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Abstract 

Mycobacterium tuberculosis, the leading bacterial killer disease worldwide, causes Human 

tuberculosis (TB). In this study, we used a molecular docking approach to investigate the 

interactions between selected alkaloids and proteins MtPanK, MtDprE1 and MtKasA involved 

in physiological functions which are necessary for the bacteria to survive and cause disease. 

The best docking scores indicates the highest ligand protein binding and specific interactions 

were studied to understand the nature of intermolecular bonds. Shermilamine B showed a 

docking score of -8.5kcal/mol which was higher than the standard TLM score. Brachystamide 

B showed a docking score of –8.6 kcal/mol which was higher than the standard ZVT score. 

Monoamphilectine A showed a score of -9.8kcal/mol which is higher than the standard score 

of 0T4.These three given compounds or alkaloids had given docking scores which were 

superior to the control inhibitors and represent the opportunity of in vitro biological evaluation 

and of anti-TB drug design. 

Keywords: Mycobacterium Tuberculosis; MtKasA; MtPanK; MtPknB; MtDprE1, Alkaloids.  
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Chapter 1 

Introduction 

Mycobacterium tuberculosis causes a disease in humans known as human tuberculosis (TB) 

and it is the leading cause of death from a single infectious agent throughout the world (Bloom 

et al., 2017). Ten million people became ill with TB in 2017, and 1.6 million of those people 

died suffering from the disease (“Tuberculosis,” 2018).TB rates are especially high in 

developing nations and together with HIV/AIDS and malaria cause an enormous burden on 

health care systems. Treatment of TB is a lengthy process involving complicated drug regimens 

with high risk of adverse drug effects and drug-drug interactions taking place and has been 

notorious for poor compliance in patients. It has contributed to the development of multidrug-

resistant strains (MDR-TB) and extensively drug-resistant strains (XDR) (World Health 

Organisation, 2018).The amount of potential cases of multidrug-resistant (MDR) tuberculosis 

(caused by at least rifampicin-resistant and isoniazid-resistant strains of Mycobacterium 

tuberculosis) and extensively drug-resistant (XDR) tuberculosis  (Characterized by rifampicin, 

plus any fluoroquinolone and  isoniazid,  resistance  and resistant to  one of three second-line 

tuberculosis injectable drugs, capreomycin, amikacin, kanamycin) is increasing alarmingly 

(Seung, Keshavjee, & Rich, 2015). MDR-TB treatment involves costly drugs and often XDR-

TB is untreatable. Due to the rise in resistant TB strains in the past several years, TB is now a 

global emergency (World Health Organisation, 2018) . In spite of the fact that efforts to develop 

drugs have intensified in recent years, licensing two new anti-TB drugs (bedaquiline and 

delamanide) and currently undergoing clinical evaluations, the current drug development 

pipeline is still insufficient to address the current global health challenge. An urgent need 

remains to discover new drug remains , especially that can target resistant  TB strains (Kana, 

Karakousis, Parish, & Dick, 2014). By shortening the timer required for generation of newer 
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chemical scaffolds will positively affect the likelihood of clinical success of a drug candidate 

so that a comprehensive approach for drug discovery can be made (Kaur et al., 2017). 

 Need for Computational Techniques for Drug Discovery  

It is generally recognized that the process of discovery and development of new drugs is time-

consuming, risky and costly. From concept to market ,the typical drug discovery and 

development cycle takes roughly 14 years (Myers & Baker, 2001), and the expense falls  

between $ 0.8 billion to $ 1.0 billion (Moses, Dorsey, Matheson, & Thier, 2005). Rapid 

advances in combinatorial chemistry and high-throughput screening technologies have created 

an atmosphere for accelerating  drug discovery cycle by allowing large chemical databases to 

be examined and synthesized in a short period of time (Lahana, 1999) (Lobanov, 2004).Even 

though expenditure in the development of new drugs has grown significantly over the past 

decades, the output is not positively proportional to the investment given the low efficiency 

and high rate of drug discovery failure(Shekhar, 2008). As a result, different approaches were 

developed to shorten the research cycle and reduce the drug discovery expense and risk of 

failure. One of the most effective methods to achieve these goals is computer-aided drug design 

(CADD) (Ou-Yang et al., 2012). 

 Molecular Docking Approach for Drug development 

Protein-ligand or protein-protein docking plays a key role in predicting the ligand's orientation 

when bound to a receptor or enzyme by quantifying three-dimensional shape and electrostatic 

interactions in case of modern process of drug discovery. Besides Coulombic interactions and 

the formation of hydrogen bonds, the van der Waals interactions also play an important role. 

A docking score, represents binding potentiality and gives an approximation of the sum of all 

these interactions. In the clearest rigid body systems, the ligand is searched for fitting the 

file:///C:/Users/15146109/Downloads/(Lahana,%201999)
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binding site in a six-dimensional rotational or translation space that can serve as a lead 

compound for drug design (Alberg & Schreiber, 1993). 

 Auto Dock Tools and Auto dock Vina 

To predict binding nature of small, flexible ligand with known 3D structure target, a free suite 

of docking programs known as Auto Dock is used. To set up the experiment and to analyze the 

docking experiment the front-end graphical interface of AutoDock Tools is used. After which 

' auto dock ' carries out the docking calculations of ligand to the target protein, represented by 

a set of grids pre-calculated by “auto grid”. Monte Carlo simulated annealing method was used'  

in older software versions (versions 2.4-4.0) to search for ligand conformations and energy was 

evaluated by a grid based approach (Goodsell, Morris, & Olson, n.d.). Based on energy 

similarity, using a genetic algorithm, a series of docking poses are generated and clustered. 

Interestingly, researches have demonstrated that  the most populated cluster best calculates the 

docked ligand's native state(Källblad, Mancera, & Todorov, 2004;Limongelli et al., 2007).  

In favor of knowledge-based scoring, an offshoot of the original program, called Auto Dock 

Vina, eliminated the empirical scoring function and the genetic energy algorithm clustering of 

former versions. This is achieved through the Monte Carlo sampling and the Broyden-Fletcher-

Goldfarb-Shanno method for local optimization. Auto Dock Vina has significantly improved 

both predictability and time required for docking (Trott & Olson, 2010). 

 The Need for New Drugs for Tuberculosis 

Tuberculosis (Tb), primarily caused by Mycobacterium tuberculosis (Mtb), is a major disease 

that affects millions of people each year with high mortality rates. The lack of treatment options 

accompanied by the current emergence of MTB's multi-drug resistant (MDR) and extreme drug 

resistance (XDR) strains (Paulson, 2013;Global tuberculosis report, 2014) remains a barrier in 

solving this problem(Koul, Arnoult, Lounis, Guillemont, & Andries, 2011;Cohen, Lobritz, & 
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Collins, 2013) .There are a low number of drugs available for the treatment of Tb (MDR / 

XDR) and there are several reasons for the lack of new drugs, including the lack of funding for 

such neglected diseases in Pharmaceutical Research & Development. Drug development's 

prohibitive cost has been caused by poor target selection and as a result, 87 percent of late-

stage failures can be avoided as they show poor effectiveness and negative effects (Munos, 

2009). In the current situation, understanding an organism's complex biological responses or 

system biology is highly important in improving and speeding up the drug development process 

by decreasing the rate of failures. Based on knowledge about existing lead compounds which 

work against Mtb, methods of selective chemical molecular customization have the ability to 

fuel the Tb clinical pipeline and address the issue of the rise of resistant strains. Innovative 

approaches to developing new chemical entities such as using data intensive in silico 

approaches can minimize the cost associated with failure of drug in late stages and increase the 

speed at which new drugs are made available in the market.  

 Plants as a source of new drug lead 

Plants are found mostly on lands but they could be found in every habitable environment. In 

the face of  stresses and challenges plants have developed numerous molecules to prevent or 

stop animal attacks and adapt to environmental changes(Weng, Philippe, & Noel, 2012). 

Historical findings and reports show that plants were used in earlier era for medical purposes 

(Lietava, 1992). For anticancer and antimicrobials drugs in particular, natural products have 

been the go to source of dug compounds (HARVEY, 2008;Harvey, Clark, Mackay, & 

Johnston, 2010;Chang, Kim, & Kwon, 2016) . A number of researchers have highlighted the 

urge to discover and develop new antitubercular drugs to reduce the burden of deadly disease, 

also known as "Captain of Death,"(B. B. Mishra & Tiwari, 2011;Zumla, Nahid, & Cole, 2013). 
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 Alkaloids as Antimicrobial Drug leads 

The lessons learned from current efforts to generate TB hits and newly validated drug targets 

for TB can now be applied to generate new TB drugs. Using currently underexploited 

chemicals sources and lead-optimization methods can improve the efficiency of drug 

development process. Mdluli discusses probable leads for the development of antimicrobial 

drugs in his review (Mdluli, Kaneko, & Upton, 2014). Various plant extracts were commonly 

used in traditional medicine for the treatment of tuberculosis and there is a renewed interest in 

plants as a source of new drug development (Dashti, Grkovic, & Quinn, 2014).There is research 

that proves alkaloids have wide therapeutic applications and can be an ideal target for drug 

development as researches are being done to develop new drugs from natural sources for 

tuberculosis (S. K. Mishra et al., 2017). Decarine, a benzophenanthridine alkaloid , was 

extracted  from  Zanthoxylum capense  and showed significant antimycobacterial activity 

against H37Rv strains of M. Tuberculosis at the minimum inhibitory concentration at 

3.1mg/mL (Luo et al., 2013). Extracts from Diplosoma and sea squirts lissoclinum showed the 

presence of an alkaloid called shemilamine B and inhibits the growth of tuberculosis at the 

MIC value of mM (Appleton, Pearce, & Copp, 2010). An alkyl amide named brachystamide 

B, has been extracted  from  Piper Sarmentosum  and has showed moderate inhibitory activity 

against M. Tuberculosis at the MIC value of 50 mg / mL(Isaka, Boonkhao, Rachtawee, & 

Auncharoen, 2007) . Monamphilectine A (diterpenoid b-lactam alkaloid ) isolated from the 

Hymenia cidon marine sponge, at MIC value of 15.3 mg / mL showed potent antimycobacterial 

properties (Avilés & Rodríguez, 2010) . 

 Molecular Targets for Antimicrobial Agents  

Antimycobacterial medications have bactericidal properties which inhibits the M. TB and have 

bacteriostatic abilities which averts M. TB’s growth. Different molecular targets for existing 
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antitubercular drugs are well known. The targets chosen to identify novel leads are specific to 

preventing mutated gene transfer from one generation to another. The novel compound should 

be active throughout M.TB's lifecycle (Zhang, Post-Martens, & Denkin, 2006). The target 

molecules can be either inside or outside of the mammalian cells and different biosynthetic 

pathways such as bacterial protein synthesis, cell wall and nucleic acid synthesis pathways can 

be included as targets for antitubercular drugs. ⠀Discovery of new drug and development of 

lead molecule focuses on specific target sites and they can be either bacteriostatic or 

bactericidal (Manjunatha & Smith, 2015). 

 Mycobacterium tuberculosis KasA  

The lipid-rich, highly impermeable cell wall is essential in the survival of the pathogen. (Daffé 

& Draper, 1998; Yuan, Zhu, Crane, & Barry, 1998). The long-chain mycolic acids, α-alkyl-β-

hydroxy fatty acids, constitute up to 60 percent of the cell wall and are primarily accountable 

for the waxy cell envelope's low permeability. Contrary to other bacteria, the layer is 

synthesized by two distinct pathways for fatty acid synthesis. The mammalian-like FAS and 

the bacteria-Like FAS-II pathway are there in the mycobacteria and play an essential role in 

the synthesis. (Barry et al., 1998) . (Kremer et al., 2002). The mycobacterial β-ketoacyl ACP 

synthase known as KasA plays a key role in the FAS-II system. KasA is essential for 

mycobacteria:  cell lysis  is induced by conditional depletion of KasA (Bhatt, Kremer, Dai, 

Sacchettini, & Jacobs, 2005) and hybridization of the transporon site  has shown that KasA 

plays a key role in survival of the pathogens. (Sassetti, Boyd, & Rubin, 2003). 
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Figure 1: Mycobacterium Tuberculosis KasA 

The figure depicts Mycobacterium Tuberculosis KasA. 

 Mycobacterium tuberculosis PknB 

Mycobacterium tuberculosis PknB, receptor like protein kinase, is vital for cell growth control 

in mycobacteria. To ensure tight cell growth and division regulation, mycobacteria employs 

reversible phosphorylation of serine / threonine residues which is a well-established process in 
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eukaryotic signaling networks (Hunter, 2000). M. Tuberculosis PknB is a highly preserved 

trans-membrane Ser / Thr protein kinase (STPK) in gram-positive bacteria and provides 

mycobacteria with viability (Sassetti et al., 2003). Researches have previously demonstrated 

that PknB is controlled  by autophosphorylation and dephosphorylation by  the Ser / Thr protein 

phosphatase PstP (Boitel et al., 2003; Villarino et al., 2005). Additionally, recent work has 

shown that PknB is primarily expressed during exponential growth phase. During this phase 

it's overexpression causes morphological changes which are associated with  synthesis of cell 

wall (Kang et al., 2005). 

Figure 2: Mycobacterium Tuberculosis PknB 

The figure depicts Mycobacterium Tuberculosis PknB. 

 Mycobacterium tuberculosis PanK 

The universal CoA biosynthetic pathway's, pantothenate (vitamin B5) is turned to 4′-

phosphopantothenate using ATP as a cofactor, first and rate-limiting step is catalyzed by 

Pantothenate kinase (PanK, 2 EC 2.7.1.33.)  (Jackowski & Rock, 1981). Three PanK types that 
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differ in their biochemical and structural characteristics have been described. CoA gene 

encoded type I (Dunn & Snell, 1979), is found in many bacterial species and is tightly feedback 

regulated by CoA and its thioesters (Vallari, Jackowski, & Rock, 1987). The widely researched 

Escherichia coli PanK are an example of this(Song & Jackowski, 1994;Yun et al., 2000). Most 

of the type II enzymes are found in eukaryotes. Four isoforms of the enzyme are expressed in 

humans namely PanK1 to 4. PanK2 gene defects were associated with neurodegenerative 

disease (Zhou et al., 2001; Rock, Karim, Zhang, & Jackowski, 2002). Some pathogenic 

enzymes, such as Staphylococcus aureus PanK, are also categorized as type II enzymes on the 

basis of sequence and structural homology. The S. aureus enzyme is not feedback regulated 

but Eukaryotic PanKs are (Leonardi et al., 2005). CoaX gene encodes type III enzymes which 

is the most common type of enzyme amongst 12 of the 13 major  groups of bacteria (K. Yang 

et al., 2006). It is not inhibited by CoA or its thioesters Neither CoA nor its thioesters inhibit it 

(Brand & Strauss, 2005). Several bacteria have two PanK genes coding for various enzyme 

types. The genome of M. tuberculosis contains both coo and coax genes, which code for type 

I and type III PanK. However, coaA has been shown to be the only PanK gene essential for in 

vitro and in vivo bacterial growth (Awasthy et al., 2010). 
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Figure 3: Mycobacterium Tuberculosis PanK 

The figure depicts Mycobacterium Tuberculosis PanK. 

 Mycobacterium tuberculosis DprE1  

Arabinan is a fundamental part of the pathogen’s cell wall.  Decaprenylphosphoryl arabinose, 

the single donor of arabinosyl residues for the buildup of arabinans is catalyzed by a unique 

epimerization reaction by the Mycobacterial enzyme DprE1 and DprE2 (Mikusová, Makarov, 

& Neres, 2014). 
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Figure 4: Mycobacterium Tuberculosis MtDprE1 

The figure depicts Mycobacterium Tuberculosis MtDprE1.  
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Chapter 2 

Methodology 

In this in silico study, potential of several anti-tuberculosis drugs chemical constituent across 

four different drug classes were studied using molecular docking and computational 

techniques. Firstly, an extensive literature study was undertaken to determine the potential 

target protein in Mycobacterial Tuberculosis and potential chemical constituents used in folk 

medicine around the world. After the initial protein target and chemical constituent list was 

established, and then by using molecular docking binding affinity was established between the 

druggable protein and chemical constituent. Three-dimensional structures of the 

macromolecule and ligand or chemical constituents were taken from RCSB PDB and Pubchem. 

For designing, the study several articles were taken from multiple Scopus index article and the 

study were designed based on those. 

 Online software, tools and databases 

First step was to check the 3D structure of the proteins MtKasA, MtPknB, MtPanK and 

MtDprE1, Prossess (Berjanskii et al., 2010) and PROSESS (Berjanskii et al., 2010). Few online 

databases such as RCSB-PDB (Protein Data Bank) (Berman et al., 2000) PubChem (Kim et 

al., 2016) Drug Bank (Wishart et al., 2018a) , NCBI( Geer et al., 2009) were used. 

Table 1: software and tools used in the study 

Sl.  Software and tools used Version 

01. Open Babel 2.4.1 

02. PyMOL 2.0.4 

03. AutoDock Vina 1.1.2 

04. AutoDock tools 1.5.7 

05. BIOVIA Discovery Studio Visualizer 17.2.0.16349 

06. ADMETSAR  2.0 
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Table 1 contains the software and tools that were used throughout the study for several 

purposes. 

 Validation of 3D Protein structure 

The 3D structure of the protein, MtKasA (PDB ID: 2WGE) (Luckner, Machutta, Tonge, & 

Kisker, 2009), MtPknB (PDB ID: 2FUM) (Wehenkel et al., 2006) MtPanK (PDB ID: 4BFT) 

(Björkelid et al., 2013) and MtDprE1 (PDB ID: 4FF6) (Batt et al., 2012) was obtained in a 

PDB format from RCSB Protein Data Bank (Berman et al., 2000). Then a visualization tool 

named PYMOL (DeLano, 2002) was employed to curate the heteroatoms. The curated protein 

structures were  then verified in PROSAWEB (Wiederstein & Sippl, 2007) and Prossess 

(Berjanskii et al., 2010). 

 Protein and drug list 

After the validation and curation of the proteins, the structures were then ready for docking. 

Firstly AutoDock Tools (Morris et al., 2009) was used to change the polarity of the four  protein 

structures by adding polar hydrogens to it using the Edit section of AutoDock Tools. To prepare 

the proteins for Autodock Vina, coordinates for specifying the area within the protein was 

specified using the ‘Gridbox’ from the Grid menu of ADT. After perfectly positioning the 

‘Gridbox’ onto the protein so that it covered the whole protein, the protein was saved as 

‘Protein.pdbqt’ in the previously created docking folder of the computer. The protein was then 

ready for docking using Autodock Vina (Trott & Olson, 2010). 

150 chemical constituents were chosen on the basis of  different studies of their 

pharmacological properties and they were retrieved from both PubChem (Li, Cheng, Wang, & 

Bryant, 2010) and DrugBank (Wishart et al., 2018b). In PubChem, all the chemical structures 

are available in SDF format. SDF format is not compatible with AutoDock or PyRx as there is 

no input option for SDF files. Thus, Open babel, a free online toolbox was used to convert SDF 
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format into the required PDB format (O’Boyle et al., 2011). However, drugs retrieved from 

DrugBank were already available in PDB format so no conversion procedure was required for 

them. All of the converted chemical constituents were saved in a folder for further docking 

procedures. The obtained drugs were then taken into AutoDock toolbox and the rotatable bonds 

of chemical constituents were made flexible and rigid by using the ‘Torsion tree’ option from 

the tool menu under set torsions tab. This ligand preparation step is only applicable when 

docking is done by using AutoDock unlike PyRx where all these are done by the software. 

 Docking 

The prepared. pdbqt format of the protein and chemical constituents were then taken into 

autodock vina. After which a config file was prepared in the following format for each protein 

and each ligand. 

 Receptor = protein. pdbqt 

Ligand =ligand. pdbqt 

center_x = as in the grid  

center_y = as in the grid 

center_z = as in the grid 

size_x = as in the grid 

size_y = as in the grid 

size_z = as in the grid 

Out = ligand_vina. pdbqt 

After the configuration file was made, it was then transferred to the folder were auto dock vina 

files were saved. The protein and the ligand. pdbqt files were also saved there. After which, 
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using the cmd files autodock vina was run and the binding affinities were obtained (Trott & 

Olson, 2010). 

 Screening  

After the docking score was obtained, the best results were chosen for further steps. Best results 

contained nine best binding affinities represented as negative value as it accounts for 

exothermic reaction. The more negative value represents superior results 
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Figure 5:Flowchart of the methodology employed   
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 Visualization and validation 

The output files (. pdbqt) obtained after docking were saved in a separate folder and the binding 

affinities were saved in a separate sheet. The ‘pdbqt’ files of the ligands were visualized with 

the four protein structures in PyMOL to see the binding site of ligands within the protein. The 

files were then saved for further validation using Discovery Studio Visualizer (Dassault 

Systèmes BIOVIA, 2010).  By using Discovery studio, the protein-ligand interactions 

including exact amino acids, bonds and distances between bonds, were observed for each 

protein and ligand. After that, admetSAR 2.0 (K. Yang et al., 2006)  was used to gain insights 

in the pharmacological properties of the proposed drug.
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Chapter 3 

Results and validation 

The 3D structure of the proteins MtKasA, MtPknB, MtDprE1and MtPank validation, binding 

affinities after docking, ADMET properties, visualization and validation are discussed in this 

section. 

 Protein 3D structure validation and visualization 

The 3D structures of proteins are validated through different software. 

 MtKasA 3D Structure Validation 

 

 

Figure 6: 3D structure of MtKasA (PDB ID-2WGE) without heteroatoms obtained from PyMol 

 

The above figure shows the 3D structure of MtKasA on a visualizing tool named PyMOL. The 

alpha helix and beta sheet of the protein MtKasA can be visualized in this tool.  
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In order to determine the three-dimensional structure quality of the protein, ProSA (Protein 

Structure Analysis), an online tool that can evaluate the validity of the 3D structure of the 

protein was used. It generates an outcome called z-score. In this this study, the z-score of 

MtKasA (PDB Code-2WGE) was calculated to be -9.45. 

 

Figure 7  The z-score (-9.45) of MtKasA (PDB ID-2WGE) obtained from ProSA Web 

Server 

In figure 7, it is shown that the z-score of MtKasA is in range with all the experimentally 

determined protein chains in current PDB.  
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Figure 8:The local model quality of MtKasA 

Also, in Figure 8 the local model quality of MtKasA can be seen to mostly below positive value 

which indicates that there is no error in the 3D structure of the protein (Wiederstein & Sippl, 

2007). Therefore, this structure is valid. 

Secondly, the validation of 3D protein was also performed in PROSSESS. The overall quality 

factor  6.5 of the protein after running PROSSESS was found to be  which is considered to be 

a good value (Berjanskii et al., 2010). 
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 MtPanK 3D Structure validation 

 

Figure 9: 3D structure of MtPank (PDB ID-4BFT) without heteroatoms obtained from PyMol 

The above figure shows the 3D structure of MtPanK on a visualizing tool named PyMOL. The 

alpha helix and beta sheet of the protein MtPanK can be visualized in this tool.  
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Figure 10: The z-score (-7.13) of MtPanK (PDB ID-4BFT) obtained from ProSA Web 

In order to determine the three-dimensional structure quality of the protein, ProSA (Protein 

Structure Analysis), an online tool that can evaluate the validity of the 3D structure of the 

protein was used. It generates an outcome called z-score. In this this study, the z-score of 

MtPanK (PDB Code-4BFT) was calculated to be -7.13. 
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Figure 11: The local model quality of MtPanK 

In figure 10, it is shown that the z-score of MtPanK is in range with all the experimentally 

determined protein chains in current PDB. Also, in figure 11 the local model quality of MtPanK 

can be seen to mostly below positive value which indicates that there is no error in the 3D 

structure of the protein (Wiederstein & Sippl, 2007). Therefore, this structure is valid. 

Secondly, the validation of 3D protein was also performed in PROSSESS. The overall quality   

of the protein after running PROSESS was found to be 4.5  which is considered to be an 

acceptable value (Berjanskii et al., 2010). 

 MtPnkB 3D Structure validation 

The above figure shows the 3D structure of MtPnkB on a visualizing tool named PyMOL. The 

alpha helix and beta sheet of the protein MtPnKB can be visualized in this tool.  
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Figure 12 :  3D structure of MtPnkB (PDB ID-2FUM) without heteroatoms obtained from PyMol                      

The figure showed the 3D structure of MtPknB. 

In order to determine the three-dimensional structure quality of the protein, ProSA (Protein 

Structure Analysis), an online tool that can evaluate the validity of the 3D structure of the 

protein was used. It generates an outcome called z-score. In this this study, the z-score of 

MtPnkB (PDB Code-2FUM) was calculated to be -7.36. 
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Figure 13: The z-score (-7.36) of MtKnB (PDB ID-4BFT) obtained from ProSA Web 

In figure 13, it is shown that the z-score of MtPnkB is in range with all the experimentally 

determined protein chains in current PDB.  



26 

 

 

Figure 14: local model quality of MtPknB 

Also, in figure 14 the local model quality of MtPnkB can be seen to mostly below positive 

value which indicates that there is no error in the 3D structure of the protein (Wiederstein & 

Sippl, 2007). Therefore, this structure is valid. 

Secondly, the validation of 3D protein was also performed in PROSSESS. The overall quality 

factor  6.5 of the protein after running PROSESS was found to be  which is considered to be a 

good value(Berjanskii et al., 2010). 
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 MtDprE1 3D Structure Validation  

 

Figure 15: 3D structure of MtPnkB (PDB ID-4FF6) without heteroatoms obtained from PyMol 

The above figure shows the 3D structure of MtDprE1 on a visualizing tool named PyMOL. 

The alpha helix and beta sheet of the protein MtDprE1 can be visualized in this tool.  

In order to determine the three-dimensional structure quality of the protein, ProSA (Protein 

Structure Analysis), an online tool that can evaluate the validity of the 3D structure of the 

protein was used. It generates an outcome called z-score. In this this study, the z-score of 

MtDprE1 (PDB Code-4FF6) was calculated to be -9.91. 
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Figure 16: The z-score (-7.36) of MtDprE1 (PDB ID-4FF6) obtained from ProSA Web 

In figure 16, it is shown that the z-score of MtDprE1 is in range with all the experimentally 

determined protein chains in current PDB.  

Also, in figure 17 the local model quality of MtDprE1 can be seen to mostly below positive 

value which indicates that there is no error in the 3D structure of the protein (Wiederstein & 

Sippl, 2007). Therefore, this structure is valid. 
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Figure 17:Local model quality MtDprE1 

Secondly, the validation of 3D protein was also performed in PROSSESS. The overall quality 

factor of the protein after running PROSESS was found to be   6.5  which is considered to be 

a good value (Berjanskii et al., 2010). 

 In silico binding results obtained after docking 

Torsions are activated but not fixed in flexible docking where in rigid docking, torsions are 

fixed and the movement of the molecules are not allowed. This makes the drug molecules less 

shaky while being docked with the receptor. For this study, AutoDock tools and AutoDock 

Vina were used and the results of rigid docking in terms of binding affinities are given below: 
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Table 2: binding affinities of proteins with alkaloid compound (proposed ligand) 

Protein Name Docking Score 

for 

Shermilamine B 

Docking scores 

for 

Brachystamide 

B 

Docking Scores 

for Decarine 

Docking scores 

for 

Monoamphilceti

ne A 

MtPanK (4BFT) -10.7 -8.6 -9.6 -7.5 

MtDprE1 

(4FF6) 

-9.7 -9.7 -9.1 -9.8 

MtPknB 

(2FUM) 

-9.0 -9.1 -9.7 -7.2 

MtKasA 

(2WGE) 

-8.5 -8.4 -7.8 -7.7 

 

Table 2  contains all the value of binding affinities of different alkaloids (S. K. Mishra et al., 

2017 )against four different proteins which are essential for the survival of Mycobacteria.  

Table 3: Binding affinity towards proteins and standard 

Protein Name Standard Name Standard Docking Score 

MtPanK (4BFT) ZVT -7.3 

MtDprE1 (4FF6) 0T4 -9.2 

MtPknB (2FUM) MIX -10.8 

MtKasA (2WGE) TLM -7.9 

 

Table 3. contains all the binding affinities between standard inhibitors and four proteins which 

are essential for the survival of mycobacteria. 
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 Visualization and Validation 

Visualizing was done using PyMOL, then ligand-protein interactions were done using 

Discovery Studio. 

 Visualization using PyMOL 

PyMOL validation mainly involved visualization of the protein structures in complex with the 

potential drugs and reference drugs as ligands. The ‘pdbqt’ files generated by using Autodock 

Vina and Autodock Tools docking method, were visualized after loading the protein structures 

(2WGE,2FUM,4BFT,4FF6). There were available nine sites in which ligands were bound and 

any of them can be used to validate with the reference. Only the protein-ligand complexes of 

different classes of drugs that superimposed with any of the protein-ligand complex of 

established standard drugs are given. 

 

 

Figure 18: Superimposition of Decarine and MIX structures in the same binding pocket 

MIX structure in 

red 

Decarine structures in blue  
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Figure 19: Superimposition of Monoamphilcetine and OT4 

 

Figure 20:Bracystamide and ZVT bind to the same binding pocket 

 

MonoamphilcetineA 

structure in blue  

OT4 structure in red 

Bracystamide B structure is in 

blue 

ZVT structure is in red 
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Figure 21: Shermilamine B and TLM bind to the same binding pocket 

Figure (18-21) shows the superimposition alkaloids with established inhibitors with the well-

established standards in PyMOL. The superimposition result indicates that these drugs might 

bind to the same binding pockets as their respective standards. 

 Validation by using Discovery Studio 

The distances between the amino acids of protein and ligands were also evaluated using 

Discovery Studio Visualizer (Dassault Systèmes BIOVIA, 2010) It was done by observing the 

involved amino acids, bonds formed between amino acids and ligands, type and category of 

the bonds and lastly distances between the bonds. 

Protein-ligand interaction of 4BFT-ZVT drug complex 

At first, the interactions of established standard ZVT with MtPanK was observed in Discovery 

Studio Visualizer. 

TLM structure in red 

Shermilamine B structurein blue 
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Figure 22: ZVT interaction with MtPanK (4BFT) 

Figure 22 described the interactions between ZVT and MtPanK. 

Table 4:ZVT interaction with MtPank (4BFT) 

Name Category Type Distance 

A: ARG67:NH1 -: UNL1: N Hydrogen Bond Conventional Hydrogen Bond 3.36209 

: UNL1:H - A:ASP219:O Hydrogen Bond Conventional Hydrogen Bond 2.78571 

: UNL1 - A: ARG310 Hydrophobic Pi-Alkyl 5.25027 

 

Table 4 shows that MtPank-ZVT complex formed 2 different bonds with three amino acids. 

The amino acids were ARG66, ASP 219 and ARG310. Two of the bonds were hydrogen bond 

and one hydrophobic bond. The length of all the hydrophobic bonds ranged from 2.7 to 5.3 

angstroms. As all the bonds formed here are hydrophobic and hydrogen bonds it represents a 
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good ligand-protein interactions because these two bonds are fundamental players to form 

strong bond (Patil et al., 2010). 

Protein Ligand interaction of 4BFT-Brachystamide B Interaction 

The interactions of established brachystamide B with MtPanK was observed in Discovery 

Studio Visualizer. 

Figure 23: Brachystamide B interaction with MtPanK(4BFT) 

Figure 23 describes the interaction between Brachystamide B and MtPanK. 

Table 5: brachystamide B interaction with MtPanK(4BFT) 

Name Category Type Distance 

A: THR293:OG1 -: UNL1:O Hydrogen Bond Conventional Hydrogen Bond 3.00463 

: UNL1:H - A: SER167:O Hydrogen Bond Conventional Hydrogen Bond 2.01872 

: UNL1:C - A:PRO85 Hydrophobic Alkyl 3.91669 

Table 5 shows that MtPank-Bracystamide B complex formed 2 different bonds with three 

amino acids. The amino acids were THR293, SER 167 and PRO85. Two of the bonds were 

hydrogen bond and one hydrophobic bond. The length of all the hydrophobic bonds were 

ranged from 2.0 to 3.9 angstroms. As all the bonds formed here are hydrophobic and hydrogen 
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bonds it represents a good ligand-protein interactions because these two bonds are fundamental 

players to form strong bond (Patil et al., 2010).There were no overlapping bonds in this case 

between the proposed and the standard drug but both strongly bind to the protein with same 

bond types. It is also known that hydrogen bonds are important in case of binding of a drug or 

ligand to a receptor (Davis & Teague, 1997). 

Protein Ligand interaction of 4FF6-OT4 Interaction 

At first, the interactions of established standard OT4 with MtDprE1 was observed in Discovery 

Studio Visualizer. 

Figure 24:OT4 interaction with MtDprE1 (4FF6) 

Figure 24 depicts the interaction of OT4 with MtDprE1. 

Table 6: OT4 interaction with MtDprE1 (4FF6) 

Name Category Type Distance 
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A: TYR297: HH -: 

UNL1:O 

Hydrogen Bond Conventional Hydrogen Bond 2.42752 

A: PHE362:CA -: 

UNL1: F 

Hydrogen Bond; 

Halogen 

Carbon Hydrogen Bond; 

Halogen (Fluorine) 

3.09613 

A: ASP232:OD1 -: 

UNL1: F 

Halogen Halogen (Fluorine) 2.77482 

A: SER361:O -: 

UNL1: F 

Halogen Halogen (Fluorine) 3.41764 

A: PHE362:O -: 

UNL1: F 

Halogen Halogen (Fluorine) 3.54048 

A: ASP232:OD2 -: 

UNL1 

Electrostatic Pi-Anion 4.89466 

A: THR288:CG2 -: 

UNL1 

Hydrophobic Pi-Sigma 3.88147 

: UNL1:C - A: ILE234 Hydrophobic Alkyl 4.71427 

Table 6 shows that MtDprE1-OT4 complex formed 4 different bonds with eight amino acids. 

The amino acids were TYR 297, PHE 362, ASP 232, SER 361, PHE 362, ASP 232, THR 288 

and ILE234. The bond types were one hydrogen bond, four halogen bond, one electrostatic 

bond and two hydrophobic bonds were seen. The distance range was 2.4 to 4.89 Armstrong. 

The hydrogen bonds are important for biological function and halogen bonds not only play a 

role in biological functions but also increases membrane permeability (Zaldini Hernandes, 

Melo Cavalcanti, Rodrigo Moreira, Filgueira de Azevedo Junior, & Cristina Lima Leite, 2010). 

Protein Ligand interaction of 4FF6-Monoamphilectine A Interaction 

Then interactions between MtDprE1 and monoamphilectine A was observed. 
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Figure 25:  Monoamphilectine A interaction with MtDprE1 (4FF6) 

Figure 25 depicts the interaction of Monoamphilectine A with MtDprE1. 

Table 7:   Monoamphilectine A interaction with MtDprE1 (4FF6) 

Name Category Type Distance 

: UNL1:H36 - A: 

PHE231:O 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.20582 

: UNL1:H37 - A: 

PHE362:O 

Hydrogen 

Bond 

Carbon Hydrogen 

Bond 

2.31394 

: UNL1:H37 -: UNL1:O Hydrogen Bond Carbon Hydrogen 

Bond 

2.93292 

A: PHE289 -: UNL1:C Hydrophobic Pi-Alkyl 4.79301 

A: TRP296 -: UNL1 Hydrophobic Pi-Alkyl 5.37054 

A: TRP296 -: UNL1:C Hydrophobic Pi-Alkyl 4.32284 

A: TYR297 -: UNL1 Hydrophobic Pi-Alkyl 4.69661 

A: TYR297 -: UNL1:C Hydrophobic Pi-Alkyl 4.02288 

Protein Ligand interaction of 2WGE-TLM Interaction 
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At first interaction between MtKasA and TLM was observed. 

 

Figure 26 : MtKasA (2WGE) interaction with TLM 

Figure 26 depicts the relationship between MtKasA and TLM. 

Table 8 MtKasA (2WGE) interaction with TLM 

Name  Category type distance 

: UNL1:H16 - A: 

GLU241:OE1 

Hydrogen Bond Conventional 

Hydrogen Bond 

2.79986 

: UNL1:H16 - A: 

GLU241:OE2 

Hydrogen Bond Conventional 

Hydrogen Bond 

2.93651 

: UNL1:C - 

A:PRO201 

Hydrophobic Alkyl 4.28569 

: UNL1:C - 

A:PRO201 

Hydrophobic Alkyl 4.283 

A: HIS63 -: UNL1:C Hydrophobic Pi-Alkyl 4.35015 

A: TYR82 -: UNL1:C Hydrophobic Pi-Alkyl 4.81105 
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Protein Ligand interaction of 2WGE-Shermilamine B Interaction 

 

Figure 27: MtKasA (2WGE) interaction with shermilamine B 

Figure 27 depicts the relationship between MtKasA and shermilamine B. 

Table 9 MtKasA(2WGE) interaction with shermialmine B 

Name  Category type distance 

A: HIS63:NE2 -: 

UNL1 

Electrostatic Pi-Cation 4.98707 

A: HIS63:NE2 -: 

UNL1 

Electrostatic Pi-Cation 4.12141 

A: ASP48:OD1 -: 

UNL1 

Electrostatic Pi-Anion 3.59465 

A: GLU241:OE1 -: 

UNL1 

Electrostatic Pi-Anion 3.50896 
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A: GLU241:OE2 -: 

UNL1 

Electrostatic Pi-Anion 4.76763 

A: HIS63 -: UNL1 Hydrophobic Pi-Pi Stacked 5.17818 

A: HIS63 -: UNL1 Hydrophobic Pi-Pi Stacked 4.51222 

A: HIS63 -: UNL1 Hydrophobic Pi-Pi Stacked 4.07021 

A: HIS63 -: UNL1 Hydrophobic Pi-Pi Stacked 5.14851 

: UNL1 - A: LEU64 Hydrophobic Pi-Alkyl 5.31768 

: UNL1 - A:PRO67 Hydrophobic Pi-Alkyl 4.70543 

Protein Ligand interaction OF 2FUM-MIX Interaction 

At first interaction between MtPnkB and MIX was observed. 

Figure 28:MtPknB interaction with MIX 

Figure 28 depicts the relationship between MIX and MtPknB. 

Table 10: MtPnkB interaction with MIX 

Name Category Type Distance 
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: UNL1:H -: UNL1:O Hydrogen Bond Conventional 

Hydrogen Bond 

1.84355 

: UNL1:H - A: 

VAL95:O 

Hydrogen Bond Conventional 

Hydrogen Bond 

2.93476 

: UNL1:H -: UNL1:O Hydrogen Bond Conventional 

Hydrogen Bond 

1.84377 

: UNL1:H -: UNL1:O Hydrogen Bond Conventional 

Hydrogen Bond 

1.73383 

: UNL1:H - A: 

GLU93:O 

Hydrogen Bond Conventional 

Hydrogen Bond 

2.24594 

: UNL1:H16 - A: 

GLY97:O 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.85809 

: UNL1:H21 - A: 

PHE19:O 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.68451 

: UNL1:H23 - A: 

VAL95:O 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.48186 

: UNL1:H23 - A: 

GLY97:O 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.95277 

: UNL1:H24 - A: 

TYR94: OH 

Hydrogen Bond Carbon Hydrogen 

Bond 

3.04587 

: UNL1:H26 - A: 

PHE19:O 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.56435 

: UNL1:H28 - A: 

ASP96:OD2 

Hydrogen Bond Carbon Hydrogen 

Bond 

2.66263 
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A: MET92:SD -: 

UNL1 

Other Pi-Sulfur 4.73507 

: UNL1 - A: LEU17 Hydrophobic Pi-Alkyl 4.90902 

: UNL1 - A: 

MET145 

Hydrophobic Pi-Alkyl 5.1904 

: UNL1 - A: VAL25 Hydrophobic Pi-Alkyl 5.15215 

: UNL1 - A: ALA38 Hydrophobic Pi-Alkyl 4.5132 

: UNL1 - A: VAL72 Hydrophobic Pi-Alkyl 4.85314 

: UNL1 - A: 

MET155 

Hydrophobic Pi-Alkyl 4.72422 

: UNL1 - A: LEU17 Hydrophobic Pi-Alkyl 5.06475 

: UNL1 - A: VAL25 Hydrophobic Pi-Alkyl 5.19899 

: UNL1 - A: MET145 Hydrophobic Pi-Alkyl 5.32043 

: UNL1 - A: 

MET155 

Hydrophobic Pi-Alkyl 4.79271 

: UNL1:H -: UNL1:O Hydrogen Bond Conventional 

Hydrogen Bond 

1.84355 

 

In table 10 it shows that, MtPnkB-MIX complex formed two different bonds with twenty-four   

amino acids. The bond types were all hydrogen and hydrophobic bonds. All hydrogen bonds 

are important for biological activity and the pi cation bonds plays an important role in 

molecular recognition and chemical and biological catalysis. (Dougherty, 2013) The distance 

range was 2.5 to 5.2 Armstrong. 

Protein Ligand interaction OF 2FUM and decarine Interaction 

Then interaction between MtPknB and decarine was observed. 
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Figure 29:MtPknB interaction with decarine 

Figure 29 depicts the relationship between MtPknB with decarine. 

Table 11:MtPknB interaction with decarine 

Name Category Type Distance 

: UNL1:H - A: 

GLU93:O 

Hydrogen Bond Conventional 

Hydrogen Bond 

2.10035 

A: MET145:SD -: 

UNL1 

Other Pi-Sulfur 3.95549 

A: MET145:SD -: 

UNL1 

Other Pi-Sulfur 4.08638 

: UNL1 - A: 

LEU17 

Hydrophobic Pi-Alkyl 4.83045 

: UNL1 - A: LEU17 Hydrophobic Pi-Alkyl 4.35165 
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: UNL1 - A: 

MET155 

Hydrophobic Pi-Alkyl 5.12612 

: UNL1 - A: 

LEU17 

Hydrophobic Pi-Alkyl 5.11163 

: UNL1 - A: 

ALA38 

Hydrophobic Pi-Alkyl 4.25926 

: UNL1 - A: 

VAL95 

Hydrophobic Pi-Alkyl 5.09063 

: UNL1 - A: 

MET155 

Hydrophobic Pi-Alkyl 5.31377 

    

 

In table 11, MtPknB-decarine complex, formed bonds with 10 amino acids via three different 

bond types. The amino acids were GLU 93, MET145, MET 145, LEU17, MET 155, LEU17, 

ALA38, VAL95, MET 155.The bond types were hydrogen, hydrophobic or categorized as 

other. The observed distance range was 2.1 to 5.3 Armstrong. 

By comparing it can be seen that, eight of the residues are same. GLU 93, LEU17, MET155, 

LEU17, ALA 38, MET 155 shared the same category of the bond which was hydrogen or 

hydrophobic bond. Hydrogen and hydrophobic bonds have importance in protein ligand 

interactions (Patil et al., 2010). The rest of the residues had shown to have different categories 

of bond type but all of them were strong bonds. 

 Valditation through Ramachandran plot  

All the proteins and protein-drug complexes were evaluated in Ramachandran 

plot.(“RAMPAGE: Ramachandran Plot Assessment,” n.d.) The results obtained before and 
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after the binding complex for favorable region and allowed region remained same before and 

after the binding with drug complex. As there were no variations in the residues and values 

were expected in can be said that the ligand-protein complexes are validated. 

The table is given below:  

Protein name  Value for allowed and 

favored region before 

complex formation  

Value for allowed and 

favored region after complex 

formation 

MtDprE1 98.4 % (2.6 % Outlier) 98.4 % (2.6 % Outlier) 

MtKasA 100% (no outlier) 100% (no outlier) 

MtPanK 99.7 % (0.3 % outlier) 99.7 % (0.3 % outlier) 

MtPknB 100% (no outlier) 100% (no outlier) 

 Drug choice  

The drug choice was done on the basis of the results of the validation stages. 

 MtKasA (PDB ID:2WGE)  

The choice of drug to target the MtKasA protein is Shermilamine B. Shermilamine B showed 

a docking score of -8.5 kcal/mol which was higher than the standard TLM score(-7.9kcal/mol). 

Additionally, shermilamine B formed hydrophobic bonds and electro static bonds which have 

importance as a ligand, as previously discussed. Thus, shermilamine B is an ideal candidate for 

further studies. 

Table 12: Physiochemical properties of standard and proposed drug 

The physiochemical 

properties of the proposed 

drug and the standard drug 

Property Value TLM Property Value  

Shermilamine B 
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obtained from PubChem 

(Kim et al., 2016) are given 

below for comparison : 

Property Name 

Molecular Weight 210.291 g/mol 390.461 g/mol 

XLogP3-AA 2.8 2.5 

Hydrogen Bond Donor Count 1 3 

Hydrogen Bond Acceptor 

Count 

3 5 

Rotatable Bond Count 2 3 

Exact Mass 210.071 g/mol 390.115 g/mol 

Monoisotopic Mass 210.071 g/mol 390.115 g/mol 

Topological Polar Surface 

Area 

62.6 A^2 108 A^2 

Heavy Atom Count 14 28 

 

The predicted ADMET properties (Absorption, Distribution, Metabolism, Excretion, Toxicity) 

properties are given below for the help of future lead optimization. ADMETSAR 2.0 , an online 

tool, was used to do this (H. Yang et al., 2019) . The green indicates that these values are in 

range for the parameter and the red indicates these values are out of the range for the parameter. 
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Table 13:ADMET  properties of the standard and proposed drug 

ADMET 

properties 

Value for 

standard drug 

TLM 

Probability for 

standard drug 

TLM 

Value for 

Shermilamine B 

Probability of 

Shermilamine B 

Human 

Intestinal 

Absorption 

+ 0.9876 + 0.8744 

Caco-2 + 0.8584 - 0.8027 

Blood Brain 

Barrier 

+ 0.9656 + 0.9828 

Human oral 

bioavailability 

+ 

acceptable 

0.5143 

acceptable 

- 

Not acceptable 

0.5000 

Not acceptable 

P-glycoprotein 

inhibitor 

- 0.9696 + 0.6496 

Carcinogenicity 

(binary) 

- 

acceptable 

0.6731 

acceptable 

- 

acceptable 

0.8857 

acceptable 

Carcinogenicity 

(trinary) 

Non-required 

acceptable 

0.5295 

acceptable 

Non-required 

acceptable 

0.6517 

acceptable 

Ames 

mutagenesis 

- 

acceptable 

0.7700 

acceptable 

+ 

Not acceptable 

0.6400 Not 

acceptable 

 

Human either-a-

go-go inhibition 

- 0.8139 + 0.7932 

CYP inhibitory 

promiscuity 

- 0.5616 - 0.6048 
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Acute Oral 

Toxicity (c) 

III 0.7235 III 0.6424 

 MtPknB (PDB ID: 2FUM) 

The choice of drug to target the MtPknB protein is decarine. Decarine showed a docking score 

of –9.7 kcal/mol which was lower than the standard MIX score (-10.8Kcal/mol). Additionally, 

Decarine formed hydrophobic bonds and hydrophobic bonds which has importance for a 

ligand, as previously discussed. Thus, decarine is an ideal candidate for further studies. 

Table 14-Physiochemical properties of the standard and proposed drug 

Property Name Property Value TLM Property Value  

Shermilamine B 

Molecular Weight 444.488 g/mol 319.316 g/mol 

XLogP3-AA 1 4.1 

Hydrogen Bond Donor Count 8 1 

Hydrogen Bond Acceptor 

Count 

10 5 

Rotatable Bond Count 12 1 

Exact Mass 444.201 g/mol 319.084 g/mol 
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The physiochemical properties of the proposed drug and the standard drug obtained from 

PubChem(Kim et al., 2016) are given below for comparison : 

The predicted ADMET properties (Absorption, Distribution, Metabolism, Excretion, Toxicity) 

properties are given below for the help of future lead optimization. ADMETSAR 2.0 , an online 

tool, was used to do this.(H. Yang et al., 2019) .The green indicates that these value are in range 

for the parameter and the red indicates these values are out of the range for the parameter. 

Table 15:ADMET properties of the standard and proposed drug 

ADMET 

properties 

Value for 

standard drug 

MIX 

Probability for 

standard drug 

MIX 

Value for 

decarine  

Probability of 

decarine 

Human 

Intestinal 

Absorption 

+ 0.9760 + 0.9874 

Caco-2 - 0.8827 + 0.6609 

Blood Brain 

Barrier 

+ 0.8908 + 0.9404 

Human oral 

bioavailability 

+ 

acceptable 

0.5143 

acceptable 

- 

Not acceptable 

0.5143 

Not acceptable 

Monoisotopic Mass 444.201 g/mol 319.084 g/mol 

Topological Polar Surface 

Area 

163 A^2 60.8 A^2 

Heavy Atom Count 32 24 
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P-glycoprotein 

inhibitior 

- 0.8566 - 0.7562 

Carcinogenicity 

(binary) 

- 

acceptable 

0.7317 

acceptable 

- 

acceptable 

0.9286 

acceptable 

Carcinogenicity 

(trinary) 

Non-required 

acceptable 

0.7325 

acceptable 

Non-required 

acceptable 

0.4096 

acceptable 

Ames 

mutagenesis 

+Not acceptable 0.9900  

Not acceptable 

+ 

Not acceptable 

0.6400 

Not acceptable 

Human either-a-

go-go inhibition 

- acceptable 

 

0.5836 

acceptable 

- acceptable 0.6964 

acceptable 

CYP inhibitory 

promiscuity 

- 0.9211 + 0.8323 

Acute Oral 

Toxicity (c) 

III 0.7527 III 0.7061 

 MtPanK (PDB ID: 4BFT) 

The choice of drug to target the MtPanK protein is Brachystamide B. Brachystamide B showed 

a docking score of –8.6 kcal/mol which was higher than the standard ZVT score. (-7. Kcal 

/mol). Additionally, Brachystamide B formed only hydrophobic bonds and hydrophobic bonds 

which has importance for a ligand, as previously discussed. Thus, brachystamide B is an ideal 

candidate for further studies. 

The physiochemical properties of the proposed drug and the standard drug obtained from 

pubchem(Kim et al., 2016) are given below for comparison  

 

 



52 

 

Table 16: Physiochemical properties of the standard and proposed drug 

Property Name Property Value ZVT Property Value  

Brachystamide B 

Molecular Weight 434.914 g/mol 411.586 g/mol 

XLogP3-AA 3.9 7.9 

Hydrogen Bond Donor Count 1 1 

Hydrogen Bond Acceptor 

Count 

6 3 

Rotatable Bond Count 8 14 

Exact Mass 434.098 g/mol 411.277 g/mol 

Monoisotopic Mass 434.098 g/mol 411.277 g/mol 

Topological Polar Surface 

Area 

94.3 A^2 47.6 A^2 

Heavy Atom Count 29 30 

The predicted ADMET properties (Absorption, Distribution, Metabolism, Excretion, Toxicity) 

properties are given below for the help of future lead optimization. ADMETSAR 2.0 , an online 

tool, was used to do this.(H. Yang et al., 2019).The green indicates that these value are in range 

for the parameter and the red indicates these values are out of the range for the parameter. 
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Table 17: ADMET properties of the standard and proposed drug 

ADMET 

properties 

Value for 

standard drug 

ZVT 

Probability for 

standard drug 

ZVT  

Value for 

Brachystamide 

B  

Probability of 

Brachystamide 

B 

Human 

Intestinal 

Absorption 

+ 0.9127 + 0.9771 

Caco-2 - 0.6657 - 0.6480 

Blood Brain 

Barrier 

+ 0.9769 + 0.9811 

Human oral 

bioavailability 

- Not acceptable 

 

0.5571 

Not acceptable 

- Not acceptable 

 

0.6286 

Not acceptable 

P-glycoprotein 

inhibitior 

+ 0.7317 + 0.8162 

Carcinogenicity 

(binary) 

- acceptable 0.7908 

acceptable 

- acceptable 0.9429 

acceptable 

Carcinogenicity 

(trinary) 

Non-required 

acceptable 

0.4752 

acceptable 

Non-required 

acceptable 

0.5911 

acceptable 

Ames 

mutagenesis 

- 

acceptable 

0.6900 

acceptable 

- 

acceptable 

0.8400 

acceptable 

Human either-a-

go-go inhibition 

+ 

Not acceptable 

0.7981 

Not acceptable 

+ 

Not acceptable 

0.7710 

Not acceptable 

CYP inhibitory 

promiscuity 

+ 0.9093 + 0.7623 
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Acute Oral 

Toxicity (c) 

III 0.5701 0.6716 III 

 MtDprE1 (PDB ID: 4FF6) 

The choice of drug to target the MtDprE1 protein is monoamphilectine A. Monoamphilcetine 

A showed a docking score of –9.8 kcal/mol which was higher than the standard OT4 score. (-

9.2kcal/mol). Additionally, Brachystamide B formed only hydrophobic bonds and hydrophobic 

bonds which has importance for a ligand, as previously discussed. Thus, brachystamide B is an 

ideal candidate for further studies. 

The physiochemical properties of the proposed drug and the standard drug obtained from 

pubchem(Kim et al., 2016) are given below for /comparison  

Table 18: Physiochemical properties of the standard and proposed drug 

Property Name Property Value ZVT Property Value  

Brachystamide B 

Molecular Weight 434.914 g/mol 411.586 g/mol 

XLogP3-AA 3.9 7.9 

Hydrogen Bond Donor Count 1 1 

Hydrogen Bond Acceptor 

Count 

6 3 

Rotatable Bond Count 8 14 

Exact Mass 434.098 g/mol 411.277 g/mol 
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Monoisotopic Mass 434.098 g/mol 411.277 g/mol 

Topological Polar Surface 

Area 

94.3 A^2 47.6 A^2 

Heavy Atom Count 29 30 

 

The predicted ADMET properties (Absorption, Distribution, Metabolism, Excretion, Toxicity) 

properties are given below for the help of future lead optimization. ADMETSAR 2.0 , an online 

tool, was used to do this.(H. Yang et al., 2019) The green indicates that these value are in range 

for the parameter and the red indicates these values are out of the range for the parameter. 

Table 19:Physiochemical properties of the standard and proposed drugs  

ADMET 

properties 

Value for 

standard drug 

ZVT 

Probability for 

standard drug 

ZVT  

Value for 

Brachystamide 

B  

Probability of 

Brachystamide 

B 

Human 

Intestinal 

Absorption 

+ 0.9127 + 0.9771 

Caco-2 - 0.6657 - 0.6480 

Blood Brain 

Barrier 

+ 0.9769 + 0.9811 

Human oral 

bioavailability 

- 

Not acceptable 

0.5571 

Not acceptable 

- 

Not acceptable 

0.6286 

Not acceptable 

P-glycoprotein 

inhibitior 

+ 0.7317 + 0.8162 
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Carcinogenicity 

(binary) 

- 

acceptable 

0.7908 

acceptable 

- 

acceptable 

 

0.9429 

acceptable 

Carcinogenicity 

(trinary) 

Non-required 

acceptable 

0.4752 

acceptable 

Non-required 

acceptable 

0.5911 

acceptable 

Ames 

mutagenesis 

- 

acceptable 

0.6900 

acceptable 

- 

acceptable 

0.8400 

acceptable 

Human either-a-

go-go inhibition 

+ 

Not acceptable 

0.7981 

Not acceptable 

+ 

Not acceptable 

0.7710 

Not acceptable 

CYP inhibitory 

promiscuity 

+ 0.9093 + 0.7623 

Acute Oral 

Toxicity (c) 

III 0.5701 0.6716 III 
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Chapter 4 

Discussion 

MtKasA, MtPanK, MtPknB and MtDprE1 are proteins, which are essential for the growth, 

pathogenicity and survival of mycobacterium tuberculosis. As a major controller of the 

developmental processes in tuberculosis, these proteins can be considered therapeutic targets 

(Awasthy et al., 2010; Kang et al., 2005; Mikusová et al., 2014; Sassetti et al., 2003). TB is one 

of the leading causes of death due to infectious diseases in the world and due to the increase of 

resistant species current drugs are not enough to combat this disease (World Health 

Organisation, 2018). Therefore, newer drugs are required to treat tuberculosis clinically. For 

this purpose, using computational techniques for discovery of new drugs can be employed 

(Lobanov, 2004). Molecular docking can also be employed as a computational technique 

(Guedes, de Magalhães, & Dardenne, 2014).  

After doing an extensive review on proteins associated with tuberculosis, tuberculosis and 

computational techniques this study was designed to find out some potential drugs to inhibit 

key proteins associated with the survival of M. Tuberculosis. More than 150 random chemical 

constituents derived from natural sources of different classes were screened for this study. For 

this screening purpose, molecular docking was used among other in silico techniques.  

Throughout the study, several in silico techniques were used. To begin with, obtaining and 

validating the 3D structure of the target protein MtKasA,MtPanK, MtPknB and MtDpre1 

RCSB PDB was used (Berman et al., 2000). The 3D structure of the target protein was found 

to be valid and suitable after observing the outcome of ProSA Web Server and PROSESS( 

Berjanskii et al., 2010; Wiederstein & Sippl, 2007). 150 chemical constituents of different class 

were screened via docking and of them alkaloid showed potential as drugs. Four of those drugs 

namely shermilamine B, brachystamide B, decarine and monoamphilectine A. Four inhibitors 



58 

 

that were bound to the target proteins as inhibitors were also chosen for validation.  They are 

ZVT, TLM, MIX and OT4. 

The binding affinities of drugs of alkaloids after rigid docking using autodock Vina were found 

between -8.5 kcal/mol to -9.8 kcal/mol which represents a strong binding affinity. The binding 

affinities of the established inhibitors were also calculated using same method. The results of 

their binding affinities were higher for three of the target proteins (MtKasA, MtPanK, MtDprE1 

and lower for one (MtPknB). Therefore, it is clear that the chosen drugs have stronger affinity 

towards the target proteins and can be used as potential leads. 

After visualizing using PyMOL, it was found out that the alkaloid constituents and established 

inhibitors bind within a same pocket in the target proteins. Ramachandran Plot analysis, for all 

the protein-ligand complexes were found same. 

In order to know the protein-ligand interactions of all the ligands with proteins, Discovery 

Studio Visualizer was used. Bonds formed between these amino acids of proteins and ligands 

were also shown. It helped to compare and contrast the protein-ligand interactions of both 

proposed leads and proteins and established inhibitors and proteins. Based on interaction 

studies it can be seen that strong bonds such as hydrogen bonds and pi cation and pi aninon 

bonds featured significantly in the results proving that these ligands can be potential drugs in 

the future namely MtDprE1 can be targeted using monoamhilectine A, MtKasA can be targeted 

using shermilamine B,MtPknB can be targeted using decarine and MtPanK can be targeted 

using brachystamide B. 
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Chapter 5 

Conclusion 

The study evaluated the efficiency of the choice of chemical constituents from natural sources, 

to be used in tuberculosis treatment as inhibitors of four proteins. It was done by using several 

efficient in silico approaches. The findings of these in silico approaches provide a clear and 

distinct concept about the efficiency of the established inhibitors working by interacting with 

targeted proteins. On the other hand, Decarine, the selected lead among drugs of different 

classes exhibited best binding affinity and strong protein-ligand interactions with MtPKnB 

protein, Brachystamide B the selected lead among drugs of different classes exhibited best 

binding affinity and strong protein-ligand interactions with MtPanK protein, 

Monoamphilcetine A the selected lead among drugs of different classes exhibited best binding 

affinity and strong protein-ligand interactions with MtDprE1 protein and shermilamine B, the 

selected lead among drugs of different classes exhibited best binding affinity and strong 

protein-ligand interactions with MtKasA protein . The results showed a promising future for 

these leads as potent antiTB drugs.  
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Chapter 6 

Future work 

To evaluate the docking predictions and concrete evidences to gain widespread acceptance, 

further study of these drugs and protein should be carried out along with in vivo and in vitro 

studies. 
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