive
boosting and Stacking technique.

2.2.1 Logistic Regression

Out of the most generally utilized machine learning algorithm that is implemented
in order to resolve any classification problem, one of them is Logistic Regression.
Logistic Regression was introduced because there was a major issue in Linear Re-
gression. The issue was that if the dataset contains any outlier, linear regression
model fails to classify that data sample. As a result, the final output might be
wrong. To tackle this issue, Logistic Regression model was being developed [22].

Logistic regression uses a function called Sigmoid function which indicates that it
can accept any real outputs in the middle of the value zero and one. This outcome
can be interpreted as-

σ(t) =
et

(1 + et)
(2.1)

Where, ’σ ’ is the sigmoid function and t can be any linear equation. If we use
the linear function in a regression based on variable quantity, we get the succeeding
logistic calculation.

ρ(t) =
exp(β0 + β1x)

(1 + exp(β0 + β1x)
(2.2)

where β0 and β1 are the variable quantities.
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Figure 2.1: Logistic Regression curve

Some of the pros and cons of Logistic regression is given below.

Pros:

• Logistic Regression curve can decrease the bias during the training phase.

• For datasets with minimum dimensionality, logistic regression is a great model
since it can generate output much faster.

Cons:

• If the data-set is huge then logistic regression will give overfitting result.

• In the real world, the relation between independent and depend variables are.

2.2.2 Decision Tree and Random Forest Classifier

Random Forest is a type of machine learning algorithm which falls into the clas-
sification genre. It is a model that involves a huge number of individual decision
trees that works as a group. Each decision tree that is being used by random forest
algorithm comes up with a projection and the output with the most support become
the overall projection of the model. Even though some decision trees will give wrong
outputs but the maximum number of decision tree will give the correct prediction.
For this reason, a decision tree’s individual error will not affect the overall output
of the model. This is one of the advantages of using random forest. Another advan-
tageous point that is to be noticed in this algorithm is that the correlation between
the models is low. As a result, it can estimate the overall ensemble prediction more
accurately than any other individual model’s prediction. Random forest is based
on some mathematical equations that includes the equation the determine the out-
come of each decision tree. For calculating decision tree, the equation of entropy is
needed. Entropy in decision tree is the part where the quality of a data sample is
checked using ID3 algorithm [23]. The higher the entropy, the tougher it is for the
model to give a correct prediction. The formula of entropy is
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E =
C∑
i=1

−p(i) ∗ log p(i) (2.3)

After that information gain is calculated. Information gain reduces entropy by
transforming the dataset. The formula to deduce information gain is

Gain(T,X) = Entropy(T )− Entropy(T,X) (2.4)

where T is the targeted value and X is the feature that is to be split. By using these
equations, the decision tree gives it predictions and the best is elected as the overall
output of the classifier.
The workflow for random forest algorithm is given.

Figure 2.2: Random Forest working principle

Some of the advantages and disadvantages of Random Forest Classifier is given
below.
Advantage:

• Handy algorithm for both regression and classification kind of issues.

• Effect of corrupt data sets is fewer than other models.

Disadvantage:

• Time complexity of random forest is more since it takes decision based on many
decision tree’s output.

• Needs more computational power since random forests deal with many decision
trees.
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2.2.3 Extra tree Classifier

An ensemble learning method related to decision tree and random forest is Extra
Tree Classier or Extremely Randomized Classifier. Even though there are resem-
blance between extra tree classifier and random forest, the main contrast is found
during the assemble of decision trees in the algorithm while training a dataset. The
main two parameters working behind this classifier is the number of features sorted
out randomly at every which is denoted by ‘K’ and another parameter is the sample
size on the basis of which a single node is divided. It is denoted by ‘nmin’ [24]. This
is an iterative process where the process of training the dataset goes on according
to the number of decision trees. This picking of the trees number is denoted by ‘M’.
The parameters of extra tree classifiers determine how strongly this algorithm will
perform. For instance, the value of ‘K’ is inversely proportional to the strength of
extra tree classifier. If the value of ‘K’ is minimized, then the random selection of
the features for the decision trees strengthens and vice versa.

The mathematical process of extra tree classifier is almost similar to that of ran-
dom forest. At first the number of decision tree is fixed along with the number of
attributes that is the merit of ‘K’. Then entropy is calculated and using the value
of entropy, Gain is calculated for each decision trees. This is the general process
by which extra tree classifier does the calculation and ultimately comes up with the
final output.

Some of the pros and cons of Extra Tree Classifier are given below.

Pros:

• Computational speed is much faster compared to random forest classifier

• Chances of less overfit since variance is less.

Cons:

• If the dataset consists of high amount of noisy datasets, then the accuracy may
fall for this classifier.
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2.2.4 Näıve Bayes Classifier

A Näıve Bayes classifier is a basic probabilistic classifier model that is utilized for
classification. It computes a lot of probabilities by tallying the recurrence and
blends of qualities in a particular arrangement of information. The calculation uti-
lizes Bayes hypothesis and takes the class variable value for each attribute to be
independent. Näıve Bayes classification works better for large datasets and multi-
class classification and computationally fast. Although in real cases this conditional
independence rarely holds true but with the näıve definition the algorithm yet con-
tinues to do well and learn quickly in a number of supervised classification problems.
For discrete and multinomial distributed features multinomial näıve Bayes classifier
is implemented.

In a multinomial occasion model, pi being the likelihood that the occasion i happens
and x being an element vector where x = (x1, . . . . , xn) is then a histogram, with
xi tallying the quantities of time an occasion has happened in a specific case can be
communicated by

log p(Ck|x) ∞ log p(Ck)
n∏

i=1

pkixi = log p(Ck) +
n∑

i=1

xi.logpki = b+ wT
k x (2.5)

Where b = log p(Ck) and wki = log pki

Some of the pros and cons of Näıve Bayes Classifier are given below.

Pros:

• Application of Näıve Bayes classifier is easy

• It takes less time to compute since the training data set required by the model is
very low.

Cons:

• Näıve Bayes is not a good choice when it comes to real life implementations.

• If a data point is missed while training, then Näıve Bayes automatically assumes
that data point as 0. As a result, it hampers the overall accuracy of the model.
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2.2.5 Gaussian Näıve Bayes Classifier

Gaussian Näıve Bayes is a probabilistic solution algorithm. It is one classifier model.
The calculation of the probability classes and the test data given to the classes is
required before and after. Both groups are determined using the same formula prior
probabilities. Gaussian Näıve Bayes formula is described below-

When features xi are continuous valued, typically make the assumption they are
normally distributed.

P (xi|y) =
1√

(2 ∗ π ∗ σ2
y)
exp(−(xi − µy)

2

2 ∗ σ2
y

) (2.6)

According to Layman’s terms,

When we deal with continuous data we assume the data are distributed according to
Gaussian distribution and thus, while applying Bayes theorem we use the property
to ascertain the likelihood of an event [25].

Figure 2.3: Gaussian distributing graph
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2.2.6 K- Nearest Neighbor

K- Nearest Neighbors Algorithm is a simple supervised machine learning algorithm
that is used for both classification and regressive predictive problems. It is used on
labeled data to learn a function where new unbalanced data is given to produce an
acceptable output. It stores all available cases and classifies on the basis of previous
measure. Lazy learning algorithm and non-parametric algorithm are two properties
that would define KNN. It has been already used as statistical estimation and pattern
recognition as a non-parametric technique. For its non-parametric meaning and
holding no underlying meaning about the data it has been widely used in real life
scenarios.It detects K-closest neighbors on a minimum distance from the analysis to
the training samples. The majority of K-nearest neighbors are considered to be the
assumption of the query instance after gathering the nearest neighbors. K-Nearest
Neighbor makes prediction based on the results of the K neighbors. In order to
predict the distance from query point and case from the sample cases, we need to
define a metric. The Euclidean is one of the popular ways to measure this distance.
The Euclidean Square, City-block and Chebychev measures are also used in the
process [26].

D(x, p) =


√
x− p)2 Euclidean

(x− p)2 EucledianSquared

|x− p| Cityblock

Max(|x− p|) Chebychev

(2.7)

Figure 2.4: Example of KNN for two class [27]
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Some of the pros and cons of KNN are given below. [28]

Pros:

• Non parametrical which makes no prediction about the underlying data pattern.

• Used for both classification and regression.

• Training stage for the closest neighbor is quick.

Cons:

• Computationally costly as it searches the nearest neighbor at the prediction level
for the new point.

• Prediction stage is very costly.

• Prone to outliers.

2.2.7 Support Vector Machine

Support Vector Classifier (SVC) is a kernel-based supervised learning algorithm that
incorporates machine learning theory, operational testing optimization algorithms
and mathematical analysis kernel techniques [29]. It has been very famous because of
its robust mathematical theory as a large-margin classifier. It is used in numerous
practical fields such as bio-informatics, medical sciences for the diagnosis and in
various applications in the field of engineering for model prediction. Because of its
strong learning capacity in classification it is commonly used in medical science.
Using kernel function, it can classify highly non-linear data. It is one of the best
learning algorithms among the “off-the-shelf” supervised learning algorithm [30].
It is the binary classification problem kernel based supervised learning algorithm.
The training dataset generate a kernel function which distinguish between the two
classes. The aim is to create a classifier that works well for unknown cases to give
a good generalization in all case.

If there are m training examples (xi, yi), where yi = ±1 and i = 1, 2, 3, . . . ..n

And there exists a hyperplane w .x + b = 0, separating the positive and negative
training examples using the decision function,

f(x) = sign (w.x + b) > 0, where sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

(2.8)

Where, w is a normal to the weight vector hyper plane, and b is referred to as bias.
We can see that,

yi (w.x + b) > 0, where i = 1, 2, 3, . . . n. (2.9)
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Figure 2.5: Performance of Support Vector Machine [31]

Pros:

• Efficient when the number of functions is more than the training examples.

• Considered the best algorithm for the reparability of its classes.

• Outliers have less effect as only the support vectors affect the hyper planes.

Cons:

• Requires a significant amount of time to process for larger datasets.

• Need to select appropriate hyper parameters to allow sufficient generalization
performance.

• Difficult to select the right kernel function.

16



2.2.8 Deep Neural Network (Keras)

One of deep neural network with high level performance is keras. It’s run on top of
TensorFlow, CNTK, THEANO. We are using it on top of TensorFlow because it’s
open source. Classification with keras [32] consist of three main layers. There are
input layer, hidden layer, output layer. Noise layers help to abstain from overfit-
ting [33]. Repetitive layers incorporate basic (completely associated repeat), gated,
LSTM, and others; these are valuable for language handling, among different ap-
plications. Pooling (downscaling) layers run from 1D to 3D and incorporate the
most widely recognized variations, for example, max and normal pooling. Privately
associated layers’ act like convolution layers, then again, actually the loads are un-
shared.

Figure 2.6: Deep Neural Network working principle

Some pros and cons of Deep Neural Network is given below [34].

Pros:

• Keras is high level API of neural network. Most of its packages is maintain by
google. So, we have secure and fast performance.

• It uses NVIDIA’s CUDA toolkit for fast operation to boost performance.

Cons:

• As it is maintained by google not all of it source is open source. For this reason,
it is hard to customize the model.
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2.2.9 Adaptive boosting algorithm

Usually when it comes to showing result in machine learning projects, one model
is used. A certain accuracy is generated as a result but there are some algorithms
which can boost the outcome of any machine learning model. These algorithms are
called boosting algorithms. Boosting algorithm follows technique where it combines
comparatively weaker models in order to generate a strong model with a better
output. For example, there is three separate model used for classification purpose
which are “X”, “Y” and “Z”. These three models are considered a weak model in
this case. All the three models gave a faulty result and the error rate is close to 1
but if a correlation between these three weak classifier is established by combining
them all together then by applying voting technique, the overall classifier gives a
better output then the individual weak classifiers. It also follows sequential process.
It means that the weakness of one model goes to the next model where the weight
of each misclassified points is increased in order to decrease the weakness of the
models. After sequential iterations, the overall model becomes a strong one. For
this reason, boosting is considered a great ensemble method.

Figure 2.7: Boosting algorithm workflow

Adaptive boosting in short AdaBoost was the first efficient binary application boost-
ing algorithm. It is typically used in short decision trees to boost the performance
of decision trees which is based on binary classification problems. AdaBoost, often
called discrete AdaBoost as it is used for classification more than regression. It can
be used to boost any machine learning algorithm’s efficiency. It is mostly used with
weak learners. It focuses on classification problem setting a strong classifier from a
weaker one. The classification equation can be represented as [35]-

F (x) = sign (
n∑

m=1

θm fm) (2.10)

Where fm represents the mth weak classifier and θm corresponds to the appropriate
weight. It is precisely the weighted combination of weak classifiers for m.
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AdaBoost incorporates multiple classifiers to make the classifiers more accurate. It
creates a strong classification by combining multiple weak classifier to achieve a
high accuracy strong classifier. The main goal of this classifier is to decide in each
iteration the weights and train the sample accordingly so no uncommon observations
are predicted inaccurately [36]. If a machine learning algorithm accepts weight in
the training set, it can be used as a base classifier. AdaBoost should be directly
trained on different weighed training examples. Loop wise it aims to match the
examples perfectly by reducing training errors.

Some of the pros and cons of Adaptive boosting algorithm are mentioned below [37].

Pros:

• Versatility to be paired with any machine learning algorithms

• No need to modify the parameters except for T.

• It has been applied to problems in the study of text and numeric details beyond
binary classification and is flexible.

Cons:

• Sensitive to uniform noise as it is from scientific evidence.

• Weak classifier can cause low margins and excess.
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2.2.10 Stacking Technique

Stacking is a sort of ensemble method where various sorts of algorithms are combined
with the help of a meta classifier or learner [38]. These algorithms are called base
learners or classifiers in this case. At first the dataset is being trained under the base
classifiers and then the meta classifier makes the final outcome based on the base
classifier’s outputs. There are many alternative ways how the stacking technique
works. One of them is the output of the base level classifiers are used as inputs for
the meta learner. Another way is that the probability of the base level classifiers
can be used as features for the meta classifier [39].

For example, let X1, X2 and X3 be three base level learners and Y be the meta
classifier. At first the training dataset will go through the base learners that is X1,
X2 and X3. Finally, the overall output will be decided by the meta learner Y.

Figure 2.8: Stacking Technique Framework

Stacking technique is a great way to solve overfitting issue because of terms like
cross validation and regularization. This method is also useful in real life problems
as the method can handle huge amount of data and still gives a less error rate and
high accuracy [40].
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Chapter 3

Dataset Analysis

3.1 Dataset Description

One of the difficult issues that is faced during researches related to detect fraudulent
activities is that the available datasets are very scarce in number and the datasets
that are available are not public that means that all the information are kept private.
Even after that we chose a dataset which is a fabricated dataset initiated by a
simulator called PaySim [41] so as to tackle the previously mentioned issues. The
original dataset that is private is given by a multinational company which provides
mobile financial service around 14 countries all over the world.

Figure 3.1: Sample of the dataset
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The datasets consist of 1048578 data samples. Among them 70% of the dataset is
considered as training dataset and the lrftovrt 30% is considered as testing dataset.
For visualizing the dataset that we are using in our dataset, heatmap is used which
shows graphical representations of the datasets in colors. It shows individual value in
a matrix and according the values, the data is designated in the respective heatmap.
It is mainly used for numerical datasets. Seaborn library is used to examine the
heatmap of our used dataset which is shown in Figure 3.2.

Figure 3.2: Heatmap of the input data

In addition to that, box plot is also being shown in Figure 3.3 which shows how well
the data is distributed in a dataset. It is a two dimensional graph which demostrates
the maximum, minimum, midpoint, first quartile and third quartile in the dataset.
The x-axis of the graph shows the numeric ‘type’ that is found in the dataset and
the y-axis is the ‘amount’ which is based on the logarithmic root.
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Figure 3.3: Box plot of the dataset

In addition to heat map and box plot data visualization, we are also demonstrating
the normal distribution that our dataset is going through. From this distribution,
we can easily determine the how the data points of a variable are allocated. There
are some certain parameters in normal distribution such as mean and standard
deviation. Mean shows the highest point of the curve for every features. Maximum
datapoints of that features is found close to that mean value. On the other hand,
standard deviation indicates how distanced a data point of a particular feature is
from its mean value.

Figure 3.4: Normal distribution of the dataset
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3.2 Dataset Features

The dataset that we are using is composed of several features. These are described
below:

type: This feature consists of the actions taken by the customer. There are
different types of action or transactions that can be initiated by a customer. First
is PAYMENT which implies that the customer is doing a transaction if he or she is
paying for a product online or paying any bills that includes current bills, gas bills,
tuition fees etc. Next is TRANSFER which implies if the customer is transferring
any wealth from one account to another account. After that comes CASHOUT. This
action shows that the customer is withdrawing money from his or her account. Next
action is CASHIN. This action implies that the customer is storing some money or
assets in his or her account. Lastly comes the action called DEBIT. This actions
shows a specific amount of money is being taken out from the customer’s account.

amount: This features stores the amount of money that will be either payed for
an object or bills, transferring from one account to another account, withdrawing
from the account or being taken out from the customer’s account.

nameOrig: This features stores the ID of the customer who initiated the trans-
action. Every customer will have their own ID.

oldbalanceOrg: This feature shows what was the old balance of the customer
before the start of the transaction.

newbalanceOrig: This feature shows the latest balance of the customer after the
transaction is being initiated and fulfilled.

nameDest: This feature stores the ID of the recipient to whom the money was
transacted by the customer. Every ID is unique for unique recipient.

oldbalanceDest: This features shows the balance of the recipient before the
transaction was initiated by the customer.

newbalanceDest: This feature includes the latest balance of the recipient after
the transaction is complete.

isFraud: This is the main features of our research work. This feature gives decision
whether the transaction between the customer and the recipient is fraud or not. It
is classified by ‘1’ for fraudulent transaction and ‘0’ for non-fraudulent transaction.
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3.3 Dataset imbalance and its effect

The situation of an imbalanced dataset can create a false output when the machine
learning algorithms are trained on that dataset. If a class of a dataset is considered,
then there is a presence of majority class and minority class. When majority class
overwhelms the minority class by a huge margin then the imbalance is seen. If
machine learning models are used in these type of datasets, then the final output
will be heavily influenced by the majority class. This in turn might lead to increase
in the overall error rate. The minority class may contain information which are
very much essential for the overall generated result [42]. We can easily determine
whether a dataset is imbalance or not by analyzing the imbalance ratio of a class.
The formula to calculate the imbalance ration is given below.

Imbalance ratio of the class =
total minority datasamples

total majority datasamples
(3.1)

After working with the dataset, it is seen that the dataset is highly imbalance for
which the machine learning models fail to give an unbiased result. In our thesis
research, the class isFraud contains data which is highly imbalance. There are two
output which is ‘1’ for fraud transaction and ‘0’ for non-fraudulent transactions.
The number of ‘0’ is more than the number of ‘1’ for which ‘0’ is considered as
the majority data and ‘1’ is considered as the minority data. The imbalance ratio
that is found is very low in our case which states that there is an imbalance in the
dataset. This creates a huge problem when the models or the classifiers are being
trained. Even though the result will indicate high accuracy but the result will be
generated based on the number of dataset which is more that is the majority data
‘0’. As a result, depending on the accuracy rate, the model cannot be considered a
good model.

25



3.4 Solution for Imbalance data

There are different approaches to tackle the data imbalance issue. In our case, we
applied an algorithm known as Near Miss algorithm which is an effective way to
handle imbalance dataset and to make the model work without any biased outputs.
We also used Synthetic Minority Oversampling Technique (SMOTE) to handle this
issue.

3.4.1 Near Miss Algorithm

When it comes to tackling imbalance datasets, one of the ways by which the dataset
can be tackled in Near Miss algorithm. Since our thesis topic is based on classifying
whether the transaction is fraud or not. In this case the algorithms that we are
usually using are classification based algorithms such as Logistic regression, Näıve
Bayes classifier, K-nearest neighbor, SVM, Decision tree classifier, Random forest
classifier, boosting algorithm etc. These algorithms have a tendency to avoid the
minority class and leans its final decision based on the majority class that is a biased
output is being generated from these algorithms. As a result, even though the
accuracy rate is resulted to be very high but the recall rate and precision rate is low
compared to the accuracy rate. For this reason, the constructed models cannot be
considered a good model for classifying. Near miss algorithm follows under-sampling
technique where the equilibrium between the majority and the minority class is
being maintained by decreasing the amount of majority class data. By doing so the
ratio between the minority and the majority class decreases and becomes almost
equal. Near miss algorithm follows three different versions known as NearMiss-1,
NearMiss-2 and NearMiss-3. Each version has a common action to perform which is
to figure out the distance between the examples of both majority and minority class.
That is the initial stage that the Near miss algorithm goes though. The distance
between the examples are usually calculated using the Euclidian distance formula.
In NearMiss-1, some of the datasamples from the majority class are selected where
the mean distance of the three nearest minority class is regarded as the smallest.
Again, in NearMiss-2 the examples of the majority class are selected where the mean
distance of the three furthest minority class is regarded as the smallest and finally
NearMiss-3 where an example of majority class is selected for each closest minority
class. While dealing with the imbalance dataset that we are using for our research
we applied Near Miss algorithm version-
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Figure 3.5: Scatter plot of the dataset after implementing Near Miss algorithm

3.4.2 Smote Distribution

SMOTE (Synthetic Minority Oversampling Method) is one of the most commonly
used oversampling method to solve the imbalance in the dataset. It produces syn-
thetic method from the minority class. It generates a synthetically balanced or
almost class-balanced training set to train the classifier. Smote creates synthetized
instances of minority class by operating in the “feature space” rather than the “data
space”. Synthetically producing more minority class cases helps the learners to ex-
pand their minority class judgment regions. To produce new synthetic minority
samples subsequent steps are taken accordingly [43]. Firstly, a variation (minority
class sample) between a vector function and one of its nearest neighbours is made.
Afterwards, this difference is established to the original feature vector to create a
new feature vector.

If the minority class sample is x and the class sample among the k neighbors is y,
then the synthetic sample f can be determined by interpolating between x and y as
follows [44].

f = x+ rand(0, 1) ∗ (x− y) (3.2)

where rand (0,1) refers to a random number between 0 and 1.

There are many issues that are to be faced while working with SMOTE. While
creating fake data points, SMOTE doesn’t think about neighboring data samples
that can be from different classes. As a result, classes might imbricate with each
other. Due to this many noisy data points might be inserted in the original dataset.
Because of this issue, the models that goes though SMOTE process faces overfitting
problems.
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Figure 3.6: Scatter plot of the dataset after implementing SMOTE
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Chapter 4

Result Analysis

4.1 Evaluation Metrics

In this section, the study of the overall result shown by the machine learning algo-
rithms implemented by us will be discussed accordingly. In the data preprocessing
part, we discussed about the imbalanced dataset and how we tackled that issue by
applying near miss algorithm and SMOTE to balance the data. As a result, we
will also compare the outputs given by the classifier before and after balancing the
dataset. By doing that the analysis will give a better picture of how the classifiers
are working in the dataset.

For analyzing the outcomes of the classifiers, it is imperative to know about the
evaluation metrics that will give the judgement of whether the applied model is
good enough or not. There is a misconception that only classification accuracy can
indicate which model works better and faster. This is a vague concept because
there are other evaluation metrics other than accuracy which also plays vital role in
deciding which classifier gives better output. Before analyzing the outputs of each
classifier, we will first describe briefly each of the evaluation metrics that is taken
into account while determining the best classifier.

Even though we balanced our dataset, there are some backslash for balancing an
imbalanced data. When the dataset in balanced, we are making minority class data
points equal to the majority class data points. For this reason, many identical data
samples will be created for which it will hamper the evaluation metrics. A balanced
accuracy will be shown since we divided the majority and minority class equally.
For this, we are considering 0.5 as the threshold for accuracy when we apply our
classifiers on a balanced dataset.

Confusion Matrix:

One of the best and easiest way to determine the efficiency of a classification model
is by observing the confusion matrix. The confusion matrix can give the output
of two or more classes of a dataset. It demonstrates the outcomes in the form
of a table consisting of rows and columns. In our case the matrix is 2x2 matrix
which contains the true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). The confusion matrix can be curved in python by simply by
importing confusion matrix from scikit-learn.
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Figure 4.1: 02 Scatter plot after using Near Miss

Now the terms that are found in a confusion matrix will be explained serially.

Actual Value: This value indicates the exact data which is stored in the dataset.
This values will go through different machine learning algorithms during the training
phase. It is also divided into two parts which are positive and negative.

Predicted Value: This value shows the amount of data that has been predicted
correctly by the classifiers when the testing phase is done. It is also divided into
two portions which are positive and negative.

True Positive (TP): When the machine learning models predicts an outcome in
a positive manner and it matches with the actual dataset then it falls under true
positive category. For instance, if the model predicts that a certain transaction is
fraud and it matches with the actual dataset then that is considered as true positive.

True Negative (TN): When the machine learning models predicts an outcome in
a negative manner and it matches with the actual dataset then it falls under true
negative category. For instance, if the model predicts that a certain transaction is
not fraud and it matches with the actual dataset then that is considered as true
negative.

False Positive (FP): When the machine learning models predicts an outcome in
a positive manner but the actual dataset shows that the outcome is negative then it
falls under false positive category. For instance, if the model predicts that a certain
transaction is fraud but in the actual dataset, it shows that the transaction is fraud
proof then that is considered as false positive.

False Negative (FN): When the machine learning models predicts an outcome in
a positive manner but the actual dataset shows that the outcome is negative then it
falls under false positive category. For instance, if the model predicts that a certain
transaction is fraud but in the actual dataset, it shows that the transaction is fraud
proof then that is considered as false positive.
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Classification Accuracy:

Classification accuracy shows the performance done by the machine learning algo-
rithms in predicting the outcome. The value accuracy is done between 0 and 1. The
model which gives accuracy rate close to one is considered a good model but has
issues with overfitting the dataset and the model which gives accuracy rate close to
zero is considered a weak model and also has issues with underfitting the dataset.
The classification accuracy also depends on whether a dataset is balanced or unbal-
anced. A balanced dataset can come up with a better accuracy results when it is
trained and tested using a model. Classification accuracy can be calculated from
the values that are attained via the confusion matrix. The formula is shown below.

Classification Accuracy = (TP + TN) / (TP + FP + TN + FN) (4.1)

Precision:

Precision is a type of evaluation metric which shows that how correctly the machine
learning models guessed the outcome. In our case the precision rate will depend
based on the model’s performance on correctly identifying the fraud transactions.
The high precision rate will say that the model has classified the outcome correctly
compared to the wrong outcomes. In other words, the ratio of the true positive
and the combination of both the true positive and false positive is considered as
precision. The formula is shown below.

Precision = TP / (TP + FP ) (4.2)

Recall:

It is another kind of evaluation metric which determines how the machine learning
models can detect the positive outcomes after training and testing phase. The higher
recall rate indicates that the models are giving higher rate of positive outcomes. In
other words, the ratio of the true positive and the combination of the false negative
and true positive is called recall. There is always a settlement among recall and
precision. The formula to calculate recall is shown below.

Recall = TP / (TP + FN) (4.3)

F1 Score:

The weighted mean between recall and precision is called F1 score. This value ranges
from 0 to 1. F1 score also expresses the stability between the precision and recall.
This stablity relation is directly proportional to the execution of a classifier. The
better the balance, the better performance and durable the model will be.

F1 Score = 2 ∗ (Recall ∗ Precision) / (Recall + Precision) (4.4)
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Macro Average:

This is a type of evaluation metric where the measurements of each classes are
calculated and the unweighted average that is found is the macro average.

Weighted Average:

This is another type of metric where the measurements of each classes are calculated
and the weighted average which consists of support that is found is considered as
the macro average.

Support:

Support is an evaluation metric indicates the number of data of the original dataset
that falls in that specific class that means how often that class occurs.

ROC curve:

Receiver Operating Characteristic curve or ROC curve is an essential evaluation
metrics in a classification problem. It is a graphical demonstration of a model’s
performance where the x-axis and y-axis contains the false positive (FP) and true
positive (TP) respectively. By screening ROC curve, it can be determined that how
a model can easily differentiate different classes of a dataset. The graph can be
generated by using python library called scikit-learn.

Plot Learning Curve:

Plot Learning curve is a type of evaluation metric by which someone can understand
whether a model is giving overfit, underfit or good fit. The performance of the
models can be evaluated in a particular amount of time to see how durable the
model is [45]. There are two curves which are training curve and testing curve. The
x-axis holds the training set size and the y-axis holds the performance of the model.
When a model gives underfitting result, the training curve and the testing curve
both separates from each other with time as loss of training dataset takes place.
Secondly, when the model gives overfitting result, the training curve at first remains
with the testing curve but with time the curve separates which indicates the loss of
training dataset. Finally, a model giving a good fit shows that both the curve goes
on together that is there is no performance loss.

Hyperparameter Tuning:

While implementing and testing all the machine learning algorithms, we have also
implemented hyperparameter tuning in every algorithm. Hyperparameter tuning
is a process by which a model’s performance curve can be enhanced by selecting
different parameters which will instead optimize the model’s overall performance.
Hyper parameters are the parameters which is randomly selected. Based on those
values the classifier will show its outcome. In order to come up with a better accuracy
result and other evaluation metrics, hyperparameter tuning is done.
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There are important things that is needed to be understood when tuning hyper-
parameter. There are many possible ways by which a classifier can be tuned [46].
For this, we have to notice which parameter influences the classifier most. Among
the possible parameters, it is required to come up with the most influencing as we
have less time to work with every available parameter. Moreover, it is imperative to
understand how changing one parameter effects the training phase when applying a
model on a dataset. This tuning process can be done in two ways. These are:

a) Manual process: In this process, the user has the freedom to give any value
to the parameter and check the overall output. He or she can do this process over
and over again till an optimal output is generated by the classifier.

b) Automatic process: In this process, the user can use different types of
hyperparameter optimization tools such as Hyperas, DeepRepaly, Talos, HyperOpt
etc [47].

While performing hyperparameter tuning, we tried to observe if the model is showing
either overfitting or underfitting result. According to that, we tried to alter the
parameter to get a better fit of the data points [48]. It is to be noted that same
parameters will never work for every model that we implemented. A parameter
which gives better result for random forest classifier will not guarantee the fact that
it will give the same better result to logistic regression if the same values are used
in both the algorithms.

For example, the performance of neural network algorithm can be enhanced by using
hyperparameter tuning. A major parameter of neural network neurons number. If
we increase the number of neurons per layer, then the network will be able to
attain more complex decision making information. For this, there is a chance that
overfitting might occur rapidly. Same case happens if we increase the layers of the
neural network model to attain more knowledge [49]. In addition to that, increasing
or decreasing the batch size also results to overfitting and underfitting. Another
better way is to regularize each layers and then tuning the parameters will result to
better outputs.

Another way by which hyperparameter tuning is done is Grid Search hyperparameter
tuning. In this tuning process, it takes all the values of different parameters of a
classifier and combines all of them [50]. As a result, a set of values of each parameters
is produced. The advantage of using this technique is that one classifier will be able
to train the dataset in different parameters at the same time whereas in randomly
choosing the parameters will only be able to train for one specific parameter.
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4.2 Model Performance

In this part we will witness how all the models that we implemented performed to
detect fraud in transaction dataset. This will contain both the results of imbalance
dataset and balanced dataset.

4.2.1 Logistic regression

Imbalance dataset:
After implementing the logistic regression model in the imbalanced dataset, the
classification report is stated below.

Figure 4.2: Classification report of Logistic Regression when applied in imbalanced
dataset

From the classification report we see that the accuracy is 0.95. For the transactions
that are not fraud, the precision, recall and f1-score is 0.96, 0.99 and 0.97 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.88, 0.68
and 0.77 for the precision, recall and f1-score respectively. If we see the support re-
sult, for safe transactions, the number of data detected is two thousand six hundred
and thirty-eight whereas for fraudulent transactions, the number of data detected is
only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.92, 0.83
and 0.87 respectively and for the weighted average, precision, recall and f1-score is
0.95 for all the three metrics.

Secondly, we will examine the plot learning curve for Logistic Regression for imbal-
ance dataset.
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Figure 4.3: Plot learning curve of Logistic regression on imbalance dataset

Finally, the confusion matrix that is established after applying logistic regression in
the imbalanced dataset is shown below.

Figure 4.4: Confusion Matrix of Logistic Regression in imbalance dataset

From the confusion matrix, we see that the value of true positive is two thousand
six hundred and four, true negative is two hundred and forty-seven, false positive is
thirty-four and false negative is one hundred and fifteen.
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Balance dataset (Near Miss Application):

After implementing the logistic regression model in the balanced dataset, the clas-
sification report is stated below.

Figure 4.5: Classification report of Logistic Regression after near miss application

From the classification report we see that the accuracy is 0.42. For the transactions
that are not fraud, the precision, recall and f1-score is 0.87, 0.41and 0.56 respectively.
On the other hand, the transactions that are fraud gives the value 0.10, 0.51 and
0.17 for the precision, recall and f1-score respectively. If we see the support result,
for safe transactions, the number of data detected is two thousand two hundred and
fourteen whereas for fraudulent transactions, the number of data detected is only
two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.48, 0.46
and 0.36 respectively and for the weighted average, precision, recall and f1-score is
0.78, 0.42 and 0.51 respectively.

Now, the confusion matrix that is established after applying logistic regression in
the balanced dataset is shown below.

Figure 4.6: Confusion Matrix of Logistic Regression after near miss application

From the confusion matrix, we see that the value of true positive is nine hundred
and seven, true negative is one hundred and forty-five, false positive is one thousand
three hundred and seven and false negative is one hundred and one.
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Balance dataset (SMOTE Application):

After implementing the logistic regression model in the balanced dataset, the clas-
sification report is stated below.

Figure 4.7: Classification report of Logistic Regression after SMOTE application

From the classification report we see that the accuracy is 0.95. For the transactions
that are not fraud, the precision, recall and f1-score is 0.96, 0.99 and 0.97 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.88, 0.68
and 0.77 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.92, 0.83
and 0.87 respectively and for the weighted average, precision, recall and f1-score is
0.95 for all the evaluation metrics.

Secondly, we will examine the plot learning curve for Logistic Regression for balanced
dataset.
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Figure 4.8: Plot learning curve for Logistic Regression on balanced dataset

Finally, the confusion matrix that is established after applying logistic regression in
the balanced dataset is shown below.

Figure 4.9: Confusion Matrix of Logistic Regression after SMOTE application

From the confusion matrix, we see that the value of true positive is two thousand
six hundred and four, true negative is two hundred and forty-seven, false positive is
thirty-four and false negative is one hundred and fifteen.

Comparing the three classification reports and confusion matrix, it is seen that
if logistic regression is implemented on the imbalance dataset then overfitting is
seen. SMOTE was unable to solve the issue as well but if after applying Near Miss
Algorithm, it is seen that the classifier now gives a balanced accuracy score. Even
though the accuracy is less, it is close to the threshold.
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4.2.2 Decision Tree

Imbalance dataset:

After implementing the Decision Tree model in the imbalanced dataset, the classi-
fication report is stated below.

Figure 4.10: Classification report of Decision Tree when applied in imbalanced
dataset

From the classification report we see that the accuracy is 1.00. For the transactions
that are not fraud, the precision, recall and f1-score is 1.00 for all the metrics. On
the other hand, the transactions that are fraud gives the value 1.00, 0.98 and 0.99
for the precision, recall and f1-score respectively. If we see the support result, for
safe transactions, the number of data detected is two thousand six hundred and
fifty whereas for fraudulent transactions, the number of data detected is only three
hundred and fifty.

In addition to that, the macro average for precision, recall and f1-score is 1.00, 0.99
and 0.99 respectively and for the weighted average, precision, recall and f1-score is
1.00 for all the three metrics.

Secondly, we will examine the plot learning curve for Decision Tree on imbalanced
dataset.

39



Figure 4.11: Plot learning curve for Decision Tree on imbalance dataset

Finally, the confusion matrix that is established after applying Decision Tree in the
imbalanced dataset is shown below.

Figure 4.12: Confusion Matrix of Decision Tree in the imbalance dataset

From the confusion matrix, we see that the value of true positive is two thousand six
hundred and forty-nine, true negative is three hundred and forty-two, false positive
is one and false negative is eight.

40



Balance Dataset (Near Miss Application):

After implementing the Decision Tree model in the balanced dataset, the classifica-
tion report is stated below.

Figure 4.13: Classification report of Decision Tree after near miss application

From the classification report we see that the accuracy is 0.49. For the transactions
that are not fraud, the precision, recall and f1-score is 1.00, 0.42 and 0.59 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.18, 1.00
and 0.31 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.59, 0.71
and 0.45 respectively and for the weighted average, precision, recall and f1-score is
0.91, 0.49 and 0.56 respectively.

Now, the confusion matrix that is established after applying decision tree model in
the balanced dataset is shown below.

Figure 4.14: Confusion Matrix of Decision Tree after near miss application

From the confusion matrix, we see that the value of true positive is nine hundred
and thirty-five, true negative is two hundred and eighty-six, false positive is one
thousand two hundred and seventy-nine and false negative is zero.
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Balance dataset (SMOTE Application):

After implementing the decision tree model in the balanced dataset, the classification
report is stated below.

Figure 4.15: Classification report of Decision Tree after SMOTE application

From the classification report we see that the accuracy is 1.00. For the transactions
that are not fraud, the precision, recall and f1-score is all 1.00. On the other hand,
the transactions that are fraud gives the value 1.00 for the precision, recall and f1-
score. If we see the support result, for safe transactions, the number of data detected
is two thousand six hundred and thirty-eight whereas for fraudulent transactions,
the number of data detected is only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.99, 1.00
and 1.00 respectively and for the weighted average, precision, recall and f1-score is
1.00 for all the evaluation metrics.

Secondly, we will examine the plot learning curve for Decision tree on balanced
dataset.

42



Figure 4.16: Plot learning curve for Decision tree on balanced dataset

Finally, the confusion matrix that is established after applying decision tree in the
balanced dataset is shown below.

Figure 4.17: Confusion Matrix of Decision Tree after SMOTE application

From the confusion matrix, we see that the value of true positive is two thousand
six hundred and thirty-four, true negative is three hundred and sixty, false positive
is four and false negative is two.

Comparing the three classification reports and confusion matrix, it is seen that if de-
cision tree is implemented on the imbalance dataset then overfitting is seen. SMOTE
was unable to solve the issue as well but if after applying Near Miss Algorithm, it
is seen that the classifier now gives a balanced accuracy score. Even though the
accuracy is less, it is almost equal to the threshold.
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4.2.3 Random Forest

Imbalance dataset:

After implementing the Random Forest model in the imbalanced dataset, the clas-
sification report is stated below.

Figure 4.18: Classification report of Random Forest when applied in imbalanced
dataset

From the classification report we see that the accuracy is 1.00 just like Decision Tree.
For the transactions that are not fraud, the precision, recall and f1-score is 1.00 for
all the metrics. On the other hand, the transactions that are fraud gives the value
1.00, 0.98 and 0.99 for the precision, recall and f1-score respectively. If we see the
support result, for safe transactions, the number of data detected is two thousand
six hundred and thirty-right whereas for fraudulent transactions, the number of data
detected is only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 1.00, 0.99
and 0.99 respectively and for the weighted average, precision, recall and f1-score is
1.00 for all the three metrics.

Secondly, we will examine the plot learning curve of Random Forest on the imbal-
anced dataset.
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Figure 4.19: Plot learning curve of Random Forest on the imbalanced dataset

Finally, the confusion matrix that is established after applying Random Forest in
the imbalanced dataset is shown below.

Figure 4.20: Confusion Matrix of Random Forest in the imbalance dataset

From the confusion matrix, we see that the value of true positive is two thousand six
hundred and thirty-seven, true negative is three hundred and fifty-five, false positive
is one and false negative is seven.
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Balance Dataset (Near Miss Application):

After implementing the Random Forest model in the balanced dataset, the classifi-
cation report is stated below.

Figure 4.21: Classification report of Random Forest after near miss application

From the classification report we see that the accuracy is 0.54. For the transactions
that are not fraud, the precision, recall and f1-score is 1.00, 0.48 and 0.65 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.20, 0.99
and 0.33 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.60, 0.74
and 0.49 respectively and for the weighted average, precision, recall and f1-score is
0.91, 0.54 and 0.61 respectively.

Now, the confusion matrix that is established after applying Random Forest in the
balanced dataset is shown below.

Figure 4.22: Confusion Matrix of Random Forest after near miss application

From the confusion matrix, we see that the value of true positive is one thousand
and sixty-six, true negative is two hundred and eighty-four, false positive is one
thousand one hundred and forty-eight and false negative is two.
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Balance dataset (SMOTE Application):

After implementing the Random Forest model in the balanced dataset, the classifi-
cation report is stated below.

Figure 4.23: Classification report of Random Forest after SMOTE application

From the classification report we see that the accuracy is 1.00. For the transactions
that are not fraud, the precision, recall and f1-score is all 1.00. On the other hand,
the transactions that are fraud gives the value 1.00, 0.98 and 0.99 for the precision,
recall and f1-score respectively. If we see the support result, for safe transactions,
the number of data detected is two thousand six hundred and thirty-eight whereas
for fraudulent transactions, the number of data detected is only three hundred and
sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 1.00, 0.99
and 0.99 respectively and for the weighted average, precision, recall and f1-score is
1.00 for all the evaluation metrics.

Secondly, we will examine the plot learning curve of Random Forest on the balanced
dataset.
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Figure 4.24: Plot learning curve of Random Forest on the balanced dataset

Finally, the confusion matrix that is established after applying Random Forest in
the balanced dataset is shown below.

Figure 4.25: Confusion Matrix of Random Forest after SMOTE application

From the confusion matrix, we see that the value of true positive is two thousand six
hundred and thirty-seven, true negative is three hundred and fifty-six, false positive
is one and false negative is six.

Comparing the three classification reports and confusion matrix, it is seen that if
Random Forest is implemented on the imbalance dataset then overfitting is seen.
SMOTE was unable to solve the issue as well but if after applying Near Miss Al-
gorithm, it is seen that the classifier now gives a balanced accuracy score. Even
though the accuracy is less, it is almost equal to the threshold.
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4.2.4 K-Nearest Neighbor

Imbalance dataset:

After implementing the K-Nearest Neighbor model in the imbalanced dataset, the
classification report is stated below.

Figure 4.26: Classification report of K-Nearest Neighbor when applied in imbalanced
dataset

From the classification report we see that the accuracy is 0.96. For the transactions
that are not fraud, the precision, recall and f1-score is 0.97, 0.98 and 0.98 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.85, 0.79
and 0.82 for the precision, recall and f1-score respectively. If we see the support re-
sult, for safe transactions, the number of data detected is two thousand six hundred
and thirty-eight whereas for fraudulent transactions, the number of data detected is
only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.91, 0.88
and 0.90 respectively and for the weighted average, precision, recall and f1-score is
0.96 for all the three metrics.

Secondly, we will examine the plot learning curve of K-Nearest Neighbor on the
imbalanced dataset.
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Figure 4.27: Plot learning curve of K-Nearest Neighbor on the imbalanced dataset

Finally, the confusion matrix that is established after applying K-Nearest Neighbor
in the imbalanced dataset is shown below.

Figure 4.28: Confusion Matrix of K-Nearest Neighbor in the imbalance dataset

From the confusion matrix, we see that the value of true positive is two thousand five
hundred and eighty-six, true negative is two hundred and eighty-five, false positive
is fifty-two and false negative is seventy-seven.
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Balance Dataset (Near Miss Application):

After implementing the K-Nearest Neighbor model in the balanced dataset, the
classification report is stated below.

Figure 4.29: Classification report of K-Nearest Neighbor after near miss application

From the classification report we see that the accuracy is 0.33. For the transactions
that are not fraud, the precision, recall and f1-score is 0.99, 0.25 and 0.40 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.14, 0.98
and 0.25 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.57, 0.62
and 0.33 respectively and for the weighted average, precision, recall and f1-score is
0.89, 0.33 and 0.38 respectively.

Now, the confusion matrix that is established after applying K-Nearest Neighbor in
the balanced dataset is shown below.

Figure 4.30: Confusion Matrix of K-Nearest Neighbor after near miss application

From the confusion matrix, we see that the value of true positive is five hundred
and fifty-three, true negative is two hundred and eighty-one, false positive is one
thousand six hundred and sixty-one and false negative is five.

51



Balance dataset (SMOTE Application):

After implementing the K-Nearest Neighbor model in the balanced dataset, the
classification report is stated below.

Figure 4.31: Classification report of K-Nearest Neighbor after SMOTE Application

From the classification report we see that the accuracy is 0.96. For the transactions
that are not fraud, the precision, recall and f1-score is all 0.97, 0.98 and 0.98. On the
other hand, the transactions that are fraud gives the value 0.85, 0.79 and 0.82 for
the precision, recall and f1-score respectively. If we see the support result, for safe
transactions, the number of data detected is two thousand six hundred and thirty-
eight whereas for fraudulent transactions, the number of data detected is only three
hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.91, 0.88
and 0.90 respectively and for the weighted average, precision, recall and f1-score is
0.96 for all the evaluation metrics.

Secondly, we will examine the plot learning curve of Random Forest on the balanced
dataset.
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Figure 4.32: Plot learning curve of K-Nearest Neighbor on the balanced Dataset

Finally, the confusion matrix that is established after applying K-Nearest Neighbor
in the balanced dataset is shown.

Figure 4.33: Confusion Matrix of K-Nearest Neighbor after SMOTE Application

From the confusion matrix, we see that the value of true positive is two thousand five
hundred and eighty-six, true negative is two hundred and eighty-five, false positive
is fifty-two and false negative is seventy-seven.

Comparing the three classification reports and confusion matrix, it is seen that if
K-Nearest Neighbor is implemented on the imbalance dataset then overfitting is
seen. SMOTE was unable to solve the issue as well but if after applying Near Miss
Algorithm, it is seen that the classifier now gives the accuracy of 0.33 which can be
called a balanced accuracy score since it is within the range of the threshold.
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4.2.5 Support Vector Classifier

Imbalance dataset:

After implementing the Support Vector Classifier in the imbalanced dataset, the
classification report is stated below.

Figure 4.34: Classification report of Support Vector Classifier when applied in im-
balanced dataset

From the classification report we see that the accuracy is 0.93. For the transactions
that are not fraud, the precision, recall and f1-score is 0.93, 1.00 and 0.96 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.99, 0.43
and 0.60 for the precision, recall and f1-score respectively. If we see the support re-
sult, for safe transactions, the number of data detected is two thousand six hundred
and thirty-eight whereas for fraudulent transactions, the number of data detected is
only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.96, 0.72
and 0.78 respectively and for the weighted average, precision, recall and f1-score is
0.94, 0.93 and 0.92 respectively.

Secondly, we will examine the plot learning curve of Support Vector Classifier on
the imbalanced dataset.
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Figure 4.35: Plot learning curve of Support Vector Classifier on the imbalanced
dataset

Finally, the confusion matrix that is established after applying Decision Tree in the
imbalanced dataset is shown below.

Figure 4.36: Confusion Matrix of Support Vector Classifier in the imbalance dataset

From the confusion matrix, we see that the value of true positive is two thousand six
hundred and thirty-seven, true negative is one hundred and fifty-six, false positive
is one and false negative is two hundred and six.
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Balance Dataset (SMOTE Application):

After implementing the Support Vector Classifier model in the balanced dataset,
the classification report is stated below.

Figure 4.37: Classification report of Support Vector Classifier after SMOTE appli-
cation

From the classification report we see all the evaluation metrics that we are using
remains unchanged.

Secondly, we will examine the plot learning curve of Random Forest on the balanced
dataset.

Figure 4.38: Plot learning curve of Support Vector Classifier on the balanced dataset

Finally, the confusion matrix that is established after applying logistic regression in
the balanced dataset is shown below.
From the confusion matrix, we see that the value of true positive, true negative,
false positive and false negative remains unchanged even though the dataset was
balanced.
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Figure 4.39: Confusion Matrix of Support Vector Classifier after SMOTE application

Comparing the three classification reports and confusion matrix, it is seen that if
Support Vector Classifier is implemented on the imbalance dataset then overfitting
is seen. SMOTE was unable to solve the issue as well. Therefore, it can be said
that Support Vector Classifier is not a suitable model if it is used separately but
it can perform well if it is used in ensemble learning which will be discussed in the
stacking method.

4.2.6 Näıve Bayes Classifier

Imbalance dataset:

After implementing the Näıve Bayes Classifier in the imbalanced dataset, the clas-
sification report is stated below.

Figure 4.40: Classification report of Näıve Bayes Classifier when applied in imbal-
anced dataset

From the classification report we see that the accuracy is 0.67. For the transactions
that are not fraud, the precision, recall and f1-score is 0.97, 0.64 and 0.77 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.24, 0.85
and 0.38 for the precision, recall and f1-score respectively. If we see the support re-
sult, for safe transactions, the number of data detected is two thousand six hundred
and thirty-eight whereas for fraudulent transactions, the number of data detected is
only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.61, 0.74
and 0.58 respectively and for the weighted average, precision, recall and f1-score is
0.88, 0.67, 0.72 respectively.

Secondly, we will examine the plot learning curve of Näıve Bayes on the imbalanced
dataset.
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Figure 4.41: Plot learning curve of Näıve Bayes on the imbalanced dataset

Finally, the confusion matrix that is established after applying Näıve Bayes Classifier
in the imbalanced dataset is shown below.

Figure 4.42: Confusion Matrix of Näıve Bayes Classifier in the imbalance dataset

From the confusion matrix, we see that the value of true positive is one thousand
six hundred and ninety-two, true negative is three hundred and six, false positive is
nine hundred and forty-six and false negative is fifty-six.
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Balance Dataset (Near Miss Application):

After implementing the Näıve Bayes Classifier in the balanced dataset, the classifi-
cation report is stated below.

Figure 4.43: Classification report of Näıve Bayes Classifier after near miss applica-
tion

From the classification report we see that the accuracy is 0.42. For the transactions
that are not fraud, the precision, recall and f1-score is 0.87, 0.41 and 0.56 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.10, 0.51
and 0.17 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.48, 0.46
and 0.36 respectively and for the weighted average, precision, recall and f1-score is
0.78, 0.42 and 0.51 respectively.

Now, the confusion matrix that is established after applying Näıve Bayes Classifier
in the balanced dataset is shown below.

Figure 4.44: Confusion Matrix of Näıve Bayes Classifier after Near Miss Application

From the confusion matrix, we see that the value of true positive is nine hundred
and seven, true negative is one hundred and forty-five, false positive is one thousand
three hundred and seven and false negative is one hundred and forty-one.
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Balance dataset (SMOTE Application):

After implementing the Näıve Bayes Classifier in the balanced dataset, the classifi-
cation report is stated below.

Figure 4.45: Classification report of Näıve Bayes Classifier after SMOTE application

From the classification report we see that the accuracy is 0.67. For the transactions
that are not fraud, the precision, recall and f1-score is 0.97, 0.64 and 0.77 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.24, 0.85
and 0.38 for precision, recall and f1-score respectively. If we see the support result,
for safe transactions, the number of data detected is two thousand six hundred and
thirty-eight whereas for fraudulent transactions, the number of data detected is only
three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.61, 0.74
and 0.58 respectively and for the weighted average, precision, recall and f1-score is
0.88, 0.67 and 0.72 respectively.

Secondly, we will examine the plot learning curve of Näıve Bayes on the balanced
dataset.
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Figure 4.46: Plot learning curve of Näıve Bayes on the balanced dataset

Finally, the confusion matrix that is established after applying Näıve Bayes Classifier
in the balanced dataset is shown below.

Figure 4.47: Confusion Matrix of Näıve Bayes Classifier after SMOTE application

From the confusion matrix, we see that the value of true positive is one thousand
six hundred and ninety-two, true negative is three hundred and six, false positive is
nine hundred and forty-six and false negative is fifty-six.

Comparing the three classification reports and confusion matrix, it is seen that if
Näıve Bayes Classifier is implemented on the imbalance dataset then underfitting is
seen. Application of SMOTE gives an accuracy result which is acceptable because
the accuracy 0.67 is close to the threshold. In addition to that, applying Near Miss
Algorithm, it is witnessed that the classifier now gives a balanced accuracy score of
0.42. Even though the accuracy is less, it is almost equal to the threshold.
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4.2.7 Gaussian Näıve Bayes Classifier

Imbalance dataset:

After implementing the Gaussian Näıve Bayes Classifier in the imbalanced dataset,
the classification report is stated.

Figure 4.48: Classification report of Gaussian Näıve Bayes Classifier when applied
in imbalanced dataset

From the classification report we see that the accuracy is 0.89. For the transactions
that are not fraud, the precision, recall and f1-score is 0.92, 0.96 and 0.94 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.54, 0.36
and 0.44 for the precision, recall and f1-score respectively. If we see the support re-
sult, for safe transactions, the number of data detected is two thousand six hundred
and thirty-eight whereas for fraudulent transactions, the number of data detected is
only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.73, 0.66
and 0.69 respectively and for the weighted average, precision, recall and f1-score is
0.87, 0.89, 0.88 respectively.

Secondly, we will examine the plot learning curve of Gaussian Näıve Bayes on the
imbalanced dataset.
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Figure 4.49: Plot learning curve of Gaussian Näıve Bayes on the imbalanced dataset

Finally, the confusion matrix that is established after applying Gaussian Näıve Bayes
Classifier in the imbalanced dataset is shown below.

Figure 4.50: Confusion Matrix of Gaussian Näıve Bayes Classifier in the imbalance
dataset

From the confusion matrix, we see that the value of true positive is two thousand
five hundred and twenty-seven, true negative is one hundred and thirty-two, false
positive is one hundred and eleven and false negative is two hundred and thirty.
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Balance Dataset (Near Miss Application):

After implementing the Gaussian Näıve Bayes Classifier in the balanced dataset,
the classification report is stated below.

Figure 4.51: Classification report of Gaussian Näıve Bayes Classifier after near miss
application

From the classification report we see that the accuracy is 0.27. For the transactions
that are not fraud, the precision, recall and f1-score is 0.92, 0.19 and 0.32 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.12, 0.87
and 0.22 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.52, 0.53
and 0.27 respectively and for the weighted average, precision, recall and f1-score is
0.83, 0.27 and 0.31 respectively.

Now, the confusion matrix that is established after applying logistic regression in
the balanced dataset is shown below.

Figure 4.52: Confusion Matrix of Gaussian Näıve Bayes Classifier after near miss
application

From the confusion matrix, we see that the value of true positive is four hundred
and twenty-five, true negative is two hundred and fifty, false positive is one thousand
seven hundred and eighty-nine and false negative is thirty-six.
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Balance dataset (SMOTE Application):

After implementing the logistic regression model in the Gaussian Näıve Bayes Clas-
sifier, the classification report is stated below.

Figure 4.53: Classification report of Gaussian Näıve Bayes Classifier after SMOTE
application

From the classification report we see that the accuracy is 0.89. For the transactions
that are not fraud, the precision, recall and f1-score is 0.92, 0.96 and 0.94 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.54, 0.36
and 0.44 for the precision, recall and f1-score respectively. If we see the support re-
sult, for safe transactions, the number of data detected is two thousand six hundred
and thirty-eight whereas for fraudulent transactions, the number of data detected is
only three hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 0.73, 0.66
and 0.69 respectively and for the weighted average, precision, recall and f1-score is
0.87, 0.89 and 0.88 respectively.

Secondly, we will examine the plot learning curve of Gaussian Näıve Bayes on the
balanced dataset.
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Figure 4.54: Plot learning curve of Gaussian Näıve Bayes on the balanced dataset

Finally, the confusion matrix that is established after applying Gaussian Näıve Bayes
Classifier in the balanced dataset is shown below.

Figure 4.55: Confusion Matrix of Gaussian Näıve Bayes Classifier after SMOTE
application

From the confusion matrix, we see that the value of true positive is two thousand
five hundred and twenty-seven, true negative is one hundred and thirty-two, false
positive is one hundred and eleven and false negative is two hundred and thirty.

Comparing the three classification reports and confusion matrix, it is seen that if
Gaussian Näıve Bayes Classifier is implemented on the imbalance dataset then over-
fitting is seen. Both SMOTE and Near Miss algorithm failed to solve the overfitting
issue.
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4.2.8 Adaptive Boosting

Imbalance dataset:

After implementing the Adaptive boosting in the imbalanced dataset, the classifi-
cation report is stated below.

Figure 4.56: Classification report of Adaptive boosting when applied in imbalanced
dataset

From the classification report we see that the accuracy is 1.00. For the transactions
that are not fraud, the precision, recall and f1-score is 1.00 for all the metrics. On
the other hand, the transactions that are fraud gives the value 1.00, 0.98 and 0.99 for
the precision, recall and f1-score respectively. If we see the support result, for safe
transactions, the number of data detected is two thousand six hundred and thirty-
eight whereas for fraudulent transactions, the number of data detected is only three
hundred and sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 1.00, 0.99
and 0.99 respectively and for the weighted average, precision, recall and f1-score is
1.00 for all the three metrics.

Secondly, we will examine the plot learning curve of Adaptive boosting on the im-
balanced dataset.
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Figure 4.57: Plot learning curve of Adaptive boosting on the imbalanced dataset

Finally, the confusion matrix that is established after applying Adaptive boosting
in the imbalanced dataset is shown below.

Figure 4.58: Confusion Matrix of Adaptive boosting in the imbalance dataset

From the confusion matrix, we see that the value of true positive is two thousand six
hundred and thirty-seven, true negative is three hundred and fifty-five, false positive
is one and false negative is seven.
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Balance Dataset (Near Miss Application):

After implementing the Adaptive boosting model in the balanced dataset, the clas-
sification report is stated below.

Figure 4.59: Classification report of Adaptive boosting after near miss application

From the classification report we see that the accuracy is 0.48. For the transactions
that are not fraud, the precision, recall and f1-score is 1.00, 0.41 and 0.58 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.18, 1.00
and 0.30 for the precision, recall and f1-score respectively. If we see the support
result, for safe transactions, the number of data detected is two thousand two hun-
dred and fourteen whereas for fraudulent transactions, the number of data detected
is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.59, 0.71
and 0.44 respectively and for the weighted average, precision, recall and f1-score is
0.91, 0.48 and 0.55 respectively.

Now, the confusion matrix that is established after applying Adaptive boosting in
the balanced dataset is shown below.

Figure 4.60: Confusion Matrix of Adaptive boosting after near miss application

From the confusion matrix, we see that the value of true positive is nine hundred
and ten, true negative is two hundred and eighty-six, false positive is one thousand
three hundred and four and false negative is zero.
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Balance dataset (SMOTE Application):
After implementing the Adaptive boosting in the balanced dataset, the classification
report is stated below.

Figure 4.61: Classification report of Adaptive boosting after SMOTE application

From the classification report we see that the accuracy is 1.00. For the transactions
that are not fraud, the precision, recall and f1-score is all 1.00. On the other hand,
the transactions that are fraud gives the value 1.00, 0.98 and 0.99 for the precision,
recall and f1-score respectively. If we see the support result, for safe transactions,
the number of data detected is two thousand six hundred and thirty-eight whereas
for fraudulent transactions, the number of data detected is only three hundred and
sixty-two.

In addition to that, the macro average for precision, recall and f1-score is 1.00, 0.99
and 0.99 respectively and for the weighted average, precision, recall and f1-score is
1.00 for all the evaluation metrics.

Secondly, we will examine the plot learning curve of Adaptive boosting on the bal-
anced dataset.
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Figure 4.62: Plot learning curve of Adaptive boosting on the balanced dataset

Finally, the confusion matrix that is established after applying Adaptive boosting
in the balanced dataset is shown below.

Figure 4.63: Confusion Matrix of Adaptive boosting after SMOTE application

From the confusion matrix, we see that the value of true positive is two thousand six
hundred and thirty-seven, true negative is three hundred and fifty-five, false positive
is one and false negative is seven.

Comparing the three classification reports and confusion matrix, it is seen that if
Adaptive boosting is implemented on the imbalance dataset then high overfitting is
seen. SMOTE was unable to solve the issue as well but if after applying Near Miss
Algorithm, it is seen that the classifier now gives a balanced accuracy score. Even
though the accuracy is less, it is almost equal to the threshold.
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4.2.9 Deep Neural Network (Keras)

Deep Neural Network is only applied on the balanced dataset. The following classi-
fication report shows the performance of the model.

Figure 4.64: Classification report of Deep Neural Network on balanced dataset

From the classification report we see that the accuracy is 0.92. For the transactions
that are not fraud, the precision, recall and f1-score is all 0.99, 0.85 and 0.92 respec-
tively. On the other hand, the transactions that are fraud gives the value 0.87, 0.99
and 0.93 for the precision, recall and f1-score respectively. If we see the support
result, for both safe transactions and fraudulent transactions, the number of data
detected is eight hundred and fifty-six.

In addition to that, the macro average and weighted average for precision, recall
and f1-score is 0.93, 0.92 and 0.92 respectively.

Secondly, we will examine the plot learning curve of Deep Neural Network on the
balanced dataset.

Figure 4.65: Deep Neural Network model loss
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Loss is difference between predicted value and our model and true value. We are
using cross entropy.

Cross− entropy = −
n∑

i=1

m∑
j=1

y(i, j) log(pi,j) (4.5)

Figure 4.66: Deep Neural Network model accuracy

Finally, the confusion matrix that is established after applying Deep Neural Network
in the balanced dataset is shown below.

Figure 4.67: Confusion Matrix of Deep Neural Network after Near miss application

From the confusion matrix, we see that the value of true positive is seven hundred
and twenty-nine, true negative is eight hundred and forty-eight, false positive is one
hundred and twenty-seven and false negative is eight.

From the result analysis, it is seen that applying Deep Neural Network results to
high accuracy and also training data loss after some time. As a result, overfitting
takes place. Even though, the issue still remains, this model can be used for further
experimentation.
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4.2.10 Extra Tree Classifier

Extra Tree Classifier is only applied on the balanced dataset. The following classi-
fication report shows the performance of a single tuple of this model.

Figure 4.68: Classification report for one tuple of Extra Tree Classifier

From the classification report we see that the accuracy is 0.48. For the transac-
tions that are not fraud, the precision, recall and f1-score is all 0.86, 0.49 and 0.63
respectively. On the other hand, the transactions that are fraud gives the value
0.08, 0.36 and 0.14 for the precision, recall and f1-score respectively. If we see the
support result, for safe transactions, the number of data detected is two thousand
two hundred and fourteen whereas for fraudulent transactions, the number of data
detected is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.47, 0.42
and 0.38 respectively and for the weighted average, precision, recall and f1-score is
0.77, 0.48 and 0.57 respectively.

Now, the confusion matrix of a single tuple of the Extra Tree Classifier is shown
below.

Figure 4.69: Confusion Matrix of a single tuple after Near miss application

From the confusion matrix, we see that the value of true positive is one thousand
and ninety-one, true negative is one hundred and two, false positive is one thousand
one hundred and twenty-three and false negative is one hundred and eight-four.

After witnessing the single tuple, we will see the classification report of overall Extra
Tree classifier.
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Figure 4.70: Classification report of Extra Tree classifier on the balanced dataset

From the classification report we see that the accuracy is 0.75. For the transac-
tions that are not fraud, the precision, recall and f1-score is all 0.96, 0.74 and 0.84
respectively. On the other hand, the transactions that are fraud gives the value
0.28, 0.79 and 0.42 for the precision, recall and f1-score respectively. If we see the
support result, for safe transactions, the number of data detected is two thousand
two hundred and fourteen whereas for fraudulent transactions, the number of data
detected is only two hundred and eighty-six.

In addition to that, the macro average for precision, recall and f1-score is 0.62, 0.77
and 0.63 respectively and for the weighted average, precision, recall and f1-score is
0.89, 0.75 and 0.79 respectively.

Now, the confusion matrix of a single tuple of the Extra Tree Classifier is shown
below.

Figure 4.71: Confusion Matrix of Extra Tree Classifier after Near miss application

From the confusion matrix, we see that the value of true positive is one thousand six
hundred and forty-four, true negative is two hundred and twenty-six, false positive
is five hundred and seventy and false negative is one hundred and sixty.
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Algorithm Accuracy 0 1
Precision Recall f1-score Precision Recall f1-score

Logistic Regression 0.950 0.96 0.99 0.97 0.88 0.68 0.77
KNN 0.96 0.97 0.98 0.85 0.85 0.79 0.82
Random Forest 1 1 1 1 1 0.98 0.99
AdaBoost 1 1 1 1 1 0.98 0.99
SVC (kernel) 0.931 0.93 1 0.96 0.99 0.43 0.60
Decision Tree 0.997 1 1 1 0.98 0.98 0.99
Näıve bayes 0.670 0.97 0.64 0.77 0.24 0.85 0.38
Näıve bayes (Gaussian) 0.89 0.92 0.96 0.94 0.54 0.36 0.44

Table 4.1: Experimental results of ML classifiers on imbalanced dataset

Algorithm Accuracy 0 1
Precision Recall f1-score Precision Recall f1-score

Logistic Regression 0.420 0.87 0.41 0.56 0.10 0.51 0.17
KNN 0.33 0.99 0.25 0.40 0.14 0.98 0.25
Random Forest 0.540 1 0.48 0.65 0.20 0.99 0.33
AdaBoost 0.478 1 0.41 0.58 0.18 1 0.30
Decision Tree 0.497 1 0.43 0.63 0.19 1 0.31
Näıve bayes 0.420 0.87 0.41 0.56 0.10 0.51 0.17
Näıve bayes (Gaussian) 0.27 0.92 0.19 0.32 0.12 0.87 0.22
Extra tree 0.748 0.96 0.74 0.84 0.28 0.79 0.42
NN 0.920 0.99 0.85 0.92 0.87 0.99 0.93

Table 4.2: Experimental results of ML classifiers on balanced dataset (Near Miss))
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Algorithm Accuracy 0 1
Precision Recall f1-score Precision Recall f1-score

Logistic Regression 0.950 0.96 0.99 0.97 0.88 0.68 0.77
KNN 0.957 0.97 0.98 0.85 0.85 0.79 0.82
Random Forest 0.997 1 1 1 1 0.98 0.99
AdaBoost 0.997 1 1 1 1 0.98 0.99
SVC (kernel) 0.931 0.93 1 0.96 0.99 0.43 0.60
Decision Tree 0.998 1 1 1 0.99 0.99 0.99
Näıve bayes 0.66 0.97 0.64 0.77 0.24 0.85 0.38
Näıve bayes (Gaussian) 0.886 0.92 0.96 0.96 0.54 0.36 0.44

Table 4.3: Experimental results of ML classifiers on balanced dataset (SMOTE)

Now we will demonstrate the ROC curve for each of the algorithms that we imple-
mented along with their AUC score. This curve is generated based on the results
that was found after balancing the dataset using Near Miss algorithm.

Figure 4.72: ROC curve analysis for all the classifiers (Near Miss)

From the overall result analysis of every algorithm, it can be stated that Extra
Tree Classifier works better in detecting fraudulent transactions. The reason behind
this claim is when we are forcing noisy datasets in the original dataset in order
to balance the biasing decisions, we see that all the algorithm gives low accuracy.
For instance, Random forest gives an accuracy of 0.54, Logistic Regression gives an
accuracy of 0.42, KNN gives an accuracy of 0.33 etc. In all the cases the accuracy
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is very low since they have to tackle the impact of noisy datasets on the original
datasets. On the other hand, if we look at Extra Tree Classifier, we find that it gives
the best accuracy that is 0.75 at a lower overfitting rate. The reason working behind
this is that Extra Tree Classifier works much better even with the noisy datasets.
Even though Neural Network is giving an accuracy of 0.92, there is a huge issue of
overfitting in this model.

4.2.11 Stacking technique application and comparison

After testing the classifiers separately, we did experimentation based on the stack-
ing method where we used different classifiers as the base level classifier and one
classifier as a meta learner. Five different combinations of base level classifiers were
made along with two different classifiers. Every models are tested with k-fold cross
validation.

K-fold cross validation is a simple process by which models can be compared and
selected for a specific machine learning problem. It is applied on our balanced
dataset to resample the data points and to assess the machine learning models that
we are implementing to detect fraudulent transactions. The parameter K indicates
the number of groups that our training dataset will be divided into. In our case, the
value of K is four. So, we can say that we applied 4-fold cross validation. Since our
dataset is divided into four groups, one group can be considered as testing dataset
and the other three will be training dataset. With that, the models are trained to
get the performance score and same process is done again considering another group
as a test dataset and the other three groups as training datasets.

1st experimentation:

Base level classifiers: K-Nearest Neighbor, Random Forest, Gaussian Näıve Bayes.

Meta learner: Logistic Regression.

So, after training the balanced dataset on the base level classifiers, the output works
as the input for logistic regression and the final accuracy in detection the fraud
transactions is 0.95.
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Figure 4.73: Plot learning curve for the 1st experiment

2nd experimentation:

Base level classifiers: K-Nearest Neighbor, Random Forest, Gaussian Näıve Bayes
and Neural Network.

Meta learner: Logistic Regression.

So, after training the balanced dataset on the base level classifiers, the output works
as the input for logistic regression and the final accuracy in detection the fraud
transactions is also 0.95

Therefore, adding Neural network as the base level classifier did not have any effect
on the accuracy.

Figure 4.74: Plot learning curve for the 2nd experiment
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3rd experimentation:

Base level classifiers: K-Nearest Neighbor, Random Forest, Gaussian Näıve Bayes
and Neural Network.

Meta learner: Extreme Gradient Boosting

So, after training the balanced dataset on the base level classifiers, the output works
as the input for logistic regression and the final accuracy in detection the fraud
transactions is also 0.94.

Therefore, changing the meta learning into extreme gradient boosting did not have
any effect on the accuracy. The accuracy did not increase.

Figure 4.75: Plot learning curve for the 3rd experiment

4th experimentation:

Base level classifiers: K-Nearest Neighbor, Random Forest, Support Vector Classifier
and Neural Network.

Meta learner: Logistic Regression

Here, the base level learning is changed from the previous experimentations. In
addition to K-Nearest Neighbor and Random Forest, new two classifiers are added
which are support vector machine and Neural network. Meta learner remained
unchanged. The accuracy in detecting the fraud transactions is 0.95. Even in this
case the accuracy rate has not increased.

Now, previously we discussed about grid search hyperparameter tuning. So, in order
to increase the accuracy, hyperparameter tuning is done on the 4th experiment.
Different sets of parameters were used and the final accuracy was optimized from
0.95 to 0.98.
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Figure 4.76: Grid Search Hyperparameter tuning on the 4th experiment

From Fig 4.74, we see that if the parameters that was selected for KNN, random
forest classifiers and the meta level classifier that is logistic regression has the value
of 5, 10 and 10 respectively then the 4th experiment gives the best accuracy among
all the combinations.

Figure 4.77: Plot learning curve for the 4th experiment

From the above four experiments, we see that every combination constructed using
the stacking method gives better accuracy than the classifiers alone which were
discussed previously. The classifiers had issues with overfit and underfit but using
Stack technique, that issue has been minimized on a great scale. If every plot
learning curve is seen that it is clear that the misclassification error has decreased
a lot and the 4th experiment gives the lest overfit and the best performance.

Base learner models Meta learner model Accuracy
KNN, Random forest, Navie bayes gaussian Logistic Regression 0.95
KNN, Random forest, Navie bayes gaussian, NN Logistic Regression 0.95
KNN, Random forest, Navie bayes gaussian, NN Xgboost 0.94
KNN, Random forest, SVC, NN Logistic Regression 0.95
KNN, Random forest, SVC, NN
(Hyper parameter tuning with grid search ) Logistic Regression 0.98

Table 4.4: Experimental Results of Stacking Models
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Chapter 5

Conclusion and Future Work

In our overall research and workings, we tried to differentiate the fraudulent
transactions from the safe ones with the help of certain machine learning algorithms.
Logistic regression Classifier, Support vector Classifier, K-Nearest Neighbor, Deci-
sion Tree Classifier, Random forest Classifier, Extra Tree Classifier, Näıve Bayes,
Adaptive Boosting and Gaussian Näıve Bayes were used to determine the accuracy
of classifying the fraudulent transactions. We applied the above mentioned algo-
rithms on both imbalanced and balanced datasets. For balancing the dataset, we
applied SMOTE and Near Miss algorithm and discussed their result as well as the
results that was harnessed from the imbalanced dataset. From the result analysis,
we found out that Extra Tree classifier works best when it performs on the balanced
dataset. We also applied Neural Network which gives overfitting result. Finally, we
applied the Stacking technique where we used many classifiers as the base learners
and one model as the meta learner. We did four different experiments taking differ-
ent algorithms. K-fold cross validation was implemented for tackling the overfitting
and underfitting problem. After the experimentation, we found the lowest accuracy
was 0.94 that we got from the 3rd experiment and the rest of the experiments gave
0.95 accuracy which is the highest. To further optimize the accuracy, we used grid
search hyperparameter tuning and increased the accuracy from 0.95 to 0.98 with
very less overfitting. Therefore, it is clear that applying Stack method can increase
the performance and also decrease overfit and underfit related problems. In the
future, we would like to further do research on this field to come up with a process
of identifying fraudulent activities while the transaction is taking place. We have a
plan to shift our focus from stacking method to creating a Hybrid machine learn-
ing process. Even with the models made by stacking we are planning to coexists
those models with a server and test whether it can clearly classify the fraudulent
transactions. If we can successfully implement that then this model can be us in
banking sectors as well as in the business sectors and can contribute to the society
by minimizing the loss of public wealth.
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