
Analysis of Malware Prediction Based on Infection Rate
Using Machine Learning Techniques

by

Safir Zawad
19241038

Raiyan Mansur
19241037

Nahian Evan
19241036

Ashub Bin Asad
15301062

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
BRAC University
December 2019

c© 2019. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Safir Zawad
19241038

Raiyan Mansur
19241037

Nahian Evan
19241036

Ashub Bin Asad
15301062

i

Approval

The thesis/project titled “Analysis of Malware Prediction Based on Infection Rate
Using Machine Learning Techniques” submitted by

1. Safir Zawad (19241038)

2. Raiyan Mansur (19241037)

3. Nahian Evan (19241036)

4. Ashub Bin Asad (15301062)

Of Fall, 2019 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc.in Computer Science on December10, 2019.

Examining Committee:

Supervisor:
(Member)

Muhammad Iqbal Hossain, PhD
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Mahbubul Alam Majumdar, PhD
Professor and Chairperson

Department of Computer Science and Engineering
BRAC University

ii

Abstract

In this modern, technological age, the internet has been adopted by the masses. And
with it, the danger of malicious attacks by cybercriminals have increased. These
attacks are done via Malware, and have resulted in billions of dollars of financial
damage. Which is why prevention of malware attacks has become an essential part
of the battle against cybercrime. In recent years, Machine Learning has become an
important tool in the field of Malware Detection, which is the first step towards
removing malware from infected devices. In this thesis, we are applying machine
learning algorithms to predict the malware infection rates of computers based on its
features. We are using supervised machine learning algorithms and gradient boosting
algorithms, such as LightGBM, Neural Networks, and Decision Tree Learning. We
have collected a publicly available dataset, which was divided into two parts, one
being the training set, and the other will be the testing set. After conducting four
different experiments using the aforementioned algorithms, it has been discovered
that LightGBM is the best model with an AUC Score of 0.73926.

Keywords: LightGBM, Neural Networks, Decision Tree Learning

iii

Dedication

We would like to dedicate this thesis to our loving parents.

iv

Acknowledgement

We want to dedicate our acknowledgement of gratitude to our thesis supervisor
Dr. Muhammad Iqbal Hossain, PhD, Assistant Professor, Department of Computer
Science and Engineering of BRAC University for his guidance for the completion of
our thesis. We are thankful to CSE department, BRAC University for providing us
the necessary equipment for the completion of this project.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature xi

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Problem Statement . 1
1.4 Objective . 2
1.5 Thesis Structure . 2

2 Background 3
2.1 Literature Review . 3
2.2 Algorithms . 4

2.2.1 LightGBM . 5
2.2.2 Neural Network . 5
2.2.3 Decision Tree Learning . 6

3 Database and Experimental Setup 8
3.1 Dataset description . 8

3.1.1 Data Preprocessing . 9
3.1.2 Feature Importances . 9
3.1.3 Chi-squared Test . 9
3.1.4 Correlation Heatmap . 11

3.2 Model description . 12

vi

4 Experimentation 14
4.1 Experimental Setup . 14
4.2 Malware Prediction Using LGBM with K-Fold Cross Validation . . . 14
4.3 Malware Prediction Using LGBM and a Baseline Model with Sparse

Matrix . 15
4.4 Malware Prediction using a Decision Tree Classifier 16
4.5 Malware Prediction using Neural Network 17

5 Result Analysis 18
5.1 Metrics used to determine result . 18
5.2 Comparative Analysis . 20

6 Conclusion and Future Work 21
6.1 Conclusion . 21
6.2 Future Work . 21

Bibliography 23

Appendix 24

vii

List of Figures

2.1 Leaf-wise Tree Growth in LightGBM 5
2.2 Neural Network Prediction Method 6

3.1 LightGBM Feature Importance Chart 9
3.2 Crosstab for ’OsBuild’, ’HasDetections’, ’Census OSVersion’, ’Pro-

ductName’ . 10
3.3 Crosstab for ’Census OSVersion’, ’SmartScreen’, ’HasDetections’ . . . 10
3.4 Crosstab for ’OsVer’, ’Platform’, ’Processor’, ’HasDetections’ 11
3.5 Crosstab for ’Census ProcessorClass’, ’HasDetections’, ’SmartScreen’,

’ProductName’ . 11
3.6 Numerical Columns Correlation Heatmap 12
3.7 Fowchart Displaying the Workplan 13

4.1 Workflow of LGBM experimentation 15
4.2 Workflow of LGBM with Sparse Matrix experimentation 16
4.3 Workflow of Decision Tree experimentation 17
4.4 Workflow of Neural Network experimentation 17

5.1 Visualisation of AUC Scores . 18
5.2 Sample AUC-ROC Curve . 19

viii

List of Tables

3.1 Feature Table for the Dataset . 8

5.1 AUC Score Table . 19
5.2 Table of Time Taken to Run Experimentation 19

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AUC Area under the ROC Curve

CART Classification and Regression Tree

CHAID CHi- squared Automatic Interaction Detector

CNN Convolutional Neural Network

Cos− p Cascade One-Sided Perceptron

CV Score Cross Validation Score

DLL Dynamic Link Library

Dtype Data Types

ESM Enterprise Storage Management

FN False Negative

FP False Positive

FPR False Positive Rate

GPU Graphics Processing Unit

ID3 Iterative Dichotomiser 3

LGBM Light Gradient Boosting Model

MLP Multi-layer Perceptron

OPCODE Operation Code

PE Portable Executable

RF Random Forest

ROC Receiver Operating Characteristic

SVM Support Vector Machine

TN True Negative

x

TP True Positive

TPR True Positive Rate

USD United States Dollar

XGBoost eXtreme Gradient Boosting

xi

Chapter 1

Introduction

1.1 Overview

Malware, or malicious software, is software created to infect a machine without the
user’s knowledge or consent. It is actually a generic definition for all sorts of threats
that can affect a computer. A simple classication of malware consists of le infectors
and stand-alone malware. The objectives of a malware could include accessing pri-
vate networks, stealing sensitive data, taking over computer systems to make use of
its resources, or disrupting computing or communication operations. Malware is de-
liberately malevolent, even when camouflaged as genuine software from a seemingly
reputable source in such a way that most of them have the ability to spread itself
within the network, remain undetectable, cause changes or damage to the infected
system or network. Other objectives include service disruption targeting specific or-
ganizations, identity theft, or even cyberwarfare by targeting another nation state.
The victims can just as easily be entrepreneurs, enterprises, large corporations, or
even governments. Common types of malwares includes Worms, Trojan or Trojan
horse, Adware, Ransomware etc [1] [2].

1.2 Motivation

Although significant strides have been made in the field of malware prediction, pre-
vention, and cybersecurity in general, it appears that cybercriminals are always a
step ahead of the curve. The volume and intensity of cyberattacks have only been
increasing with increased dependency on the internet by individuals and organiza-
tions alike. It is projected that by 2021, global costs related to cybercrime is going
to hit 6 trillion USD [3]. The future does not look bright for mankind in its bat-
tle against malware, but with so many bright minds working on cybersecurity, the
damages inflicted by malware might be dampened in the near future [3].

1.3 Problem Statement

In this day and age, cybercrime is one of the biggest threats to humankind, as it
causes personal and financial damage to both individuals and organizations. And
the biggest tool in the hands of a cybercriminal is Malware. Through malware, Cy-
bercriminals gain access to valuable personal data by attacking organizations that

1

hold such data. Data breaches end up costing organizations a lot of money, and the
fear of future breaches have resulted in an increase in the cost of cybersecurity [3].

At first, malware was spread mostly through CD-ROMs and Floppy Disks, which
limited the damage caused by malware. However, the advent of the internet, and
its rapid adoption across the globe has seen the damage caused by malware grow
exponentially. And the extent of the damage caused by malware has not been more
visible than in the last decade. Some of the biggest data breaches have occurred in
the last decade. This increase in the sheer volume of cyberattacks via malware has
resulted in a huge increase in spending on cybersecurity by organizations across the
globe. 2017 saw an increase of 23 percent in cybercrime costs per organization from
2016, with the average cost per organization standing at 11.7 million USD [3]. Some
malware attacks were so severe that they shut down a whole organization as we can
see in 2016 Lincolnshire County Council had to shut down as a result of zero-day
attack [4].

1.4 Objective

The objective of our research is to identify the model that provides the highest
accuracy in predicting if individual machines would be infected by malware. It
is done by taking into account the different properties of the machines, especially
ones related to the machine’s malware protection status, and user habits. Extensive
research on Malware Prediction would enable users of these machines to be prepared
beforehand for malicious attacks on their computers, and this would result in billions
of dollars in savings for businesses and personal computer users throughout the
world.

1.5 Thesis Structure

In Chapter 2 we have discussed about different algorithms and the algorithms we
used in our research for malware prediction. In Chapter 3 we have described our
dataset, a chart describing feature importance, Chi-squared test diagrams, correla-
tion heatmap and our proposed model description. In Chapter 4 we have showed the
experiments done on malware prediction using LightGBM and K-Fold Cross Valida-
tion. Next comes Chapter 5 where we have evaluated our research using AUC score.
Finally, the paper concludes with a hypothesis, the difficulties we faced during our
work and a few remarks.

2

Chapter 2

Background

2.1 Literature Review

The writers of the paper proposed a framework where multiple machine learning
algorithms were used to differentiate clean files from malware files, while minimiz-
ing the number of false positives [5]. The researchers planned on working around
mainly two algorithms, the cascade one-sided perceptron, and the cascade kernelized
one-sided perceptron. Three datasets were used, a training dataset, a medium sized
testing dataset, and an extremely large ‘scaled up’ dataset containing over millions
of files to test out the algorithms. The datasets contained a mixture of multiple mal-
wares, including Backdoor, Hacktool, Rootkit, Worm, Trojan, and other malwares.
The main goal of the researchers was to create a framework of machine learning
algorithms that detect as many malware files as possible, with a zero false positive
rate. The researchers were very close to their goal, but still had a non-zero false
positive rate. They concluded that malware detection using machine learning will
not be replacing other techniques, but can be used in conjunction with the other
techniques used at that time via the addition of some deterministic exceptions to
make it fit for commercial usage. The most effective algorithms at detecting mal-
ware were found to be the cascade one-sided perceptron (COS-P) and its mapped
variant (COS-P-Map). This paper was published at a time when the idea of apply-
ing machine learning algorithms in malware detection was in its infancy.
The authors of the paper were researching the use of predicting if a file is malicious
or not based on a short snippet of data [6]. They tried out multiple neural networks
and were able to predict if a file was malware or benign in less than 5 seconds of the
execution of the file, achieving 94% accuracy. This was the first time malware pre-
diction was done on files while it was being executed. The norm is to use an activity
from executable files after it was executed. As a result, this made the advancement
of endpoint security with the use of past behavioral data, instead of detecting them
after they have done damage.
The paper mentions that malware detection with the help of machine learning will
help detect new king of malwares and prevent users from future attacks where tradi-
tional malware detection can only detect known malwares [7]. There are two kinds
of malware analysis through machine learning. Static analysis requires examining
the executable file without running the file. By analyzing the portable executable
headers and sections and provide a good insight about the file’s functionality. This
procedure is mainly used by the antivirus companies. They analyze malwares and

3

store the data in their systems and analyze any suspicious software for similar pat-
tern. If there is a match that file is considered as a malware. Dynamic analysis
is running the malware in a virtual safe environment and closely examining the
activities. A typical machine learning experiment in malware analysis starts with
collecting a dataset of malicious executables. Then the dataset is divided into train-
ing and testing sets. One is to train the model and the other one is to test the model
for unknown occurrences. Larger dataset provides more accurate results. Then the
desired static features are extracted for static analysis like String n-grams, Byte se-
quence n-grams, PE headers, DLL libraries, OpCode etc. Different machine learning
algorithms are used like Inductive rule based model, Probability based model, Multi
Näıve Bayes model.
In the research paper, flow based malwares were detected using machine learning
algorithms such as Convolutional Neural Network (CNN) and Random Forest (RF)
[8]. In that paper, data from public data from stratosphere IPS were used. Those
malwares were flow based which means malwares have various port numbers and
protocols which makes them harder to detect. In the era of internet this kind of
malware detection is imported and machine learning algorithms were used to detect
them with higher percentage of accuracy. Many machine learning algorithms such as
Convolutional Neural Network (CNN), Multi-layer Perceptron (MLP), Support vec-
tor machine (SVM) and Random Forest (RF) were applied for classification. Those
were applied in 9 different malware packet data. The appliance resulted in 85% of
accuracy using CNN and RF.
In the paper, the researchers used data from Symantec containing data from more
than 1.4 million machines and 50 different types of malware which was collected for
2 years and from multiple nations [9]. Features were derived from both malware
and devices. A non-linear model was also designed for malware detection, with the
help of epidemiological and information diffusion models. The researchers show-
cased a new ensemble-based method, called ESM, which results in a more precise
algorithm. With data collected from numerous experiments containing various mal-
ware and data from different nations, which shows that ESM has predicted infection
ratios four times better than other baseline models. It even works when the number
of detections is very few.

2.2 Algorithms

There are many algorithms for malware detection and prediction. Among them De-
cision Tree, Recurrent Neural Network, and Light Gradient Boosting Model (Light-
GBM) are commonly used and useful algorithms for malware detection and predic-
tion. There has been a lot of research done on Malware Detection, but not much has
been done on the Prediction of Malware Infection Rates on machines as of now. The
biggest difference between Malware Detection and Prediction is that, in Malware De-
tection, individual files are checked and it is determined if the file is a Malware or if
it is Benign. However, the prediction of malware infection rates in machines works
with whole machines, and the objective is to determine using certain given metrics
if the machine is vulnerable to future malware attacks. When detecting malware,
you can either be right or wrong, but when predicting if malware will infect your
machine, the quality of your result is very important as well.

4

2.2.1 LightGBM

In our thesis, we have mostly worked with the LightGBM algorithm, which is fairly
new, but has many useful applications in Malware Prediction. LightGBM is a gra-
dient boosting framework that uses based tree learning algorithms. Compared to
other algorithms where trees grow horizontally, meaning it grows level-wise, Light-
GBM trees grow vertically, which means that it grows leaf-wise, as shown in figure
2.1. This results in a reduced amount of loss compared to a level-wise algorithm.
The part where LightGBM shines is in the case of massive datasets, like the one
used in our implementation. The light in LightGBM comes from the fact that it
runs at a very high speed, and consumes a lot less memory. It also has support for
GPU learning, which is a must in this day and age [10][11].

Figure 2.1: Leaf-wise Tree Growth in LightGBM

LightGBM works by first processing the dataset and making it lighter to make full,
efficient use of the gradient boosting framework. Then the lighter pre-processed
dataset is put into the algorithm, where it is run at light speed.

2.2.2 Neural Network

Neural Network is distinct from other algorithms for its characteristics which con-
sists of learning from example, distributed associative memory, fault tolerance and
pattern recognition [12]. Neural Network algorithm works by recognizing a pattern
and the pattern is taken as numerical data or vectors. The data is given a weight
and and predict a value and then compares with the ground truth to find the error.
After finding the error this algorithm goes back to the error of a given model to find
adjustment [13].
For a single layer of calculation, algorithm first takes an input for calculation. The
input then gets multiplied by the slope parameter. Then bias is added with it. The
bias indicates the layer of neural network. Then sigmoid function is applied to the
product and thus we get the predicted probability. Now, in neural network there can
be multiple layers. So, the general rule for calculation is to take a weight for each
neuron. So the weights get multiplied by its connected input and all the products
are added together with the bias. And finally sigmoid function is applied like before
for finding prediction.

5

Figure 2.2: Neural Network Prediction Method

Fig 2.2 shows the demonstration of calculation for prediction in neural network.
From this the algorithm gets its prediction. As said earlier, this algorithm compares
the prediction with actual value to find the error. The error gets multiplied by the
contribution of weights for error to get the adjustment.
So this algorithm evaluates the error and adjustment which results in fair and ac-
curate prediction making it preferable for our dataset.

2.2.3 Decision Tree Learning

The Decision Tree algorithm uses a tree like graph of decisions with possible out-
comes for calculation [14]. There are many classification algorithms for Decision tree
for example ID3(Iterative Dichotomiser 3), C4.5, CART(Classification and Regres-
sion Tree), CHAID(CHi- squared Automatic Interaction Detector) [15]. Amongst
these ID3 algorithm is the most popular. This algorithm creates a decision tree us-
ing top-down greedy approach and uses the strategy of learning from examples [16].
Making the tree it takes the best decision and select attribute and uses the decision
attribute as node and finishes after using all the attributes. After that it calculates
information gain by using the uncertainty of the variables also known as entropy
[17]. CART(Classification and Regression Tree) uses Gini Index to construct the
classification tree by splitting the attribute. Using these splits it can handle missing
values. The calculation for this algorithm takes some attributes such as Entropy,
Information Gain, Gini Index etc. Entropy measures the uncertainty of a variable.

E(S) =
c∑

i=1

−pilog2pi (2.1)

It takes the probability of an element(pi) and calculates for its randomness and for
every element it does the same. The summation of all the calculation is ultimately
the Entropy. It increases if the randomness increases.

6

Information Gain shows the difference between the given data and gained infor-
mation.

IG(Y,X) = E(Y)− E(Y |X) (2.2)

It is the difference between entropy of data portion which is given(Y) and entropy
of attribute given the data portion(Y |X).
Gini index is used in CART algorithm. It measures the impurity of data elements.

Gini = 1−
c∑

i=1

(pi)
2 (2.3)

It is calculated by taking the sum of squared probabilities of every class or element(pi)
and then subtract that by one.

7

Chapter 3

Database and Experimental Setup

3.1 Dataset description

The dataset that has been used for our project is the Microsoft Malware Prediction
Dataset that has been used in the Microsoft Malware Prediction Competition posted
on Kaggle this year. The goal of the competition was to predict the probability of a
Windows machine being infected by various types of malware, based on the different
properties of the machine, so that infected machines can be identified quickly and
be cured in time [18].
The size of the dataset is massive, with the training dataset named ‘train.csv’ con-
taining 9 million rows, and the testing dataset named ‘test.csv’ containing 8 million
rows. There are 82 features contained in the dataset, with most being categori-
cal, of which 23 are numerically encoded to protect the privacy of the information
contained in the dataset. The variable type pie chart is given in Table 3.1 below.

Feature Unique values
Percentage of
missing values

Percentage of
values in the biggest category

Type

28 PuaMode 2 99.974119 99.974119 category
41 Census ProcessorClass 3 99.589407 99.589407 category
8 DefaultBrowsersIdentifier 1730 95.141637 95.141637 float16
68 Census IsFlightingInternal 2 83.04403 83.04403 float16
52 Census InternalBatteryType 78 71.046809 71.046809 category
71 Census ThresholdOptIn 2 63.524472 63.524472 float16
75 Census IsWIMBootEnabled 2 63.439038 63.439038 float16
31 SmartScreen 21 35.610795 48.379658 category
15 OrganizationIdentifier 49 30.841487 47.037662 float16
29 SMode 2 6.027686 93.928812 float16
14 CityIdentifier 107366 3.647477 3.647477 float32
80 Wdft IsGamer 2 3.401352 69.205344 float16
81 Wdft RegionIdentifier 15 3.401352 20.177195 float16
53 Census InternalBatteryNumberOfCharges 41087 3.012448 56.643094 float32
72 Census FirmwareManufacturerIdentifier 712 2.054109 30.253692 float16
69 Census IsFlightsDisabled 2 1.799286 98.199728 float16
73 Census FirmwareVersionIdentifier 50494 1.794915 1.794915 float32
37 Census OEMModelIdentifier 175365 1.145919 3.416271 float32
36 Census OEMNameIdentifier 2564 1.070203 14.428946 float16
32 Firewall 2 1.023933 96.856251 float16
46 Census TotalPhysicalRAM 3446 0.902686 45.894971 float32
79 Census IsAlwaysOnAlwaysConnectedCapable 2 0.799676 93.50432 float16
62 Census OSInstallLanguageIdentifier 39 0.673475 35.636026 float16
30 IeVerIdentifier 303 0.660137 43.55601 float16

Table 3.1: Feature Table for the Dataset

8

3.1.1 Data Preprocessing

The dataset contained some columns that had mostly missing values, and these
columns were dropped. There were 26 columns that had mostly one category in it,
as in, 90 percent of it was just one category. These columns were also dropped and
excluded from training and testing. The use of dtypes resulted in the reduction in
size of data loaded. This was done by converting a certain type of data into a data
type of smaller size [19].
For the Kernels with LGBM, frequency encoding was required to fit the database
with the gradient boosting algorithm. Frequency encoding was done for variables
with large cardinality, where encoding was done efficiently with categories being
ranked with respect to their frequency in the dataset. After that, the encoded
variables were considered as numerical during experimentation.

3.1.2 Feature Importances

Here are some Graphs and Charts displaying which features had the most impor-
tance in the construction of the LGBM boosting framework model used in our exper-
imentation. Figure 3.1 shows that the most important features when constructing
the gradient boosting model are ‘Census OSVersion’, ’SmartScreen’, ‘OsBuildLab’,
‘AppVersion’, and ‘EngineVersion’.

Figure 3.1: LightGBM Feature Importance Chart

3.1.3 Chi-squared Test

A chi-squared test was used to test the relationship between different, independent
categorical variables. The purpose of the test is to see if the different categorical
values in the dataset are independent of each other, as in, they are mutually exclu-
sive. This is done to ensure a well done goodness of fit test, which shows how well
the distribution of the columns in the dataset is. Figure 3.2 shows the Crosstab
for ’OsBuild’, ’HasDetections’, ’Census OSVersion’, ’ProductName’, Figure 3.3 dis-
plays the Crosstab for ’Census OSVersion’, ’SmartScreen’, ’HasDetections’, Fig-
ure 3.4 outputs the Crosstab for ‘’OsVer’, ’Platform’, ’Processor’, ’HasDetections’,

9

and Figure 3.5 exhibits the Crosstab for ’Census ProcessorClass’, ’HasDetections’,
’SmartScreen’, ’ProductName’.

Figure 3.2: Crosstab for ’OsBuild’, ’HasDetections’, ’Census OSVersion’, ’Product-
Name’

Figure 3.3: Crosstab for ’Census OSVersion’, ’SmartScreen’, ’HasDetections’

10

Figure 3.4: Crosstab for ’OsVer’, ’Platform’, ’Processor’, ’HasDetections’

Figure 3.5: Crosstab for ’Census ProcessorClass’, ’HasDetections’, ’SmartScreen’,
’ProductName’

3.1.4 Correlation Heatmap

A correlation heat map is based on data analysis which uses colors by showing a
bar graph uses width and height for a data visualization tool. Showing attribute to
attribute relationship among the attributes which we have given as inputs. Validity
of the process is 0 to 1 which means it partially good. If it crosses more than 1
or less than 0 then it should be rechecked the whole data if there is any wrong or
not otherwise no relation is depending between them. We have used heatmap on
the Microsoft Malware Prediction Training Database containing information of 9
million machines.

11

Figure 3.6: Numerical Columns Correlation Heatmap

3.2 Model description

Our experimentation requires the use of a training dataset, where the information
from it is used to train the model. The trained model is then used to predict the value
of ‘HasDetections’ in the test dataset. The metric we are going to use to determine
the best performing model is the Area Under the ROC Curve (AUC) score, which
calculates the area under the ROC Curve between the predicted probability values
and observed values.
We start experimentation with Exploratory Data Analysis, from where we extract
graphs and charts displaying many characteristics of the dataset. Then feature
encoding is done to prepare the dataset for training. After that, the training dataset
is used to train the model. Testing is done after that, from which we obtain results
for the experiment. The work-plan flowchart is displayed below in Figure 3.7.

12

Figure 3.7: Fowchart Displaying the Workplan

13

Chapter 4

Experimentation

4.1 Experimental Setup

Our experimental setup consisted of a Desktop fitted with a 7th generation Intel
Core i7, powerful enough to handle the large amount of data that was to be pro-
cessed during our experimentation. All our work was done on Jupyter Notebook,
with the use of Python 3. Most of the basic data science tools and extensions such
as pandas, seaborn, sklearn were imported during experimentation. Running Light-
GBM required installing the LightGBM module via pip installation. Creating a
neural network required installing Tensorflow and Keras.

4.2 Malware Prediction Using LGBM with K-Fold

Cross Validation

We have used LightGBM on the Microsoft Malware Prediction Competition dataset
so that it can predict if a machine is going to be affected by malware in the future.
This is done by identifying the properties in the machine that correlate to the
probability of a machine being hit by malware.
The results of our implementation is further improved with the usage of K-Fold
Cross Validation. Using the K-Fold Cross Validation technique, the algorithm is
run in multiple folds, where inside each fold, the algorithm is run multiple hundred
times, from which the most accurate Area Under the Curve (AUC) score is taken.
In our code, we have set it so that it stops for each iteration when the AUC score
has not improved in 200 consecutive rounds.
We have set 5 folds for our implementation, which means that the algorithm would
be run over five iterations. In our implementation, each iteration had over 700
rounds of the algorithm running. The best validation AUC score was taken from
each of the five rounds and the scores were averaged. The resulting CV Score was
0.73232. The kernel took only 2 hours approximately to run.The work flow diagram
is displayed in Figure 4.1.

14

Figure 4.1: Workflow of LGBM experimentation

4.3 Malware Prediction Using LGBM and a Base-

line Model with Sparse Matrix

LightGBM was also utilised in this model, because of its low memory consumption.
It is necessary to use LGBM for memory management when working with a massive
dataset such as the Microsoft Malware Prediction Competition dataset. This helps
in saving hours of time when running the experiment on underpowered machines.
The data is converted into a sparse matrix, which can be utilised to effectively use
many models, including LightGBM, XGBoost, Random Forest, and Neural Net-
works. In this experiment, we are pairing the Sparse Matrix with an LGBM Base-
line Model. The data was also divided into small chunks of 100000 rows for memory
management purposes.
Similar to the experiment above, 5 folds were used, and in these 5 iterations, each
iteration ran for 500 rounds, with the best AUC score being recorded for each 100
rounds. In our code, we have set it so that it stops for each iteration when the AUC
score has not improved in 100 consecutive rounds. The resulting AUC score in this
experiment was 0.739256. The kernel took 2.5 hours to run. The work flow diagram
is displayed in Figure 4.2.

15

Figure 4.2: Workflow of LGBM with Sparse Matrix experimentation

4.4 Malware Prediction using a Decision Tree Clas-

sifier

The general use of decision tree algorithm is to make a training model to predict
the values using training data. We applied a decision tree classifier algorithm to
create the training model and predict the values of HasDetection and finding the
AUC score using K-fold cross validation. However, In the dataset of microsoft mal-
ware competition could not be used directly for the algorithm, which is why we had
to modify the dataset and create modified test and train dataset. We used scikit
learn which needed the categories to be represented by numbers. So, the data were
converted to values by finding the decision rate of every category and determining
how bigger or smaller they are to a specific level.
After the dataset is converted to a suitable form for decision tree algorithm which
contains integer or floating point numbers , decision tree algorithm after pre pro-
cessing the training dataset. After fine tuning the required parameter the algorithm
was used using 4/5 as the training data and 1/5 for test data using k-fold cross
validation. After training ROC result was checked and the best sample was taken
to find the best result. The AUC score found by applying this method was 0.63923
which indicates the score was average. The kernel is also very memory intensive,
and required 8 hours to run. The work flow diagram is displayed in Figure 4.3.

16

Figure 4.3: Workflow of Decision Tree experimentation

4.5 Malware Prediction using Neural Network

We applied Neural Network to our model using tensorflow backend to build and train
model. The model was trained into 20 parts and after each iteration AUC score was
taken and the best AUC score was stored. For prediction testing was done by parts
by loading 2000000 rows in each iteration. This algorithm resulted in AUC score
of 7.028363472706 which is a fair score however massive usage of memory and time
consummation making it not so efficient algorithm for prediction. Time taken to
run this kernel was approximately 4 hours. The work flow diagram is displayed in
Figure 4.4.

Figure 4.4: Workflow of Neural Network experimentation

17

Chapter 5

Result Analysis

5.1 Metrics used to determine result

The AUC score is an indicator of the performance of models, and is the perfect
metric to base our observations on. AUC Scores below 0.5 are considered to be
bad, and scores between 0.5 and 0.7 are considered to be average. Scores of 0.7 and
above are considered to be good scores [20]. We are using it as the defining metric
for this experiment, as it is the metric used by Microsoft Corporation in its data
competitions pertaining to Malware Prediction.

(a) Great Score (b) Very Good Score

(c) Good Score (d) Bad Score

Figure 5.1: Visualisation of AUC Scores

The figures in 5.1 shows how AUC is calculated[20]. Green curve indicates True Pos-
itive(TP)where the Red curve indicates False positive(FP). Area under threshold is
False Negative on the left and false positive on the right. In fig (a) False positive
and negative area is so low that it does a good job determining the prediction hence
it has a good AUC score of 0.9. In fig (b) it is slightly worse than before but still
does a good job to find the prediction making the AUC score 0.8. Similarly, the
next figure gives less accurate result and finally in fig (d) a lot of area is under the
threshold so it does a poor job on predicting as the FP and FN is high hence a poor
AUC score of 0.5.

18

The AUC-ROC curve visualise the performance for all threshold values. It is plotted
using the value of True Positive Rate(TPR) and False Positive Rate(FPR). TPR
is simply the sensitivity which is division True Positive by addition of True Pos-
itive and False Negative. FPR is the value which for which specificity is needed.
It is gained by division of False Positive by summation on False Positive and True
Negative. By subtracting it from 1 we get FPR.

Figure 5.2: Sample AUC-ROC Curve

In Fig 5.2 we can see a sample AUC-ROC curve where Sensitivity or TPR is plotted
on the Y-axis and FPR is plotted on the X-axis.

In the table listed below are the AUC Scores of each of the experiments that we
have run during our research.

Experiment Title AUC Score
Malware Prediction Using LGBM with K-Fold Cross Validation 0.73232

Malware Prediction Using LGBM and a Baseline Model with Sparse Matrix 0.73926
Malware Prediction using a Decision Tree Classifier 0.63923

Malware Prediction using Neural Network 0.70284

Table 5.1: AUC Score Table

Experiment Title Time Taken (approx)
Malware Prediction Using LGBM with K-Fold Cross Validation 2 hrs

Malware Prediction Using LGBM and a Baseline Model with Sparse Matrix 2.5 hrs
Malware Prediction using a Decision Tree Classifier 8 hrs

Malware Prediction using Neural Network 4 hrs

Table 5.2: Table of Time Taken to Run Experimentation

19

5.2 Comparative Analysis

During experimentation, we faced huge difficulties with the sheer size of the dataset,
which resulted in very large runtimes for the kernels. The use of LightGBM allevi-
ated this problem, using its gradient boosting capabilities to speed up the runtime
significantly. As can be seen on the AUC Score table, the kernels where LGBM was
used clearly had a higher score, which shows that the use of LightGBM resulted
in a higher Area under the ROC Curve between the predicted probability and ac-
tual probability. This means that LGBM had a higher accuracy compared to both
Decision Tree Classifiers and Neural Networks. The kernel which utilised Neural
Networks also provided a satisfactory AUC Score of above 0.7 but at a cost of a
higher runtime, which makes the process less efficient. The Decision Tree Classifier
performed the worst in both AUC Score, and runtime, as it had a very average AUC
Score of .63923, and also required more than 8 hours to run the complete kernel.
The LGBM kernel where the model was fitted into a Sparse Matrix performed bet-
ter than the one where LGBM was paired with K-Fold Cross Validation. All in all,
when it comes to finding out Malware Infection Rates in machines, the experiment
where we had LightGBM fitted into a Sparse Matrix performed the best out of all
the experiments.

20

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In our research, we conducted four experiments with the use of three different al-
gorithms - LightGBM, Decision Tree Classifier, and Neural Networks, along with
Cross Validation techniques on the dataset we collected from the Microsoft Malware
Prediction Dataset. Prior to doing the experimentation, Exploratory Data Analysis
was done on the dataset, where we discovered Feature Importances, compared be-
tween different independent categorical variables using Chi-squared test, and plotted
a Numerical Columns Correlation Heatmap for the Dataset. After that, the algo-
rithms were applied on the dataset during experimentation. We applied the Area
Under the ROC Curve (AUC) Score as the defining metric for our experimentation.
After analysis of the results of all the experiments, LightGBM fitted into a Sparse
Matrix provided the best results, as it obtained the highest AUC Score, and also had
great efficiency, taking a comparatively low amount of time to run. This shows the
viability of LightGBM as the leading Gradient Boosting algorithm in the prediction
of malware infection rates in machines. It has great potential to be implemented
in future Malware Prediction and Protection systems, which would result in more
foolproof protection from malicious cyberattacks, and billions of dollars in savings
for large corporations and small businesses worldwide.

6.2 Future Work

The main objective of our research is to discover the best algorithm for predicting
malware infection rates in machines. We have used both traditional algorithms like
the Decision Tree Classifier, and Neural Networks, as well as a more modern gradient
boosting model in LightGBM. We plan on doing more experimentation using a
rival gradient boosting algorithm called XGBoost, and compare it with the LGBM
module. We are also eagerly awaiting for the release of another comprehensive
dataset like the one we used from Microsoft Corporation, which till date is the most
detailed dataset pertaining to our topic presently available on the internet. This
way we could further cement our hypothesis, and assist in the global fight against
Cybercrime.

21

Bibliography

[1] Malware, May 2019. [Online]. Available: https://www.veracode.com/security/
malware.

[2] What are malware, viruses, spyware, and cookies, and what differentiates them
?: Symantec connect. [Online]. Available: https : / / www . symantec . com /
connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-
differentiates-them.

[3] Cybercrimemag, Cybercrime damages $6 trillion by 2021, Dec. 2018. [Online].
Available: https://cybersecurityventures.com/hackerpocalypse- cybercrime-
report-2016/.

[4] G. Burton, Total it shut down at lincolnshire county council over zero-day
attack: Computing, May 2017. [Online]. Available: https://www.computing.
co.uk/ctg/news/2443531/total-it-shut-down-at-lincolnshire-county-council-
over-zero-day-attack.

[5] D. Gavriluţ, M. Cimpoeşu, D. Anton, and L. Ciortuz, “Malware detection
using machine learning”, in 2009 International Multiconference on Computer
Science and Information Technology, IEEE, 2009, pp. 735–741.

[6] M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction using
recurrent neural networks”, computers & security, vol. 77, pp. 578–594, 2018.

[7] M. Baset, “Machine learning for malware detection”, PhD thesis, MSc. Dis-
sertation, School of Mathematical and Computer Sciences, Heriot-Watt . . .,
2016.

[8] M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park, “Flow-
based malware detection using convolutional neural network”, in 2018 Interna-
tional Conference on Information Networking (ICOIN), IEEE, 2018, pp. 910–
913.

[9] C. Kang, N. Park, B. A. Prakash, E. Serra, and V. Subrahmanian, “Ensemble
models for data-driven prediction of malware infections”, in Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining, ACM,
2016, pp. 583–592.

[10] Features. [Online]. Available: https :// lightgbm.readthedocs . io/en/ latest/
Features.html.

[11] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree”, in Advances in
Neural Information Processing Systems, 2017, pp. 3146–3154.

22

https://www.veracode.com/security/malware
https://www.veracode.com/security/malware
https://www.symantec.com/connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-differentiates-them
https://www.symantec.com/connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-differentiates-them
https://www.symantec.com/connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-differentiates-them
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.computing.co.uk/ctg/news/2443531/total-it-shut-down-at-lincolnshire-county-council-over-zero-day-attack
https://www.computing.co.uk/ctg/news/2443531/total-it-shut-down-at-lincolnshire-county-council-over-zero-day-attack
https://www.computing.co.uk/ctg/news/2443531/total-it-shut-down-at-lincolnshire-county-council-over-zero-day-attack
https://lightgbm.readthedocs.io/en/latest/Features.html
https://lightgbm.readthedocs.io/en/latest/Features.html

[12] R. E. Uhrig, “Introduction to artificial neural networks”, in Proceedings of
IECON’95-21st Annual Conference on IEEE Industrial Electronics, IEEE,
vol. 1, 1995, pp. 33–37.

[13] C. Nicholson, A beginner’s guide to neural networks and deep learning. [On-
line]. Available: https://skymind.ai/wiki/neural-network.

[14] A. Navada, A. N. Ansari, S. Patil, and B. A. Sonkamble, “Overview of use
of decision tree algorithms in machine learning”, in 2011 IEEE control and
system graduate research colloquium, IEEE, 2011, pp. 37–42.

[15] B. Gupta, A. Rawat, A. Jain, A. Arora, and N. Dhami, “Analysis of vari-
ous decision tree algorithms for classification in data mining”, International
Journal of Computer Applications, vol. 163, no. 8, pp. 15–19, 2017.

[16] J. Quinlan, Machine learning: An artificial intelligence approach: Michalski,
r. s., carbonell, jg, mitchell, t. m., eds, 1983.

[17] Decision tree tutorials notes: Machine learning. [Online]. Available: https :
/ / www . hackerearth . com / practice / machine - learning / machine - learning -
algorithms/ml-decision-tree/tutorial.

[18] Microsoft malware prediction. [Online]. Available: https://www.kaggle.com/
c/microsoft-malware-prediction.

[19] J. Dietle, ”microsoft malware prediction” and its 9 million machines, Mar.
2019. [Online]. Available: https://towardsdatascience.com/microsoft-malware-
prediction-and-its-9-million-machines-22e0fe8c80c8.

[20] J. D’Souza, Let’s learn about auc roc curve!, Mar. 2018. [Online]. Available:
https://medium.com/greyatom/lets-learn-about-auc-roc-curve-4a94b4d88152.

23

https://skymind.ai/wiki/neural-network
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial
https://www.kaggle.com/c/microsoft-malware-prediction
https://www.kaggle.com/c/microsoft-malware-prediction
https://towardsdatascience.com/microsoft-malware-prediction-and-its-9-million-machines-22e0fe8c80c8
https://towardsdatascience.com/microsoft-malware-prediction-and-its-9-million-machines-22e0fe8c80c8
https://medium.com/greyatom/lets-learn-about-auc-roc-curve-4a94b4d88152

Appendix

Malware Prediction Using LGBM with K-Fold Cross

Validation

f o l d s = KFold (n s p l i t s =5, s h u f f l e=True , random state =15)
oo f = np . z e r o s (l en (t r a i n))
c a t e g o r i c a l c o l u m n s = [c f o r c in c a t e g o r i c a l c o l u m n s i f c not in

[’ Mach ine Ident i f i e r ’]]
f e a t u r e s = [c f o r c in t r a i n . columns i f c not in

[’ Mach ine Ident i f i e r ’]]
p r e d i c t i o n s = np . z e r o s (l en (t e s t))
s t a r t = time . time ()
f e a t u r e i m p o r t a n c e d f = pd . DataFrame ()
s t a r t t i m e= time . time ()
s co r e = [0 f o r in range (f o l d s . n s p l i t s)]

f o r f o l d , (t rn idx , v a l i d x) in
enumerate (f o l d s . s p l i t (t r a i n . values , t a r g e t . va lue s)) :

p r i n t (” f o l d n {}” . format (f o l d))
t rn data = lgb . Dataset (t r a i n . i l o c [t r n i d x] [f e a t u r e s] ,

l a b e l=t a r g e t . i l o c [t r n i d x] ,
c a t e g o r i c a l f e a t u r e = c a t e g o r i c a l c o l u m n s

)
va l da ta = lgb . Dataset (t r a i n . i l o c [v a l i d x] [f e a t u r e s] ,

l a b e l=t a r g e t . i l o c [v a l i d x] ,
c a t e g o r i c a l f e a t u r e = c a t e g o r i c a l c o l u m n s

)

num round = 10000
c l f = lgb . t r a i n (param ,

trn data ,
num round ,
v a l i d s e t s = [trn data , va l da ta] ,
v e r b o s e e v a l =100 ,
e a r l y s t opp ing ro und s = 200)

oo f [v a l i d x] = c l f . p r e d i c t (t r a i n . i l o c [v a l i d x] [f e a t u r e s] ,
num ite rat ion=c l f . b e s t i t e r a t i o n)

24

f o l d i m p o r t a n c e d f = pd . DataFrame ()
f o l d i m p o r t a n c e d f [” f e a t u r e ”] = f e a t u r e s
f o l d i m p o r t a n c e d f [” importance ”] =
c l f . f e a tu r e impor tance (importance type =’gain ’)
f o l d i m p o r t a n c e d f [” f o l d ”] = f o l d + 1
f e a t u r e i m p o r t a n c e d f =
pd . concat ([f e a tu r e impor tance d f , f o l d i m p o r t a n c e d f] , a x i s =0)

we perform p r e d i c t i o n s by chunks
i n i t i a l i d x = 0
chunk s i z e = 1000000
cur r en t pred = np . z e r o s (l en (t e s t))
whi l e i n i t i a l i d x < t e s t . shape [0] :

f i n a l i d x = min (i n i t i a l i d x + chunk s ize , t e s t . shape [0])
idx = range (i n i t i a l i d x , f i n a l i d x)
cur r en t pred [idx] = c l f . p r e d i c t (t e s t . i l o c [idx] [f e a t u r e s] ,
num ite rat ion=c l f . b e s t i t e r a t i o n)
i n i t i a l i d x = f i n a l i d x

p r e d i c t i o n s += cur r en t pred / min (f o l d s . n s p l i t s , max i ter)

p r i n t (” time e lapsed :
{ :<5.2} s ” . format ((time . time () − s t a r t t i m e) / 3600))
s co r e [f o l d] = metr i c s . r o c a u c s c o r e (t a r g e t . i l o c [v a l i d x] ,
oo f [v a l i d x])
i f f o l d == max iter − 1 : break

i f (f o l d s . n s p l i t s == max iter) :
p r i n t (”CV sco r e : { :<8.5 f }” . format (met r i c s . r o c a u c s c o r e

(target , oo f)))
e l s e :

p r i n t (”CV sco r e : { :<8.5 f }” . format (sum(s co r e) / max iter))

Malware Prediction Using LGBM and a Baseline

Model with Sparse Matrix

pr in t (’\nLightGBM\n ’)

f o r t r a in index , t e s t i n d e x in s k f . s p l i t (t r a i n i d s , y t r a i n) :

p r i n t (’ Fold {}\n ’ . format (counter + 1))

t r a i n = load npz (’ t r a i n . npz ’)
X f i t = vstack ([t r a i n [t r a i n i n d e x [i ∗ m: (i +1)∗ m]]

25

f o r i in range (t r a i n i n d e x . shape [0] // m + 1)])
X val = vstack ([t r a i n [t e s t i n d e x [i ∗ m: (i +1)∗ m]]
f o r i in range (t e s t i n d e x . shape [0] // m + 1)])
X f i t , X val = cs r mat r i x (X f i t , dtype=’ f l oa t32 ’) ,
c s r mat r i x (X val , dtype=’ f l oa t32 ’)
y f i t , y va l = y t r a i n [t r a i n i n d e x] , y t r a i n [t e s t i n d e x]

de l t r a i n
gc . c o l l e c t ()

lgb model = lgb . LGBMClassif ier (max depth=−1,
n e s t imato r s =30000 ,
l e a r n i n g r a t e =0.05 ,
num leaves =2∗∗12−1,
co l s amp l e byt r e e =0.28 ,
o b j e c t i v e =’binary ’ ,
n j obs=−1)

lgb model . f i t (X f i t , y f i t , e v a l m e t r i c =’auc ’ ,
e v a l s e t =[(X val , y va l)] ,
verbose =100 , e a r l y s t opp ing ro und s =100)

l g b t r a i n r e s u l t [t e s t i n d e x] += lgb model . p r ed i c t p roba (X val) [: , 1]

de l X f i t , X val , y f i t , y va l , t r a in index , t e s t i n d e x
gc . c o l l e c t ()

t e s t = load npz (’ t e s t . npz ’)
t e s t = cs r mat r i x (t e s t , dtype=’ f l oa t32 ’)
l g b t e s t r e s u l t += lgb model . p r ed i c t p roba (t e s t) [: , 1]
counter += 1

de l t e s t
gc . c o l l e c t ()

p r i n t (’\nLigthGBM VAL AUC Score :
{} ’ . format (r o c a u c s c o r e (y t ra in , l g b t r a i n r e s u l t)))

Malware Prediction Using Decision Tree

de f f i n e t u n e d e c i s i o n t r e e (t r a i n i n g s e t , k f o l d) :
r e s u l t s = d i c t ()

26

avg grade = d i c t ()
s td grade = d i c t ()
min grade = d i c t ()
max grade = d i c t ()
b e s t s a m p l e l e a f = 0
bes t g rade = 0 .5
f o r min samp l e s l ea f in [200 , 400 , 500 , 600 , 800 , 1 0 0 0] :

f e a t u r e s = [c f o r c in t r a i n i n g s e t . columns i f c not in
[’ Mach ine Ident i f i e r ’ , ’ HasDetections ’]]

dt = D e c i s i o n T r e e C l a s s i f i e r (m in samp l e s l ea f=min samp l e s l ea f)
r e s u l t s [m in samp l e s l ea f] = []

Train and t e s t s the data on k f o l d s p l i t s
and s t o r e the r e s u l t s
f o r t r a i n i n d i c e s , t e s t i n d i c e s in k f o l d . s p l i t (t r a i n i n g s e t) :

p r i n t (’ S ta r t f i t t i n g ’)
dt . f i t (t r a i n i n g s e t [f e a t u r e s] . i l o c [t r a i n i n d i c e s] ,
t r a i n i n g s e t [’ HasDetections ’] . i l o c [t r a i n i n d i c e s])
p r i n t (’End f i t t i n g − Star t p r ed i c t ing ’)
prob = dt . p r ed i c t p roba (t r a i n i n g s e t [f e a t u r e s] . i l o c
[t e s t i n d i c e s])
fpr , tpr , t h r e s h o l d s =
sk l e a rn . met r i c s . r o c cu rve (t r a i n i n g s e t
[’ HasDetections ’] . i l o c [t e s t i n d i c e s] , prob [: , 1])
r e s u l t s [m in samp l e s l ea f] . append
(sk l e a rn . met r i c s . auc (fpr , tpr))
p r i n t (’End pred i c t i ng ’)

grade = np . mean(r e s u l t s [m in samp l e s l ea f])
i f grade > bes t g rade :

be s t g rade = grade
b e s t s a m p l e l e a f = min samp l e s l ea f

avg grade [m in samp l e s l ea f] = grade
s td grade [m in samp l e s l ea f] = np . std (r e s u l t s [m in samp l e s l ea f])
min grade [m in samp l e s l ea f] = np . min (r e s u l t s [m in samp l e s l ea f])
max grade [m in samp l e s l ea f] = np . max(r e s u l t s [m in samp l e s l ea f])

Now p lo t the r e s u l t .
n l e a f s = avg grade . keys ()
avgs = [avg grade [l] f o r l in n l e a f s]
s td s = [s td grade [l] f o r l in n l e a f s]
p l t . f i g u r e ()
p l t . e r r o rba r (n l e a f s , avgs , s td s)
p l t . t i t l e (’ d e c i s i o n t r e e c l a s s i f i e r k f o l d r e s u l t s ’)
p l t . x l a b e l (’ number o f minimum sample in a l e a f ’)
p l t . y l a b e l (’ROC curve area ’)
p l t . show ()

27

r e turn D e c i s i o n T r e e C l a s s i f i e r (m in samp l e s l ea f=b e s t s a m p l e l e a f)

Def ine d e c i s i o n t r e e p r e d i c t o r and f i n e tune i t s v a r i a b l e s
k f o l d = KFold (n s p l i t s =5, s h u f f l e=True)
c l a s s i f i e r = f i n e t u n e d e c i s i o n t r e e (t r a i n i n g s e t , k f o l d)

Malware Prediction Using Neural Networks

from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
from ten so r f l ow . keras . models import Sequent i a l
from ten so r f l ow . keras . l a y e r s import Dense , Dropout ,

BatchNormalization ,
Act ivat ion

from ten so r f l ow . keras . c a l l b a c k s import LearningRateScheduler
from ten so r f l ow . keras . op t im i z e r s import Adam

#SPLIT TRAIN AND VALIDATION SET
X train , X val , Y train , Y val = t r a i n t e s t s p l i t (

d f t r a i n [c o l s] , d f t r a i n [’ HasDetections ’] , t e s t s i z e = 0 . 5)

BUILD MODEL
model = Sequent i a l ()
model . add (Dense (100 , input dim=len (c o l s)))
model . add (Dropout (0 . 4))
model . add (BatchNormal izat ion ())
model . add (Act ivat ion (’ re lu ’))
model . add (Dense (100))
model . add (Dropout (0 . 4))
model . add (BatchNormal izat ion ())
model . add (Act ivat ion (’ re lu ’))
model . add (Dense (1 , a c t i v a t i o n =’ sigmoid ’))
model . compi le (opt imize r=Adam(l r =0.01) ,

l o s s =”b ina ry c ro s s en t r opy ” , met r i c s =[” accuracy ”])
annea l e r = LearningRateScheduler (lambda x : 1e−2 ∗ 0 .95 ∗∗ x)

TRAIN MODEL
model . f i t (X train , Y train , b a t c h s i z e =32, epochs = 20 ,
c a l l b a c k s =[annealer , printAUC (X train , Y tra in)] ,
v a l i d a t i o n d a t a = (X val , Y val) , verbose =2)

28

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Overview
	Motivation
	Problem Statement
	Objective
	Thesis Structure

	Background
	Literature Review
	Algorithms
	LightGBM
	Neural Network
	Decision Tree Learning

	Database and Experimental Setup
	Dataset description
	Data Preprocessing
	Feature Importances
	Chi-squared Test
	Correlation Heatmap

	Model description

	Experimentation
	Experimental Setup
	Malware Prediction Using LGBM with K-Fold Cross Validation
	Malware Prediction Using LGBM and a Baseline Model with Sparse Matrix
	Malware Prediction using a Decision Tree Classifier
	Malware Prediction using Neural Network

	Result Analysis
	Metrics used to determine result
	Comparative Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix

