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Abstract

Plants are an integral part of our nature. The identification and classification of
plant leaves has always been a matter of interest for the botanists as well as the
laymen. Classification of plant leaves will enable us to know the heritage and details
of plants at a glance avoiding the duplication of popular names. This recognition
system will be beneficial to different sectors of our society including botanic research,
medical field, the study of plant taxonomy etc. As leaves carry a lot of information
about plant species, extraction of feature is a better way to classify the leaves. In this
paper, we have proposed Convolutional Neural Network (CNN) and analyzed plant
leaves with different models. We have collected the dataset from Kaggle. By pre-
processing the images and extracting the features we have trained our pre-trained
model. In our research, we have chosen three models of CNN which are InceptionV3,
VGG16 and MobileNet. MobileNet achieved the highest accuracy of 69.47% with a
mean absolute error of 30.26, while VGG16 achieved the lowest accuracy of 57.05%
with a mean absolute error of 42.95 and 66.13% accuracy for Inception V3.

Keywords: Convolutional neural network; Pre-processing; MobileNet; VGG16;
Inception V3

iii



Acknowledgement

First and foremost, we would like to thank God Almighty for giving us the ability and
opportunity to undertake the thesis and to complete it. This achievement would not
have been impossible without his blessings. After that, we want to thank and express
our gratitude toward our supervisor Dr. Amitabha Chakrabarty for his constant
guidance and support as well as providing us necessary information regarding our
work. His valuable feedback helped us to improve ourselves and complete the thesis
with our hard work. We also want to thank BRAC University IT Department for
allocating us a laboratory where we have done all of our works. We are also very
grateful to our family and friends who supported us directly and indirectly in our
entire thesis period. Sometimes, we used to feel less confident because of facing
difficulties in our work. Then, our family members and friends gave the mental
support and encouraged us a lot to stick with the work and complete it in time.
We would like to acknowledge the assistance that we found a huge number of online
resources specially the work of our fellow researches. Finally, we are grateful to
BRAC University to give us the opportunity to do such research that helped us to
enhance our knowledge.

iv



Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iii

Dedication iv

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 3
2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 3
2.2 How CNN works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Input layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 ReLu Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . 7
2.2.6 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Workflow and Feature Extraction 12
3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Data-set Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



3.3.1 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Image pre-processing with Keras . . . . . . . . . . . . . . . . 15

3.4 Compiling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 inactivating fully connected layer . . . . . . . . . . . . . . . . 17
3.4.2 Selection of weight . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Selection of pooling layer . . . . . . . . . . . . . . . . . . . . . 17
3.4.4 Dropout selection . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.5 Activation function . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Applying the prepared model for testing . . . . . . . . . . . . . . . . 19

4 Implementation and result 20
4.1 Inception V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Concept of Inception . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Training our dataset with Inception V3 . . . . . . . . . . . . . 21
4.1.3 Result of Inception V3 . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Mobile Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Idea of MobileNet . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Training our dataset with MobileNet . . . . . . . . . . . . . . 23
4.2.3 Result of MobileNet . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 VGG Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Training our dataset with VGG16 . . . . . . . . . . . . . . . . 26
4.3.3 Result of VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Comparison of CNN Models . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusion 29
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Future plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 33

vi



List of Figures

2.1 CNN architecture [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Input layer [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Convolutional layer [9] . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 ReLu layer [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Pooling layer [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Converted matrix [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Fully connected layer [9] . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Output layer [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Image Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Default size of an image from our dataset . . . . . . . . . . . . . . . . 16
3.4 Reshaped image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Dropout of CNN [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Inception V1 vs Inception V3 [33] . . . . . . . . . . . . . . . . . . . . 20
4.2 Inception v3 training at 20 epochs 64 steps . . . . . . . . . . . . . . . 21
4.3 Inception v3 training at 20 epochs 128 steps . . . . . . . . . . . . . . 22
4.4 Standard Convolution Filter and MobileNet Convolution Filter [34] . 23
4.5 MobileNet training at 20 epochs 64 steps . . . . . . . . . . . . . . . . 24
4.6 MobileNet training at 20 epochs 128 steps . . . . . . . . . . . . . . . 24
4.7 VGG16 model architecture [36] . . . . . . . . . . . . . . . . . . . . . 25
4.8 VGG16 training at 20 epochs 64 steps . . . . . . . . . . . . . . . . . 26
4.9 VGG16 training at 20 epochs 128 steps . . . . . . . . . . . . . . . . . 26
4.10 Accuracy rate of the pre-trained models . . . . . . . . . . . . . . . . 28
4.11 Value loss of the pre-trained models . . . . . . . . . . . . . . . . . . . 28

vii



List of Tables

4.1 Inception V3 result with 20 epochs . . . . . . . . . . . . . . . . . . . 22
4.2 MobileNet result with 20 epochs . . . . . . . . . . . . . . . . . . . . . 25
4.3 VGG16 result with 20 epochs . . . . . . . . . . . . . . . . . . . . . . 27

viii



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network

CSV Comma Separated Values

ILSV RC ImageNet Large Scale Visual Recognition Competition

MAE Mean Absolute Error

NN Neural Network

ReLu Rectified Linear Units

SF Sigmoid Function

Tanh Hyperbolic Tangent Function

V GG Visual Geometry Group

ix



Chapter 1

Introduction

Plants exists everywhere around us and places where human has not stepped yet.
Most of the trees around us can be easily identified by their flowers and fruits but
identifying trees by their leaves is a complex process. A huge number of leaves from
different species are very similar in shape, pattern and arrangement. So, recogniz-
ing the diversity of leaf types and knowing the terminology for different features are
important to classify the leaves. Plants are the main source that produces all the
oxygen to the living organs. As the natural environment is reduced, there is con-
stant extinction of different plant species. There are about 400,000 species of plants
all over the world of which Botanists have identified and named 270,000 species
of plants[1]. The further research on plant is very complicated because it is not
easy for the botanists or non researcher to find out than a little fraction from the
overall number of named species. Leaf recognition is generally the specialization
of plant taxonomists. There are some methods like Cytotaxonomy, Chemotaxon-
omy, Serotaxonomy etc which are carried out only by the botanists because of its
complexity and time consuming attributes. Leaves are now classified widely by its
morphological image [2]. It is a long discussed topic on how to extract and mea-
sure leaf features that will help to make the application of pattern recognition easier.

The advancement of computer technology would be the alternative to classify plants
for the non-specialists. Scientists are continuously trying to get the leaf identity in
different ways for many years. There are many mathematical models have been
introduced to extract the morphological characteristics of leaves. As today is the
era of machine learning, scientists have also introduced some processes to sort and
identify leaves by using deep learning which is a sub-field of machine learning. Deep
learning methods are based on the algorithms inspired by the functionality of the
brain called artificial neural network. For classifying leaves, CNN is very efficient
which is a class of deep neural network and is widely used for image recognition and
classification, object detection, recognition faces etc [3]. CNN image classifications
take an input image, process it and learn the features from it. It focuses on pattern
recognition among the image of its own. As a result, if we give any image as an
input, it can recognize it accurately. There are many CNN models which have been
invented in previous years. In our research, we have used some pre-trained models
in various types of leaf image dataset to predict the class of the leaves and also
compared the accuracy rate among the models that we used.
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1.1 Motivation

In the natural ecosystem, there are hundred kinds of trees those leaves are difficult
to distinguish. There are a lot of plants which leaves have same shape, texture and
venation. Leaves those carry same types of features and characteristics, have been
sorted in same class. This classification will be beneficial to botanists in their re-
search, plant taxonomy and pharmaceutical field to use more plant leaves effectively
in their work. This leaf recognition and extraction method can be established by
using of Convolutional Neural Network (CNN). CNN helps to find patterns in an
image by its various layers. After convoluting over an image, some patterns are
found. These patterns are passed down through the neural net and then more com-
plex feature can be recognized. This property of CNN is really good at identifying
objects in image [4]. In this thesis, we are using some existing CNN models which
will help us to make a comparative analysis among all the information of the leaves
that have been obtained from the leaf images stored in our dataset.

1.2 Aims and Objectives

The main objectives of the thesis are:

• Creating a dataset from the images and using them to have training and pre-
training models.

• Predicting the class of leaves by applying different pre-trained models and
comparing the accuracy rate of the models.

• Finding out the reasons of having performance variation between the models
when applying to the same dataset.

1.3 Thesis Overview

1. Chapter 1 Refers to the introduction part where we have discussed about
our motivation to do this thesis as well as the aims and objectives that have
been followed during our work.

2. Chapter 2 shows our background study related to our work in the literature
review part.

3. Chapter 3 consists of proposed model, pre-processing and compilation of our
pre-trained models.

4. Chapter 4 contains the pre-trained models and implementation of our re-
search.

5. Chapter 5 consists of conclusion and our future work.

2



Chapter 2

Literature Review

2.1 Convolutional Neural Network

Over the last decades deep neural network has been known as the most powerful tool
and has become highly popular in the literature as it can handle huge amounts of
data. The Deep Neural Network refers to Artificial Neural Networks (ANN) having
multi layers and hidden layers which used for pattern recognition. Convolutional
Neural Network (CNN) is one of the most famous Deep Neural Networks. CNN is
an effective processing of images, a deep learning (AI), which uses both reproductive
and expressive tasks [5]. A convolution is a mathematical process that is defined by
a sign that moves through the device.

The Convolutional Neural Network deals with this concept of convolution. It is
nearly like popular neural networks. Some neurons are present which have learn-
ing weights. In Neural Network, the input layer is in left side and the neurons are
considered as the input neurons because they are inside the layer. Output layer is
in the right side. Moreover, in this situation, a neuron inside the output layer that
is called single output neuron. Since the neurons are not inputs or outputs in this
layer, the middle layer is considered as hidden layer. There are certain neurons in
each hidden layer and every neuron in each single layer is completely associated to
all neurons of the previous layer. Neuron function is totally independent and has no
connections[6]. Neural Networks actually scale the whole image which is considered
to be large. If the image size is 224×224 then neurons will have 224×224×3=150528
weights (3 is the color of RGB). In that case, CNN operates better and efficiently.
CNN removes the image’s function without modifying or losing its characteristics
and converts it into a lower dimension. CNN layers are structured in 3 dimensions
and they are width, height and depth as opposed to neural network.

3



2.2 How CNN works

CNN contains multiple layers [7]. They are:

1. Layer for Input

2. Layer for Convolution

3. Layer for ReLu

4. Layer for Pooling

5. Fully Connected Layer

6. Layer for output

Figure 2.1: CNN architecture [8]

2.2.1 Input layer

The input layer is an image with the resulting measurements of width, height, and
depth. As for an example, the input is 64× 64× 3 where the width=64, height=64
and depth=3, the depth represents RGB channels here. If the image is 224 × 224,
it needs to be converted to 50176× 1. If the input is X, all the samples looking like
X should be observed and categorized by CNN.

Figure 2.2: Input layer [9]

4



2.2.2 Convolution Layer

The first layer to remove features from an input image is Convolution. Convolution
preserves the relationship between pixels through the use of limited input data
squares to learn object functions. Each layer compares the pieces of objects and
the pieces found are called characteristics. Convolution maintains the relationship
between pixels through the use of limited input squares for learning object features.
The operation takes two inputs, for example the picture matrix and a kernel. The
output neurons connected to local regions by computation. By choosing 1 or several
features of an object and constructing one or several matrix and dot product by
using matrix of images, and finally it will give the result that is the convolution
layer after the entire procedure. If the size of the image is M ×M and the filter size
is E × E after convolution ,the equation :

(M×M)× (E × E) = (M − E + 1)× (M − E + 1) (2.1)

Figure 2.3: Convolutional layer [9]

2.2.3 ReLu Layer

The ReLU is a type of activation function and stands for rectified linear unit. It
is used mostly in neural network and efficiently in CNN. The performance of the
neural network is calculated like yes or no. The resulting values are fixed between 0
to1 or -1 to 1 etc which depends on functions.
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Figure 2.4: ReLu layer [9]

2.2.4 Pooling Layer

The block of a CNN is a pooling layer. It aims to gradually lower the representa-
tion’s spatial size, to lessen the network parameters and calculation. Each feature
map has its own pooling layer. To pooling, max pooling is the most common ap-
proach. There are no parameters but there are further hyper parameters. Filter (A)
and Stride (B) are two hyper parameters. If we have input dimension J1 ×K1 ×L1

then ,

J2 = (J1 − A)/(B + 1) (2.2)

K2 = (K1 − A)/(B + 1) (2.3)

L2 = L1 (2.4)

Where J2, K2 and L2 are the width, height and depth of output. At first the RELU
layer is converted into 4× 4 matrix which is shown below ,

6



Figure 2.5: Pooling layer [9]

The entire procedure occurs repeatedly and reduces the image data to 2× 2 matrix
that is shown below in the image.

Figure 2.6: Converted matrix [9]

2.2.5 Fully Connected Layer

Fully connected layers are an essential part of the CNN, which has proved to be
very successful in the recognition and classification of computer vision images. The
CNN procedure begins with convolution and grouping, the image is divided into
functions and independently analyzed. It takes the previous layer output, flattens
it and transforms it into a single input vector for the next stage. Fully Connected
Layer calculates class scores for the column 1 × 1 × 12 for the following picture
because there are 3 functions selected and a matrix was generated in the pooling
layer for each function. When the number of functions selected was 2, the matrix
1× 1× 8 for the same image would have been created.
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Figure 2.7: Fully connected layer [9]

2.2.6 Output layer

The convolution and pooling layer extract features and from the original images
,they decrease the number of parameters .Although , to determine the final output,
we need to apply a fully connected layer to generate an output which is equal to
the classes. The layer output contains the 1 dot programmed label. All the data
is saved and it is marked as X. it checks how many similarities when another new
image is given and then detects whether or not the image is X by providing the
data that is saved in its memory. Likewise, CNN then transforms the original pixel
image to the ultimate class scores from the original pixel values.

Figure 2.8: Output layer [9]
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2.3 Previous works

In this competitive era, many researchers have worked hard for making the classifi-
cation of leaf more efficient. Efficiency through works makes the best result where
we are expected to implement our accuracy rate better. Recognition in leaf attracts
many researchers so there are lot of papers which are associated to figure out the clas-
sification of leaf through convolutional neural networks and other processing models.

Wang Su Jeon and Sang –Yong Rhee approached a new process for classifying of leaf
by using CNN in their paper where they introduced two models for the modification
of the depth of network with the use of GoogleNet. Performance of evaluation by
each model’s techniques has been estimated by them. Although 30% of the leaf was
damaged, the classification rate was shown higher than 94% [10].Xiang He, Gang
Wang, Li Shang and Xiao Ping proposed Single Connected Layer (SCL) structure
that added with the CNN model in their paper. With the use of CNN model they
classify the leaf classification and made some improvement of the result. Moreover,
they suggested that the efficient accuracy of CNN can be improved by advanced
Single Connected Layer [11]. Krizhevsky, Sutskever and Hington had introduced a
modified deep convolutionary neural network where they applied resolution images
which is 1.2 million considered as high, in the LSVRC-2010 ImageNet competition.
They attained 37.5% and 17% accuracy by testing the data which is much better
than previous result. They collected the image where the CNN has 5 convolutionary
layers, each have and 650,000 neurons and 60 million parameters. They collected
some of them that max-pooling layers are gone together by them, and final 1000-
way softmax having three fully-connected layers. They introduced neurons which is
non-saturating and actual operative GPU application to make training faster while
operating the convolution. Moreover, they used an advanced method in recent times
and works for regularization to lessen over fitting in the layers of fully connected
which is called dropout and this is proved that it is very successful in their research
[12].

In the significant classification of image situation K. Simonyan and A. Zisserman
examined the convolutional network depth based on its accuracy rate and the ef-
fects. Their foremost involvement is a systematic assessment of accumulating the
networks of depth by generating very small (3x3) convolution filters structure in
their research. They also determined that their performances to be generalized well
to other datasets which will made the result accomplished compare to state-of -
the-art results. For further facilitation, they have made publicly accessible their
two best performing CNN models [13]. Zhang, Zou, He and Sun generated an op-
erative solution where there is no need of Stochastic Gradient Descent (SGD) in
CNN model for the result of nonlinear optimization problem. For the generally used
VGG-16 model, achieving a full-model speed-up of 4 ranges and with an ordinary
0.3% increase in the classification in ImageNet has a big approach for them where
there is just top-5 error. Their VGG-16 accelerated model also exhibits a smooth
descent of accuracy [14].

Sabri, N., Abdul Aziz, Z., Ibrahim, Z., Akmal Rasydan Bin acknowledged that
classification of leaf by using CNN is useful and more applicable for the appropriate

9



accuracy rate.Although some determined that mobile net model of CNN is capable of
precisely classifying leaf species through images .In this paper, the contrast between
the simple CNN, AlexNet and GoogleNet was made in connection with accuracy
and the time elapsed. The results of the research show that GoogLeNet succeeds
a higher accuracy rate than the other two models, which is 100% accurate through
testing the dataset. Nevertheless GoogLeNet has the highest accuracy because of
the number of layers and more in-depth learning process [15].

Xu.Y, Wang.Y, Zhang Xiang implemented a Probalistic Neural Network (PNN)
for applying a general customized algorithm for recognition of leaf with the dataset
for classifying the images. The PNN is trained by 1800 leaves to classify 32 plant
sort with an isolate accuracy beyond 90% [16]. Lee, S. H., Chan, C. S., Wilkin pro-
posed including species and organ characteristics into classification of plant training
the CNN model. They defined their architecture’s methodology and evaluated the
results which is based on a set of authentications and tests. Comparison of the VGG
network with CNN model, the results of the proposed combination architecture are
favorable but still partial [17].

Champ, Loreul, Sevajean and Joly applied Neural Network to their model and ex-
periment two classification model such as Convolutional neural network and on the
other hand biased model based on fisheries vector. Moreover they conclude that
deep neural networks outperforms fisheries vectors for classification in any task es-
pecially with a significant number of classes and when you have extensive training
data for your model [18].

Jamil, Hossain, Nordin and Awang examined that texture is the feature that re-
ally influenced the classification of leaf while shape is supposed as the key feature of
leaf classification. The identification of a single texture feature also completed the
highest identification rate which compared to color or shape identification. After
completing the model it is shown that a single texture has better color or shape
feature that succeeds an identification rate of 92% [19]. Yalcin and Razavi propose
a construction to categorize the variety from the image categorization of plant in
where CNN helps to collect it from smart agro-stations so they can generate their
process for the research. First they introduced the change of illumination and de-
blurring and then they are removed with some preprocessing steps. Then feature
of images are extracted by Convolutional Neural Network (CNN). They determined
that the construction and depth of CNN are critical points as the capability of
recognition of the architecture of neural networks are affected. Furthermore they
generated the results of CNN and then compared the result with SVM classifier of
different kernels. Their approach is based on the dataset which is collected through
project named TARBIL of a government support for which in Turkey there are 1200
agro-stations are positioned [20].

Caglayan, Guclu , Can and Petrosino identified the images of leaves with the help
of plant. They extracted the shape and color features of images by applying KNN,
SVM , Random Forest and Näıve Bayes that are used for image classification. They
test 1897 leaf images and 32 kinds of leave for their research. They found the best re-
sult from Random Forest algorithm of 96% by applying both shape and color of leaf.
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After experiment they confirmed that there is lack of good result as shape features
is classified by similar shaped leaves. By combining shape and color features, the
accuracy of classification can be improved. However they also added that reduction
of accuracy of the classification happens for seasonal changes of leaf [21].Ruberto,
C.D. and Putzu proposed a method for the identification of the leaf by using a set
of new features which integrates the features shape, color and texture. They gener-
ated the number of 138 features that to be extracted by Support Vector Model for
training the research. The approach was tested by using Flavia data set (Wu et al.,
2007) to demonstrate excellent performance in terms of 100% accuracy and speed
of processing and then removing features from an image by less than a second [22].

Qing-feng, Kun-hui, Chang-le, and Li approached for identifying plant leaf using
artificial neural network by extracting features based on shape, margin, dent ,vein
etc. First they extracted the leaf of the plant from a background image of differ-
ent objects and then constructed the hierarchical structure of image classification
of leaf. In addition, all visual features of leaf objects have been identified. They
have compiled six sorts of pictures of plants, and in every class there are 30 images.
The images were distributed into the test set and the training set with a proportion
of 6:4 respectively [23]. Tuan, L proposed a model of plant image identification
by applying Neural Network. He used background propagation for dividing into
two separate phases. Firstly, the derivative function shall be determined by weight.
For this, the error is spread back into the network at this point. Additionally, the
derivatives are used for measuring change of weight. The easiest method here is the
technique of gradient descent [24].
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Chapter 3

Workflow and Feature Extraction

3.1 Workflow

In this chapter, there is a description about our proposed model in details as well
as the steps of our work. Figure 3.1 shows how we divide our work step by step.

First of all, we have collected the data set then the next step is to divide our
data for training and testing. That is why, we split our data into train data and test
data. Our train data contains 792 image data of 99 species and the data contains 8
samples of each species. Here, our data set will be trained. Validation data contains
total 198 image data where every species has 2 samples for testing. After training
and validating it will generate data from images and on the other side, the test data
will also generate data from the test images.Finally, The generated data and the
pre-trained models we are using will go to the prepared model where it will compare
the trained data with the test data and will give the accuracy based on the analysis.

3.2 Data-set Description

We are using a secondary dataset for our work. We have collected the data set
from Kaggle [25]. The dataset is known as “Leaf Classification”. It is basically a
competition to see how people get best accuracy classifying leaves. There are two
parts of parts of these dataset, one is Image data and other is csv file. We took
only the image data to classify the leaves. The image of the leaves were converted
to binary black leaves against the white background. There are total 990 images of
leaves in our dataset and they belong to 99 different species. Every species have 10
images of leaves. We took 792 images to from the dataset to train and 198 to test.
We have used three models of CNN to test our dataset and the details will be given
about models are described in details in chapter 4.
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Figure 3.1: Proposed system
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Figure 3.2: Image Dataset
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3.3 Pre-processing

3.3.1 Image Processing

Image processing is a method of executing certain operation on an image to generate
an optimized image or to extract information from the image. It is a signal process-
ing type where an image is an input and an object or feature is an output which are
associated with the image. Respectively, many image processing techniques include
considering the image as either a signal or a matrix where typical signal processing
or matrix processing techniques is applied.

Purpose of image processing

There are several reasons behind image processing. We divide it into five groups.

1. Visualization: Non-visible objects are observed in this state.

2. Non-visible objects are observed in this state: To make an efficient
image.

3. Image reclamation: Determine the interesting picture.

4. Dimension of pattern: Various types of images are calculated.

5. Image recognition: Generate the object from an image by calculation.

Types of image processing
Image processing has two types and they are called analog image processing and dig-
ital image processing [26]. Digital image processing technique uses digital computers
for evaluating image. It is used in research and can be defined as it is subjecting
a numerical representation of an object. On the other hand, analog image pro-
cessing defines two-dimensional image and examines hard copy related things like
photographs, printout etc. For sharpening and restoration image, we use digital
image processing techniques to provide the image to the pre-trained model.

3.3.2 Image pre-processing with Keras

Image classification and recognition is a rapidly growing field in the area of machine
learning where object recognition plays as key feature of the image. Keras image
processing evaluates and develops deep learning models when we use data prepa-
ration and data augmentation with our image datasets. This generator of images
provides lots of image data with an increase of real data [27]. The images having
different resolution pixels greyscale format is used in our image dataset. Moreover,
we used the standard input of the pre-trained model of CNN in keras in where we
convert it into resolution 224×224 pixels 8 bit RGB format. Our dataset consists of
about 990 images of specimens of leaves (10 samples each of 99 species). These have
been converted into binary black leaves against background of white We have used
80% of images as for training and others 20% are used for testing for our model.
Our image data have images of different sizes. So, our first job is to convert the
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images of size 224 × 224 because of the CNN models requirement.First of all, we
called our images from the directory to determine the actual size of every image.
We, noticed that every images are of different. Figure 3.3 shows the size of a sample
of our dataset.

Figure 3.3: Default size of an image from our dataset

From the figure 3.3 we can see that the image size is around 700 × 350 and just
like this image, all the images are of different shapes so we need to resize them and
the models we are using requires 224× 224 shape images so we need to convert the
image shape.
The following figure shows the reshaped image.

Figure 3.4: Reshaped image.
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3.4 Compiling model

We have compiled our models when we completed the image pre-processing step. In
our models, we took the image shape as the input which is 224×224×3 for our data.

3.4.1 inactivating fully connected layer

The fully connected layer which is at the top of the network has been disabled after
making the include top false. The fully connected data works for the input image
but not ideal for images. It only takes the fixed size of input at the end. When it
is the case of whole image, the fully connected network works well but in case of a
cropped image, the actual object can’t be classified easily. The individual results of
the object should be identified such as the type of curves and lines in the image so
that the object can be classified with the partial information. It gives a better result.
If the fully connected layers are activated, the whole model will be overfitted. As
a result, it will work well in the known instances but in case of unknown instances,
it will perform badly. When the fully connected network is false, the specific size
of images can be given. Otherwise, the size which is fixed by the models will be
concentrated.

3.4.2 Selection of weight

In our research, we used imagenet as the weights. The other weights also can be used
as null or the path where the weight file is loaded. Here,we are using pre-trained
models for comparison. So, using imagenet will help to take the weight from the
pre-trained models that have already found which works well.

3.4.3 Selection of pooling layer

We have used pooling 2D for our pooling layer average. We have not used any
specific parameters for our average pooling. as a result, it will take the default pool
size in keras models which is 2×2. We are using 2D because the model we are using
is 2D. it will hamper the result if we use 1D or 3D. However, max pooling would
have been used here but it only takes the maximum value from the matrix where in
average pooling, it takes the average of the matrix. Max pooling rejects a big chunk
of data and it retains at max 1/4th whereas average pooling uses all of it and more
information can be retained from average pooling compared to max pooling. That’s
why we have used average pooling layer to get a better result.

3.4.4 Dropout selection

We have selected dropout 0.2 for our model. It is a form of regularization in CNN
that is used for CNN mainly so that it can prevent the overfitting of data. Ignor-
ing the randomly selected neurons during training is the main concept of dropout.
Dropout leads a the neural network to learn more robust feature and training time is
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lessened here. The 0.2 dropout refers that it will ignore 20% of neurons while train-
ing. After some research, we found 0.2 is giving more accuracy on image dataset.
That is why, we took this dropout rate in our thesis.

Figure 3.5: Dropout of CNN [28]

3.4.5 Activation function

We have used “ReLu” activation function. Purpose of this function is to convert
an input signal as a node in a neural network output signal [29]. Next layers input
signal can take the output signal as an input. There are different types of activation
functions and the popular ones are:

1. Sigmoid Function (SF)

2. Tanh Function

3. ReLu Function

Sigmoid Function

Sigmoid function has s-shaped curve and it has the range between 0 to 1. It is
easy to apply compared to other functions but it vanishes the gradient and its out-
put is not zero centered. As a result, the optimization becomes very harder as the
gradient updates go too far in different direction.

Tanh Function Though it also suffers from vanishing gradient problem, it gives a
better result than sigmoid function and its output is zero centered.

ReLu Function

the mathematical function of ReLu is [30]

Z(x) = max(0, x), {Z(x) = x, ifx ≥ 0), Z(x) = 0, ifx < 0} (3.1)
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It is very efficient and it does not vanish the gradient. Though it has a limita-
tion and that is it can be applied only in the hidden layers yet, this activation
function is less complex that is why we used it in our model.

3.5 Applying the prepared model for testing

Now we need test our dataset with the model we created to see the accuracy of
different models of CNN. The next chapter will describe about this in details.
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Chapter 4

Implementation and result

In this chapter we will give the detail description of the models we have used in our
research work and the outcomes of the research as well.

4.1 Inception V3

4.1.1 Concept of Inception

The first inception model was introduced by Google, named Inception-v1 [31]. The
first model has three individual size filters to perform convolution on a particular
input. The filter sizes are 1× 1, 3× 3 and 5× 5. First the model does max pooling
and after that the outputs are concatenated and then it goes to the next step of
inception. The major issue is that it needs a huge amount of operation and when
the pooling layer is added to mix the issue gets more complexed. The idea to add a
convolution with the size of 1×1 helps to perform faster compared to näıve inception
model. Factorization was introduced to minimize the dimensionality, it helped to
reduce the overfitting problem [32]. As an example, if we take a layer of 5× 5 filter
then we get a total 25 parameters but if we take two layers of 3 × 3 filter then we
get 3 × 3 + 3 × 3 = 18 parameters. We can clearly see the difference between the
two parameters and also, we can see by changing filter size we can reduce the total
number of parameters.

Figure 4.1: Inception V1 vs Inception V3 [33]
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We can reduce the number of parameters even more. Here, for the 3× 3 filter, if we
take one 3 × 1 filter and one 1 × 3 filter then the total numbers of parameters will
be reduced to 3× 1 + 1× 3 = 6. In this way, the number of parameters of the whole
factorization process can be reduced and the network can go deeper.

4.1.2 Training our dataset with Inception V3

First of all, we prepared our model then we have fit our train image data and val-
idation data in our model. Here, we used 64 and 128 batch size per epoch with 20
epochs to observe the difference of the outputs. At each epoch the validation data
evaluates the loss. We noticed that steps per epochs affects the accuracy rate. If
we increase the batch size then the accuracy rate increases because more steps, we
increase the more the model gets data to train at a particular epoch and this is why
accuracy increases. As the models save only the best values increasing epoch may
give better accuracy but in our case the difference was negligible.

Figure 4.2: Inception v3 training at 20 epochs 64 steps
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Figure 4.3: Inception v3 training at 20 epochs 128 steps

4.1.3 Result of Inception V3

After training our data we validate it with our test file. The following table shows
the result of inception v3 at 20 epochs 64 steps followed by 128 steps.

Steps per epochs Mean absolute error Explained Variance Score Value loss
64 35.24 0.647 0.352
128 33.87 0.661 0.338

Table 4.1: Inception V3 result with 20 epochs

from the table 4.1 we can see that, the accuracy rate of inception v3 at 20 epochs
and 128 steps is 66.13% and value loss is 33.87% and at 64 steps the accuracy rate
is 64.76% and value loss is 35.24%.

4.2 Mobile Net

4.2.1 Idea of MobileNet

Mobile Nets are based on depth wise separable convolutions and renowned for taking
less time and short size which is not like other convolution models. Other convolution
models take huge time for compilation where Mobile Net performs better because
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it’s a class for low latency. Mobile nets are not as accurate compared to other large
models because it has less parameters compared to them but it gives better accuracy
in small datasets and as our dataset has only 990 images mobile net gave the best
accuracy for us. Moreover, Mobile Net is famous for trading off reasonable amount
of accuracy by reducing size and latency. So mobile nets are more applicable for
deep learning models for mobile data. For Mobile Nets, a single filter is applied to
each input channel by the depth wise Convolution. The point-sensitive convolution
then applies a 1 × 1 convolution to combine the deep convolution outputs. Then,
a standard convolution filters and combines the input for a new output in the next
step. The depth wise separable convolution splits this into two separate layers, one
is for filtering and another for combining [34].

Figure 4.4: Standard Convolution Filter and MobileNet Convolution Filter [34]

A standard convolutional layer takes as input a Df × Df ×M feature map called
f and generates a Df × Df × N feature map called G where Df is the spatial
width and height of a square, M is the number of input depth, Dg is the spatial
width and height of a square output feature map and N is the number of output
depth. A convolution kernel k parameterizes the standard convolutional layer of size
Dk ×Dk ×M ×N where Dk is the spatial dimension of the kernel which is square.
Standard convolutions have the computational cost that is given below.

Dk ×Dk ×M ×N ×Df ×Df (4.1)

The computational cost depends on the number of input depth M, the number of
output depth N and the kernel size which is Dk×Dk and the feature map size which
is Df ×Df [11].

Mobile Net generates 3×3 depth wise separable convolutions which is used between
8 to 9 times less calculation than standard convolutions at only a small decrease in
accuracy.

4.2.2 Training our dataset with MobileNet

Same as Inception v3, we prepared our model then we have fit our train image data
and validation data in our model and we used 64 and 128 batch size per epoch with
20 epochs to observe the difference of the outputs.
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Figure 4.5: MobileNet training at 20 epochs 64 steps

Figure 4.6: MobileNet training at 20 epochs 128 steps

4.2.3 Result of MobileNet

After training our data we validate it with our test file. Table 4.2 shows the result
of MobileNet at 20 epochs 64 steps followed by 128 steps.
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Steps per epochs Mean absolute error Explained Variance Score Value loss
64 32.80 0.672 0.328
128 30.53 0.694 0.305

Table 4.2: MobileNet result with 20 epochs

from the table 4.2 we can see that, the accuracy rate of mobilenet at 20 epochs and
128 steps is 69.47% and value loss is 30.53% and at 64 steps the accuracy rate is
67.20% and value loss is 32.80%.

4.3 VGG16

4.3.1 VGG Concept

This model is from VGG group, Oxford in 2014 [35]. It is a simple architecture
model since it does not use much hyper parameters.The input of this algorithm is
fixed in size 224× 224 RGB image in training time. The main processing is to sub-
tract the mean RGB value and calculate the training set from each pixel. Then the
image is transferred through some convolution layers of 3× 3 filters with a stride 1
pixel. It is used as the least size to capture the notion. In the setup, we used 1× 1
convolution channel that is the linear transformation of the input channels. Pro-
tecting the spatial resolution after the convolution is the end goal which depends on
the spatial cushioning of convolution layer input. Five max-pooling layers carry the
spatial pooling which follow some of the convolutional layers. In the max-pooling,
2 × 2 pixel with stride 2 is used. Three fully connected layers trail a stack of con-
volution layers. The initial two have 4096 channels each and the third performs
1000 –way ILSVRC arrangements that contains 1000 channels (one for each class).
Soft max layer is the last layer. The fully connected layers setup is equivalent in all
networks. Rectification (ReLu) non-linearity is used to furnish the shrouded layers.

Figure 4.7: VGG16 model architecture [36]
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4.3.2 Training our dataset with VGG16

Same as Inception v3 and MobileNet we fit our image data and did validation data
in the model and we used batch size of 64 and 128 with 20 epochs to train the image
data.

Figure 4.8: VGG16 training at 20 epochs 64 steps

Figure 4.9: VGG16 training at 20 epochs 128 steps
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4.3.3 Result of VGG16

After training our data we validate it with our test file. The following table shows
the result of VGG16 at 20 epochs 64 steps followed by 128 steps.

Steps per epochs Mean absolute error Explained Variance Score Value loss
64 44.36 0.556 0.443
128 42.95 0.570 0.429

Table 4.3: VGG16 result with 20 epochs

from the table 4.3 we can see that, the accuracy rate of vgg16 at 20 epochs and 128
steps is 57.05% and value loss is 42.95% and at 64 steps the accuracy rate is 55.64%
and value loss is 44.36%.

4.4 Comparison of CNN Models

MobileNet gave the best accuracy among the three models. It has accuracy of
69.47% and value loss is 30.53%. It has performed very well than the other two
models with its less parameter. The reason behind this is its depth wise convolution
layers and also the pooling layer shape and the convolution shape are similar which
has caused less data loss.

Inception V3 has the accuracy of 66.13% and the value loss is 33.87%. It has more
parameters than the MobileNet model but gives very close accuracy. The reason of
giving this accuracy is its high non trainable parameters.

VGG16 has given the less accuracy than the two other models which is 57.05%.
This model has less parameters than others which results in huge value loss. The
convolution parameters are lesser than the other two models which affects the ac-
curacy rate. We know that the more accuracy is showed when the model has more
parameters. Figure 4.38-4.39 shows the graphical representation of the comparison
between MobileNet, Inception V3 and VGG16.
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Figure 4.10: Accuracy rate of the pre-trained models

Figure 4.11: Value loss of the pre-trained models
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Chapter 5

Conclusion

5.1 Conclusion

The purpose of our thesis is to determine the accuracy rate of leaf classification from
CNN models. There are some CNN models which work better for detection. Our
work is to find out the accuracy through the images. We get so many things which
will help us working with image recognition and classification while working with
CNN models. Our experimental results exhibit that learning the features by using
CNNs which can provide better feature representations of leaf images. We defined
our architecture approach and evaluated the results both validated and tested. At
first we divide our works into two segments by testing and training then we use
three CNN models for finding accuracy rate. We also computed the features that
repre- sent the leaves for the purpose of species detection proficiently. Accuracy rate
of MobileNet is 69.47% and value loss is 30.53% , accuracy rate of Inception V3 is
66.13% and the value loss is 33.87%. VGG16 has given less accuracy compared to
the other two models which is 57.05%. Moreover, we find that calculation time of
MobileNet is faster than VGG16.VGG16 has less amount of accuracy and having
more value loss. The entire procedure was identified from the collection of images
of dataset used for training and testing through image process- ing and the training
of the deep CNN is finally followed. Several studies have been conducted to verify
the performance of our models.

5.2 Future plan

CNN helps us efficiently for the classification of leaves but It is quite easy for ma-
chines to classify cats and dogs from images compared to leaf classification because
cats and dogs have a significant number of dissimilarities between them whereas,
leaves have very less dissimilarities and many things in common. So, it is difficult
to classify leaves from images with greater accuracy.As we know, machine learning
approaches a big dataset for training the model. But we have got 990 image data of
leaves to train which is to be expected high. For this reason our accuracy rate is not
so high as we expected.To improve the generalization of each model.the first and
observable step is to collect more data. Moreover, in today’s world, we see leaves are
having different kind of diseases. Many leaf diseases can be identified by observing
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the leaf. Sometimes, we see some symptoms on leaves such as, having holes, faded
color and also, seems like the leaf is dying or dead already. By taking those samples
in Image data we will be able to predict diseases of leaves. In future works, we
are planning to use local images and improve CNN models in order to increase the
performance of classification. Furthermore, we will collect more images of different
diseases in order to improve the database. We will take the pictures of leaves from
real environment, so that the background of the image will be in RGB instead of grey.

In our research, we have used different models of CNN and CNN automatically
extracts the feature. It is used to analyze data and image recognition and process-
ing. We used one algorithm which is slower, time consuming and less accurate but
in future we want to use more algorithm and models of CNN like ResNet, AlexNet,
LeNet etc to check the better accuracy and performance.
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