
Perturbations on Time Dependent Orbifold
Singularities

by

Sirajush Salekin
17311003

A thesis submitted to the Department of Mathematics and Natural Sciences
in partial fulfillment of the requirements for the degree of

B.Sc. in Physics

Department of Mathematics and Natural Sciences
Brac University
December 2019

c© 2019. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is my own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. I have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sirajush Salekin
17311003

i



Approval

The thesis titled “Perturbations on Time Dependent Orbifold Singularities” submit-
ted by

1. Sirajush Salekin (17311003)

Of Fall, 2019 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on December 30, 2019.

Examining Committee:

Supervisor:

Dr. Mahbub Majumdar
Professor and Chairperson

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Firoze H. Haque
Associate Professor

Department of Mathematics and Natural Sciences
Brac University

Head of Department:
(Chair)

Dr. A F M Yusuf Haider
Professor and Chairperson

Department of Mathematics and Natural Sciences
Brac University

ii



Abstract

We start with the standard time-dependent backgrounds such as the geometry and
dynamics of Freidmann-Robertson-Walker(FRW) cosmologies. First, we dis-
cuss the dynamics and geometry of FRW cosmologies. Then we introduce pertur-
bations on this FRW cosmologies. We then study more exotic orbifold spacetimes
and examine their symmetries. We examine how those symmetries determine the
partition functions on such symmetrical spacetimes.

Keywords: FRW cosmologies; Orbifold Singularities; Tree-level Amplitudes; Cos-
mological perturbation Theory
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Chapter 1

Introduction

Orbifolds are the generalizations of manifolds. In conformal field theory(CFT), we
can create a new CFT from the old one which is invariant under the action of a
discrete group Γ by, (1) adding a twisted sector which is

φ(σ1 + 2π) = hφ(σ1)

and (2) restricting to Γ-invariant states. This new theory is called an orbifold of
the previous CFT. An example of orbifold is the toroidal compactification, in which
first we break down the D-dimensional Minkowski space to SO(D − 2, 1) × U(1).
After that, we add winding strings to this and restrict the spectrum by quantizing
the momentum along the compactification direction. In string theory, we can solve
the space-time singularity problem by studying the string orbifolds. Therefore,
understanding the geometry of orbifolds has a great importance if we truly want to
understand the quantum gravity phenomenon.
Before going deep into the subject matter of time-dependent orbifolds, first we start
with the basic geometry of FRW cosmologies. We go through the basic dynamics
and geometry of FRW cosmologies by introducing the metric

ds2 = gµνdx
µdxν = −dt2 + a2(t)dl2 (1.1)

This allows us to define the Freidmann equation. We calculate the Freidmann
equation from Newtonian gravity and also introduce the parameters such as the
Hubble parameter(H) and the scale factor(a). We then try to find out how the
universe corresponds to this scale factor.
In the third chapter, we introduce inhomogeneities and consider small perturbations
on our FRW metric. We talk about the gauge problem and how to fix this problem.
Then we go through matter perturbations and their linearised equations of motion.
We then compute the perturbed Einstein equations and conclude the chapter with
different types of perturbations i.e. the adiabatic perturbation and the curvature
perturbation.
In the forth chapter, we introduce the topic of time-dependent orbifolds in three-
dimensional Minkowski space. We classify different types of orbifolds and their
geometry. After that, we examine the single particle wave functions on these time-
dependent orbifolds.
In the last chapter of this dissertation, We start with the particle interactions and
discuss about the formation of large black holes. Then, we talk about the back-
reaction in three-dimension. From that, we want to know that whether there is
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particle production in time-dependent orbifolds because the geometry varies with
time. And to answer this, we calculate the amplitudes from the single particle wave
functions which is known as the Tree-level amplitudes. In this chapter we focus only
on the three-point and the four point amplitudes. We conclude our thesis with the
discussion about Eikonal resummation and the calculation of one-loop amplitudes.
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Chapter 2

Geometry and Dynamics

In cosmological studies, first we made some basic assumptions. These assumptions
are, on large scales, the universe is isotropic and homogeneous and the General Rel-
ativity gives an appropriate description of the universe. Cosmic Microwave Back-
ground or CMB backs up the assumption of isotropy and homogeneity and when
we introduce the concepts of ”Dark Matter” and ”Dark Energy”, General relativity
gives an appropriate explanation of the development of the universe.

2.1 Metric

The cosmological assumptions help us to build a metric in the form [12]

ds2 = gµνdx
µdxν = −dt2 + a2(t)dl2 (2.1)

In equation 2.1, dl2 is the constant curvature 3-metric, which is

dl2 = γijdx
idxj (2.2)

This constant curvature 3-metric can be

1. Positive curvature (Spherical, S3)
In this case,
dl2 = dx2 + du2

Where, |x|2 + u2 = R2

2. Zero curvature (Euclidean, E3), dl2 = dx2

3. Negative curvature (Hyperbolic, H3), dl2 = dx2− du2 where, |x|2− u2 = −R2

Rescaling the coordinates from x→ Rx and u→ Ru gives

dl2 = R2(dx2 ± du2) (2.3)

Where, x2 ± u2 = ±1. Now, considering the constrain over this we can get udu =
∓xdx and substituting this in equation 2.3

dl2 = R2

(
dx2 +K

(x.dx)2

1− kx2

)

= R2

(
dr2

1−Kr2
+ r2dΩ2

)
(2.4)
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In equation 2.4, K is the comoving curvature which has values: 1 for positive cur-
vature, 0 for zero curvature and −1 for negative curvature. Finally, substituting
equation 2.4 in equation 2.1, we get the Freidmann-Robertson-Walker or FRW
metric,

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(2.5)

2.2 Kinematics and Momentum

When we are considering the only acting force on a particle is gravity then the
path taken by this particle is a geodesic. Let’s assume a particle with mass m, the
4-velocity of this particle is

Uµ ≡ dXµ

ds
(2.6)

The equation of motion for this particle is the geodesic equation

dUµ

ds
+ ΓµαβU

αUβ = 0 (2.7)

Here, the Christoffel symbol

Γµαβ ≡
1

2
gµλ (∂αgβλ + ∂βgαλ − ∂λgαβ) (2.8)

From equation 2.6,
dUµ

ds
=
dXα

ds

dUµ

dXα
= Uα∂αU

µ (2.9)

Substituting this value in equation 2.7,

Uα∂αU
µ + ΓµαβU

αUβ = Uα
(
∂αU

µ + ΓµαβU
β
)

= Uα∇αU
µ

= 0 (2.10)

Here, ∇α is the covariant derivative and we can write equation 2.10 in terms of the
momentum, P µ = mUµ as

Pα∂αP
µ = −ΓµαβP

αP β (2.11)

Equation 2.11, is also valid for massless particle. Homogeneous and isotropic con-
ditions make, ∂iP

µ = 0. Therefore equation 2.11 becomes

P 0P
µ

dt
= −ΓµαβP

αP β

= −
(
2Γµ0jP

0 + ΓµijP
i
)
P j (2.12)

When, P i is equal to zero, ∂tP
i also becomes zero and the particle is at rest. If we

consider µ = 0 then, E
dE

dt
= −

ȧ

a
P 2. From −m2 = −E2 + P 2, we got EdE = PdP ,

which leads to
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Ṗ

P
= − ȧ

a

P (t) ∝ 1

a(t)
. (2.13)

Equation 2.13 shows that with the expansion of the Universe, the momentum decays.

2.3 Dynamics

Einstein’s famous equation is the building block of Cosmology. This equation states
as

Gµν = 8πGTµν (2.14)

Here, Tµν is the Energy-Momentum tensor.

Tµν =

[
T00 T0i

Tj0 Tij

]
Due to isotropy and homogeneity, the most general form Tµν can take is

T00 = ρ(t)

T0i = 0

Tij = P (t)gij (2.15)

From equation 2.15, we can see that for a perfect fluid it is the Energy-Momentum
tensor and this can be written in the following form

Tµν = (ρ+ P )UµUν + Pgµν (2.16)

From the law of conservation, we can write equation 2.15 as

∇µT
µ
ν = ∂µT µν + ΓµµλT

λ
ν − ΓλµνT

µ
λ = 0 (2.17)

Again, for the fluid the law of conservation implies

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 (2.18)

If we consider, ω =
P

ρ
; equation 2.18 becomes

ρ̇

ρ
= −3(1 + ω)

ȧ

a

⇒ ρ = ρ0

(
a

a0

)−3(1+ω)

(2.19)

Every known particles in the universe can take one of the three equations of state
and based on this we have created a Cosmic inventory [12].
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Figure 2.1: Cosmic Inventory

Figure 2.2: A particle of mass m on a sphere with radius a and mass M .

Now, we introduce Friedmann equation from Newtonian gravity. Let’s consider
a test particle of mass m on a surface of a sphere, which has radius a and mass M .
By Gauss’s law, we know that gravity is determined only by the interior matter.
Now, from Newtonian Gravity we know that

mä = −GMm

a2

⇒ ä = −GM
a2

⇒ ȧä = −GMȧ

a2

⇒ ȧä+
GMȧ

a2
= 0

⇒ d

dt

(
ȧ2

2

)
+GM

(
− d

dt

(
1

a

))
= 0

⇒ d

dt

(
ȧ2

2
− GM

a

)
= 0 (2.20)

Let’s assume,
ȧ2

2
−
GM

a
= −

k

2
; where k is a constant term. We know that, ρ ∼

M

V
.
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Which leads to, M =
4

3
πa3ρ. Therefore, equation 2.20 becomes

ȧ2

2
−
G(4

3
πa3ρ)

a
= −k

2

⇒ ȧ2

2a2
− 4

3
πGρ = − k

2a2
[Both sides divided by a2]

⇒ ȧ2

a2
− 8πGρ

3
= − k

a2
(2.21)

Equation 2.21 is the Friedmann equation where,

(
ȧ2

a2

)
is the kinetic term and(

8πGρ

3

)
is the potential term. Here,

(
ȧ

a

)
is defined as the Hubble parameter.

The Hubble parameter, H ≡
ȧ(t0)

a(t0)
; where, t0 is the time today. Therefore, the

Friedmann equation in terms of Hubble parameter is

H2 − 8πGρ

3
= − k

a2
(2.22)

Depending on the value of k the universe can be open, closed or flat. If k > 0, the
universe is closed. If k < 0, the universe is open. If k = 0, the universe is flat. Our
universe is considered as a flat universe. For flat universe, equation 2.22 becomes

H2 =
8πGρ

3
(2.23)

From the cosmic inventory (figure 2.1), when ρ ∝ a−3 equation 2.23 becomes

ȧ2

a2
=

8πG

3

1

a3

⇒ ȧ2 =
8πG

3

1

a

⇒ ȧ =

√
8πG

3

1√
a

⇒ ȧ =
α√
a

⇒
√
a
da

dt
= α

⇒
∫ √

ada =

∫
αdt

⇒ 2

3
a3/2 = αt

⇒ a3/2 =

(
3

2
α

)
t

⇒ a =

(
3

2
α

)2/3

t2/3

⇒ a ∝ t2/3 (2.24)
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Here, a is called the scale factor. When, a(t) ∝ t2/3; the universe is considered
to be matter dominated(MD). Again, from the cosmic inventory (figure 2.1), when
ρ ∝ a−4, equation 2.23 becomes

ȧ2

a2
=

8πG

3

1

a4

⇒ ȧ2 =
8πG

3

1

a2

⇒ ȧ =

√
8πG

3

1

a

⇒ a
da

dt
= α

⇒
∫
ada =

∫
αdt (2.25)

Then, we can write this as

a2 = 2αt

⇒ a ∝ t1/2 (2.26)

When, a(t) ∝ t1/2, the universe is considered to be radiation dominated(RD).
Again, for ρ ∝ a0 = constant, we get

ȧ2

a2
=

8πGa0

3

⇒ ȧ =

√
8πGa0

3
a

This is an exponential equation and we can write this as

a = a(0)e

√√√√8πGa0

3
t

⇒ a ∝ eH0t (2.27)

When, a ∝ eH0t the universe is considered to be dark energy dominated(ΛD).
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Chapter 3

Cosmological Perturbation Theory

Cosmological perturbation theory introduces inhomogeneities, which is important
for the formation of large-scale structures. In this chapter, we start with introduc-
ing small perturbation on the FRW metric. We see that based on our coordinate
selection a problem i.e. gauge problem arises with the perturbation and we try
to find a way to overcome this problem. Then we go through the perturbation of
matters and their perturbed linearised equations.

3.1 Perturbed metric

The flat FRW metric in terms of conformal time(τ) is

ds2 = a2(τ)
(
−dτ 2 + δijdx

idxj
)
. (3.1)

Let’s assume a small perturbation around the FRW metric, which can be written as

ds2 = a2(τ)
(
−(1 + 2A)dτ 2 + 2Bidx

idτ + (δij + hij)dx
idxj

)
. (3.2)

Here, A, Bi and hij are space and time functions. To compute the scalar, vector
and tensor quantities individually, we need to adopt a Scalar-Vector-Tensor(SVT)
decomposition. SVT decomposition allows us to split a 3-vector into a vector that
is divergenceless and the gradient of a scalar.

Bi = ∂iB + Bi, (3.3)

Here, (∂iB) is a scalar and (Bi) is a vector with (∂iBi = 0). And any symmetric
rank-2 tensor can be written as

hij = 2Cδij + 2

(
∂i∂j −

1

3
δij∇2

)
E + (∂iEj + ∂jEi) + 2Eij. (3.4)

The tensor perturbation is traceless and transverse. Therefore, ∂iEij = δijEij = 0.
The metric has (4 + 4 + 2) SVT degrees of freedom. Here,

• A, B, C and E are the scalars.

• Bi and Ei are the vectors and

• Eij is the tensor.
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If we consider only the scalars then equation 3.2 takes the form

ds2 =a2(τ)

(
− (1 + 2A)dτ 2 + 2∂iBdx

idτ+

[
(1 + 2C)δij + 2

(
∂i∂j −

1

3
δij∇2

)
E

]
dxidxj

)
. (3.5)

3.2 The Gauge Problem

There are some problems in the metric perturbations in equation 3.2. Metric pertur-
bations depend on what coordinates we are choosing. Changing the coordinates can
change the perturbation variables and may form fake perturbations. This problem
of appearing fictitious perturbations in our metric is called the Gauge problem.
For example, if we change our spatial coordinates, xi to x̃i; where, x̃i = xi + ξi and
dxi = dx̃i − ∂τξidτ − ∂kξidxk. Then the metric takes the form

ds2 = a2(τ)
(
−dτ 2 + 2ξ′idx̃

idτ + (δij + 2∂(iξj))dx̃
idx̃j

)
. (3.6)

Here, ξ′i and ∂(iξj) are the fake perturbations. This fake perturbations are called
gauge modes and these modes can be eliminated by changing the coordinates back
to the previous ones. Likewise, changing the time slicing, τ → τ + ξ0, changes the
pressure as

ρ(τ + ξ0) = ρ(τ) + ξ0ρ′(τ) (3.7)

Here, ξ0ρ′(τ) is a fake density perturbation. Therefore, the gauge problem indicates
that we can create fake perturbations by changing the coordinates.

3.3 Gauge Transformations

Now, let’s assume the following gauge transformation

xµ → x̃µ = xµ + ξµ, where, ξ0 ≡ T, and ξi ≡ ∂iL. (3.8)

Here, we have only contemplated the perturbations which are scalars. In terms of
these gauge transformations, the metric can be written as

ds2 = gµνdx
µdxν = g̃αβdx̃

αdx̃β, (3.9)

where,

gµν =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ. (3.10)

Then, the diagonal (00) component of the metric can be written as

g00 =

(
∂x̃0

∂x0

)2

g̃00. (3.11)
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Applying the gauge transformations(equation 3.8) into the metric(equation 3.2), we
get

a2(τ)(1 + 2A) = (1 + T ′)2a2(τ + T )(1 + 2Ã)

= (1 + 2T ′ + ...)(a(τ) + a′(T ) + ...)2(1 + 2Ã)

= a2(τ)(1 + 2HT + 2T ′ + 2Ã+ ...), (3.12)

Here, the Hubble parameter in conformal time, H ≡ a′/a. Therefore, the metric
perturbation A transforms as

A 7→ Ã = A− T ′ −HT. (3.13)

Similarly, the other metric perturbations transform as

B 7→ B̃ = B + T − L′, (3.14)

C 7→ C̃ = C −HT − 1

3
∇2L, (3.15)

E 7→ Ẽ = E − L. (3.16)

3.4 Gauge Fixing

A way of fixing the gauge problem is to define metric perturbations which is invariant
under change of coordinates. For doing that, we need to introduce some gauge-
invariant variables which are called the Bardeen potentials. They are

Ψ ≡ A+H(B − E ′) + (B − E ′)′, (3.17)

Φ ≡ −C −H(B − E ′) +
1

3
∇2E. (3.18)

These potentials eliminate the chance of producing any fictitious perturbations since
they remain same under coordinate transformation. In Newtonian gauge, we con-
sider Ψ = A and Φ = −C. If we let, B = E = 0, then the metric becomes

ds2 = a2
(
−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx

idxj
)
. (3.19)

3.5 Perturbed Matter

The energy-momentum tensor of a perfect fluid is

T̄ µν = (ρ̄+ P̄ )ŪµŪν + P̄ δµν , (3.20)

We introduce small perturbations, T µν = T̄ µν + δT µν and write the perturbed energy-
momentum tensor as

δT µν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν) + δPδµν + Πµ
ν , (3.21)
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Here, Πµ
ν is the anisotropic stress which is mostly negligible. In the four-velocity,

perturbation can induce energy flux, T 0
j , and momentum density, T i0, which can not

be vanished. We need to compute the perturbed four-velocity in equation 3.2. First
of all, to derive δUµ, we consider gµνU

µUν = −1. This implies

δgµνŪ
µŪν + 2ŪµδU

µ = 0, (3.22)

Here, considering Ūµ = a−1δ0
µ and δg00 = 2a2A, we can figure out that, δU0 =

−Aa−1. Therefore, δU i ≡ vi/a, where the coordinate velocity, vi ≡ dxi/dτ . Thus

Uµ = a−1[1− A, υi]. (3.23)

Similarly, we can find that

Uµ = a[−(1 + A), (υi +Bi)]. (3.24)

Applying the value of equation 3.23 and equation 3.24 in equation 3.21, we get

δT 0
0 = −δρ,

δT 0
i = (ρ̄+ P̄ )υi +Bi),

δT i0 = −(ρ̄+ P̄ )υi ≡ −qi → (3-momentum density),

and δT ij = δPδij + Πi
j.

If we consider a universe which is multi-component, then the total energy-momentum
tensor becomes, Tµν =

∑
I T

I
µν and hence

δρ =
∑
I

δρI ,

δP =
∑
I

δPI ,

qi =
∑
I

qiI ,

and Π =
∑
I

ΠI .

The perturbations only add the density, pressure and anisotropic stress but the
velocities do not add up. Under gauge transformation, the stress-energy tensor
becomes

T µν =
∂xµ

∂x̃α
∂x̃β

∂xν
T̃αβ . (3.25)

From this, we get

δρ 7→ δρ− T ρ̄′ ,
δP 7→ δP − T P̄ ′ ,
qi 7→ qi + (ρ̄+ P̄ )L′i ,

υi 7→ υi + L′i ,

and Πij 7→ Πij .
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From the metric, we can forme various quantities that are invariant under gauge
transformation. One useful gauge-invariant quantity is

ρ̄∆ ≡ δρ+ ρ̄′(υ +B). (3.26)

Here, ∆= Comoving-gauge density perturbation.
There are two useful matter gauges worth mentioning. These are:

• Uniform density - Setting the total density perturbation equal to zero, δρ ≡ 0

• Comoving - Vanishing the scalar momentum density, q ≡ 0

Since, we have perturbed all our quantities, Now we can talk about the equations of
motion for the metric and matter perturbations.

3.6 Linearised Evolution Equations

In Newtonian gauge, the metric tensor takes the form

gµν = a2

(
−(1 + 2Ψ) 0

0 (1− 2Φ)δij

)
, (3.27)

and

gµν =
1

a2

(
−(1− 2Ψ) 0

0 (1 + 2Φ)δij

)
. (3.28)

The perturbed connection coefficients for the metric tensor(equation 3.27) is defined
as

Γµνρ =
1

2
gµλ(∂νgλρ + ∂ρgλν − ∂λgνρ). (3.29)

We can calculate the perturbed connection coefficients by substituting equation 3.27
and equation 3.28 into equation 3.29.
For, Γ0

00

Γ0
00 =

1

2
g00
(

2∂0g00 − ∂0g00

)
,

=
1

2
g00∂0g00 ,

=
1

2a2

(
1− 2Ψ

)
∂0

[
a2(1 + 2Ψ)

]
,

= H + Ψ′. (3.30)

Similarly,

Γ0
0i = ∂iΨ , (3.31)

Γi00 = δij∂jΨ , (3.32)

Γ0
ij = Hδij −

[
Φ′ + 2H(Φ + Ψ)

]
δij , (3.33)

Γi0j = Hδij − Φ′δij , (3.34)

and Γijk = −2δi(j∂k)Φ + δjkδ
il∂lΦ . (3.35)
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3.7 Conservation Equations

The conservation law for the stress tensor states that [11]

∇µT
µ
ν = ∂µT

µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α = 0 . (3.36)

Now, if we set the ν component of equation 3.36 to zero, then

∂0T
0
0 + ∂iT

i
0 + Γµµ0T

0
0 + ΓµµiT

i
0 − Γ0

00T
0
0 − Γ0

i0T
i
0 − Γi00T

0
i − Γij0T

j
i = 0 . (3.37)

Implementing the values of connection coefficients and the perturbed stress-energy
tensor into equation 3.37 gives

∂0(ρ̄+ δp) + ∂iq
i + (H + Ψ′ + 3H− 3Φ′)(ρ̄+ δρ)− (H + Ψ′)(ρ̄+ δρ)

− (H + Φ′)δij
[
−(P̄ + δP )δji

]
= 0 , (3.38)

which gives

ρ̄′ + ∂0δρ+ ∂iq
i + 3H(ρ̄+ δρ)− 3ρ̄Φ′ + 3H(P̄ + δP )− 3P̄Φ′ = 0 . (3.39)

The zeroth-order of equation 3.39 is

ρ̄′ = −3H(ρ̄+ P̄ ) . (3.40)

And the first-order of equation 3.39 is

∂ηδρ = −3H(δρ+ δP ) + 3Φ′(ρ̄+ P̄ )−∇.q . (3.41)

Here, equation 3.40 is the equation for energy conservation in homogeneous region
and equation 3.41 is the continuity equation in density perturbation.
Now, setting the ν component of equation 3.36 to i gives

∂0T
0
i + ∂jT

j
i + Γµµ0T

0
i + ΓµµjT

j
i − Γ0

0iT
0
0 − Γ0

jiT
j
0 − Γj0iT

0
j − ΓjkiT

k
j = 0 . (3.42)

Implementing the values of connection coefficients and the perturbed stress-energy
tensor into equation 3.42 gives

− ∂0qi + ∂j
[
−(P̄ + δP )δji − Πj

i

]
− 4Hqi − (∂jΨ− 3∂jΦ)P̄ ∂ji

− ∂iΨρ̄−H∂jiqj +H∂ji qj + (−2δj(i∂k)Φ + δkiδ
jl∂lΦ)P̄ δkj = 0 , (3.43)

which leads to
∂ηqi = −4Hqi − (ρ̄+ P̄ )∂iΨ− ∂iδP − ∂jΠij . (3.44)

Equation 3.44 is the Euler equation for a viscous fluid.
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3.8 Perturbed Einstein Equations

So far, we have computed the linearised equations for perturbed matter. Now, we
focus on the perturbed Einstein equations. The Einstein tensor states that

Gµν ≡ Rµν −
1

2
Rgµν (3.45)

Here, Rµν= Ricci Tensor, and R= Ricci scalar.
In terms of the Christoffel symbols, the Ricci tensor can be written as

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ . (3.46)

We need to compute the Ricci tensor and Ricci scalar in terms of perturbed connec-
tion coefficients. This part is computed in the Appendix section.
The 00-component of the Einstein tensor is,

G00 =R00 −
1

2
g00R ,

=− 3H′ +∇2Ψ + 3H(Φ′ + Ψ′) + 3Φ′′ + 3(1 + 2Ψ)(H′ +H2)

− 1

2

[
2∇2Ψ− 4∇2Φ + 12(H′ +H2)Ψ + 6Φ′′ + 6H(Ψ′ + 3Φ′)

]
,

=3H2 + 2∇2Φ− 6HΦ′ . (3.47)

In Newtonian gauge, g0i = 0, therefore only R0i survives for the 0i-component. Thus

G0i = 2∂i(Φ
′ +HΨ) , (3.48)

and the ij-component of the Einstein tensor is

Gij =Rij −
1

2
gijR ,

=
[
H′ + 2H2 − Φ′′ +∇2Φ− 2(H′ + 2H2)(Φ + Ψ)−HΨ′ − 5HΦ′

]
δij

+ ∂i∂j(Φ−Ψ)− 3(1− 2Φ)(H′ +H2)δij

+
1

2

[
2∇2Ψ− 4∇2Φ + 12(H′ +H2)Ψ + 6Φ′′ + 6H(Ψ′ + 3Φ′)

]
δij ,

=− (2H′ +H2)δij+[
∇2(Ψ− Φ) + 2Φ′′ + 2(2H′ +H2)(Φ + Ψ) + 2HΨ′ + 4HΦ′

]
δij

+ ∂i∂j(Φ−Ψ) . (3.49)

From the equation 3.49, only considering the trace free portion gives

∂〈i∂j〉(Φ−Ψ) = 0⇒ Φ = Ψ . (3.50)

For the 00-component, the Einstein tensor is, G00 = 8πGT00. Therefore, from
equation 3.47, we get

3H2 + 2∇2Φ− 6HΦ′ = 8πGg0µT
µ
0 ,

= 8πG(g00T
0
0 + g0iT

i
0) ,

= 8πGa2(1 + 2Φ)(ρ̄+ δρ) ,

= 8πGa2ρ̄(1 + 2Φ + δ) . (3.51)
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In equation 3.51, the zeroth-order part is

3H2 = 8πGa2ρ̄ . (3.52)

This is the Friedman equation. Again, from equation 3.51, the first-order part is

∇2Φ = 4πGa2ρ̄δ + 8πGa2ρ̄Φ + 3HΦ′ ,

= 4πGa2ρ̄δ + 3H(Φ′ +HΦ) . (3.53)

Now, for the 0i-component, the Einstein tensor is, G0i = 8πGT0i, where

T0i = g0µT
µ
i = g00T

0
i = ḡ00T

0
i = −a2qi . (3.54)

From equation 3.48, we can write

∂i(Φ
′ +HΦ) = −4πGa2qi . (3.55)

Here, qi = (ρ̄+ P̄ )∂iυ and integrating the equation 3.55, we get

Φ′ +HΦ = −4πGa2(ρ̄+ P̄ )υ = −4πGa2q . (3.56)

substituting equation 3.56 into equation 3.53 gives,

∇2Φ = 4πGa2ρ̄∆ , (3.57)

here, ρ̄∆ ≡ ρ̄δ − 3H(ρ̄ + P̄ )υ. Equation 3.57 is the Poisson equation. So far, we
have discussed the linearised evolution equations, now we shall discuss the different
types of perturbations.

3.9 Adiabatic Perturbations

Adiabatic perturbations can be defined as a quantum fluctuations in the field φ,
which can be represented as a local time perturbation δτ . Adiabatic density pertur-
bations are defined as

δρI(τ,x) ≡ ρ̄I(τ + δτ(x))− ρ̄I(τ) = ρ̄′Iδτ(x) , (3.58)

where,

δτ =
δρI
ρ̄′I

=
δρJ
ρ̄′J

. (3.59)

From the continuity equation, we can write

ρ̄′I ∝ (1 + w)ρI ⇒
δI

1 + wI
=

δJ
1 + wJ

. (3.60)

As shown in figure 3.1, in adiabatic perturbations, different fluids can have different
amplitudes but they maintain same profile. Thus, we can write the total density
perturbation as

δρ = ρ̄δ =
∑
I

ρ̄IδI . (3.61)
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Figure 3.1: A representation of adiabatic perturbations.

3.10 Curvature Perturbations

In adiabatic perturbations, we have proved that δI ∝ δ. Now, if we consider the
density gauge equals to zero then all we have left with is the curvature perturbations.
From adiabatic perturbations, we can write that

δτ =
δρ

ρ̄′
. (3.62)

Now, if we set the density gauge, δρ = 0, then δτ = δρ = o and the perturbation
becomes curvature perturbation. The 3-D Ricci scalar for this

a2R(3) = 4∇2(−C +
1

3
∇2E) . (3.63)

Now, if we denote the constant density curvature perturbation to ξ then

ξ =

[
−C +

1

3
∇2E

]
δρ=o

(3.64)

Now, applying a gauge transformation on equation 3.64, we get

ξ̃ = −C̃ +
1

3
∇2Ẽ ,

= −C +HT +
1

3
∇2L+

1

3
∇2(E − L) ,

= ξ +HT . (3.65)

Here, δ̃ρ = δρ− T ρ̄′. Therefore, we can make our gauge invariant density curvature
perturbation as

ξ ≡ −C +
1

3
∇2E +Hδρ

ρ̄′
. (3.66)
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Chapter 4

Time Dependent Orbifolds

So far, we have discussed the dynamics and geometry of FRW cosmologies. We have
also talked about the cosmological perturbation theory. Now, we shall examine the
geometry of different types of time-dependent orbifolds. Orbifold is the generalized
forms of manifold and we shall consider our manifold space to be flat 3-dimensional
Minkowski space, M3. Moreover, we shall discuss about the single particle wave
functions of these different types of time-dependent orbifolds.

4.1 Orbifold classification and generalities

First, we start with a killing vector field k, which is on a manifold M and has
isometry group G. This killing vector can be represented as [10]

P ∼ enkP , (4.1)

Here, n ∈ Z and ek produces a discrete subgroup Γ ⊂ G. Now, conjugation by G of
this killing vector also represents the same orbifold, which is

k → h−1kh . (4.2)

Now, to discuss about orbifolds, here we consider our manifold space to be flat
3-dimensional Minkowski space, M3. To introduce different types of orbifolds, we
shall discuss about the killing vectors of this 3-dimensional space. First, consider
the Minkowski coordinates X0, X1, X2 and the coordinates of the light-cones are

x± =
1√
2

(X0 ±X1) . (4.3)

The general form of a killing vector is

k = 2πi(αapa + βabJab) , (4.4)

where, the generators of the Poincare groups are

iJab = Xa∂b −Xb∂a ,

and iPa = ∂a . (4.5)

Also, the dual form of βab is
βab = εabcβc . (4.6)
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Now, conjugating the killing vector gives the following transformation by rotation

αa → αa + βabωb ,

βab → βab . (4.7)

From, equation 4.6 and equation 4.7, it appears that under conjugation, αaβa and
βaβa are invariant. Now, we shall consider βa 6= 0 or we shall only have translation
orbifold. Considering what sign β2 gives, we can have three types of orbifolds. They
are

• Elliptic when, β2 < 0.

• Hyperbolic when, β2 > 0.

• Parabolic when, β2 = 0.

Now, for hyperbolic orbifolds, if we go through a Lorentz transformation, β2 = ∆
and β± = 0, the killing vector can be written as

k = 2πi(∆J+− +RP2) , where, α2 = R . (4.8)

This killing vector is created by a boost along one direction and a translation along
the diagonal direction [2]. When, R 6= 0, this type of orbifold is called shifted-
boost orbifold and when, R = 0, this is called boost orbifold [6]. For the
parabolic orbifolds, β− = ∆ and α− = R, the killing vector is defined as

k = 2πi(∆J+2 +RP−) . (4.9)

When, R 6= 0, this type of orbifold is called O-plane orbifold and when, R = 0, this
is called null-boost orbifold. So, we have introduced different types of orbifolds.
Now, we shall discuss each type of orbifolds more deeply and their quotient space
geometry. To do so, we shall first change our coordinate system, therefore, the
killing vector can have trivial solutions. Then we shall apply the Kaluza-Klein
ansatz, which reads

ds2
3 = ds2 + Φ2((dz + A)2 , (4.10)

Now, after classifying the orbifolds, our primary focus should be to figure out how
a single particle wave functions propagates on the covering space of the three-
dimensional orbifold.To construct our single particle wave function, we shall use
the Klein-Gordon equation

�ψ = m2ψ . (4.11)

From this we can rely on the point that, for ψ to be invariant under a discrete group
Γ, the Klein-Gordon equation must satisfy

ψ(X) = ψ(enkX) . (4.12)

Then, we choose a set of basis for the functions, which is

kψn = 2πinψn . (4.13)

Now, to construct single particle wave functions, we write the plane wave

φp(X) = eip.X , (4.14)
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In terms of continuous isometry, esk, this follows

φp(e
skX) = φeskp(X)eiφ(p.s) . (4.15)

If we consider, p2 +m2 = 0, the function becomes

ψp(X) =
∑
n

φp(E
nkX) . (4.16)

We can write this sum in terms of Fourier transformation. So, the single particle
wave functions become

ψp,n(X) =

∫
dsφp(e

skX)e−2πins ,

=

∫
dsφeskp(X)eiϕ(p,s)−2πins . (4.17)

This is also the integral form of the wave functions. Now we shall discuss more gen-
erally about the different types of time-dependent orbifolds and their single particle
wave functions.

4.2 Shifted-boost orbifold

For shifted-boost orbifold, the killing vector is [2]

k = 2πi(∆J+− +RP2) . (4.18)

From Lorentz algebra, the orbifolds identifications are

X± ∼ e±2π∆X± ,

and X ∼ X + 2πR . (4.19)

From figure 4.1, we have specified three different space-time regions for shifted-boost
orbifold in the X±-plane. Region Iin is the past light-cones and Iout is the future
light-cones; regions IIL and IIR are between the light-cones and the k2 = 0 surface
and finally, we introduces regions IIIL and IIIR. In the first two regions k is space-
like and the last region k is time-like. Now, under coordinate transformation the
killing vector becomes trivial, which is

X± = y±e±Ez ,

and X = z . (4.20)

Now, we shall write the metric in terms of Kaluza-Klein form. To do so, we need to
fix our coordinates as

y± =
t√
2
e±Ey , (4.21)

From this, we can get the Kaluza-Klein fields as

ds2 = −dt2 +
(Et)2

Φ2
dy2 , (4.22)
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Figure 4.1: Three different regions for a shifted-boost orbifold in X±-plane

where, Φ2 = 1 + (Et)2 and A = (1 − Φ−2)dy. Now, for (Et) << 1, equation 4.22
becomes Milne metric in two-dimensional space and it is defined as a horizon. In
region Iin, we get t < 0, and the Milne metric contracts towards a future horizon.
On the other-hand, in region Iout, we get t > 0, and the Milne metric expands from
a past horizon. To answer the question of what is happening outside the horizon we
first define our coordinate transformation that covers the second and third regions,
which is

y± = ± x√
2
e±Ew . (4.23)

And this leads to

ds2 = −(Ex)2

Φ2
dw2 + dx2 , (4.24)

where, Φ2 = 1 − (Ex)2 and A = (1 − Φ−2)dw. Now, for (Ex) << 1, equation 4.24
is the Rindler metric. Therefore, in region II at x = 0, there is a horizon , that is
similar as a black hole horizon. If we go further away from the horizon, at Ex = 1
we get a curvature singularity.
Now, we shall describe the single particle wave functions on the shifted-boost orb-
ifold. We can write the wave functions as

ψp,n = f(t)ei(py+(n/R)z) . (4.25)

Here, we introduce a Bessel function f(t), which has ν imaginary order. Then, the
Klein-Gordon equation is as follows[

t2
d2

dt2
+ t

d

dt
+ (ωt)2 − ν2

]
f(t) = 0 , (4.26)

where, ω2 = m2 + (p − n
R

)2 and ν = i p
E

. In region I, a complete basis of this wave
functions is given by

ψ±p,n = J±ν(ω|t|)ei(py+(n/R)z) . (4.27)
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Also, for region II, the basis of the wave functions is

ψ±p,n = J±ν(iω|x|)ei(pω+(n/R)z) . (4.28)

We can write this wave functions as a superposition of the plane waves. It is given
by [7]

ei(py+(n/R)z)

∫
dσe(±iωt coshσ−i p

E
σ) ,

This can be represented as

H(1,2)
ν (x) = ± 1

πi
e∓

iπν
2

∫
dσe(±ix coshσ−νσ) . (4.29)

Here, H
(1,2)
ν is the Hankel functions, which is constructed from the Bessel functions.

4.3 Boost orbifold

In light-cones coordinates, the space–time points for the boost orbifold are identified
as

X± ∼ e±2π∆X± , (4.30)

Here, the X–direction have no importance at all. Figure 4.2 [10] shows the funda-
mental regions for the boost orbifold.

Figure 4.2: The fundamental regions of a boost orbifold.

The geodesic path square of the images are, 8 sinh2(nπ∆)X+X− and from this we
can find on both left and right portions, there are time–like curves(CTC’s) which
are closed, and generally known as the whiskers. The coordinate transformation is

X± =
t√
2
e±∆z ,

and X = y .
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The Kaluza–Klein form of this metric is

ds2
3 = −dt2 + dy2 + (∆t)2dz2 . (4.31)

Now, we shall discuss about the single particle wave functions on boost orbifold.
The integral form of this is [8]

eikX
∫
dse

i

(
± ω√

2
esX+± ω√

2
e−sX−− n

∆
s

)
, (4.32)

here, ω2 = m2 + k2. In the X±–plane the functions are Bessel functions which has
imaginary order ν = i n

∆
. In the Milne wedge we can write the functions

J±i n
∆

(ω|t|)ei(ky+(n/R)z) . (4.33)

4.4 O-plane orbifold

For the O–plane orbifold, the Killing vector is

k = 2πi(∆J+2 +RP−) . (4.34)

If we consider the action of ek, the space–time points for the O–plane orbifold are

X− ∼ X− + 2πR , (4.35)

X+ ∼ X+ − (2π∆)X +
1

2
(2π∆)2X− +

1

6
(2π)3R∆2 , (4.36)

and X ∼ X − (2π∆)X− − 1

2
(2π)2R∆ . (4.37)

Figure 4.3: For k, the different orbital lines on the O-plane orbifold.
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From figure 4.3, the space–time is divided into space–like and time–like regions. The
geodesic path difference square in between the images are given by

2E(2πRn)2

(
X +

1

2
E(X−)2 − 1

12
E(2πRn)2

)
.

Now, under the coordinate transformations

X− = y− ,

X+ = y+ − Eyy− +
E2

6
(y−)3 ,

and X = y − E

2
(y−)2 .

Then, the metric becomes

ds2
3 = −2dy+dy− + 2Ey(dy−) + dy2 . (4.38)

and the Kaluza-Klein form of this metric is

ds2
3 =

(dy+)2

2Ey
+ dy2 + 2Ey

(
dy− − dy+

2Ey

)2

. (4.39)

Finally, the single particle wave functions on O–plane orbifold is given by

ψp+,n = f(y)ei(p+y++(n/R)y−) . (4.40)

Here, the function f(y) maintains the differential equation form, which is

d2f

dω2
= ωf .

Here, the solutions to this function are Airy functions, Ai(ω) and Bi(ω). Considering
the normalizable solution, we can write the wave functions as

ψp+,n ∝ Ai(ω)ei(p+y++(n/R)y−) . (4.41)

The integral form of the Airy function is defined as

Ai(ω) =
1

2π

∫
dtei(ωt+

t3

3
) . (4.42)

which leads to

ψp+,n ∝ ei(p+y
++ n

R
y−)

∫
dse

i(y+ n
ERp+

− m2

2Ep2+
)s− i

6
s3

Ep2+ . (4.43)

In terms of normalization, this becomes

ψp+,n =
1√
|p+|

∫
dpφp+,p(X)e

i
E

(
np
Rp+
−m

2p

2p2+
− p3

6p2+

)
. (4.44)
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4.5 Null-boost orbifold

If we set, R = 0 in O–plane orbifold we get null-boost orbifold [9]. Same as the
O–plane orbifold, the space-time points for null-boost orbifold are identified as

X− ∼ X− , (4.45)

X+ ∼ X+ − (2π∆)X +
1

2
(2π∆)2X− , (4.46)

and X ∼ X − (2π∆)X− . (4.47)

Figure 4.4: For k, different orbital lines on the null-boost orbifold.

From figure 4.4, The Killing vector of null-boost orbifold is k = 2πi∆J+2. This is
space–like excluding the point at X− = 0. At X− = 0, it is null.
The geodesic path difference square between images is

(2π∆nX−)2 ,

Under the following coordinate transformations

X− = y− ,

X+ = y+ +
∆2

2
z2y− ,

and X = ∆zy− .

our metric becomes
ds2

3 = −2dy−dy+ + (∆y−)2dz2 . (4.48)

The integral form of the wave functions can be obtained from the integral form of
the O–plane orbifold by setting, X− → 0,

lim
X−→0

ψp+,n = 2π

√
i

|p+|
δ

(
X +

n

∆p+

)
eip+X

+

. (4.49)
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Chapter 5

Strings on Orbifolds-Stability

In the previous chapter we have talked about the geometry and single particle wave
functions of different time-dependent orbifolds. In this chapter, we shall talk about
the particle interactions. One way to talk about the interactions is to discuss the
large black holes formation. Another way of discussing interactions is to compute
the tree level amplitudes. We shall conclude this chapter by going through the
calculations of One-loop amplitudes.

5.1 Formation of large black–holes

If we consider small perturbations then most of the time–dependent orbifolds become
unstable[5]. This argument is provided by general relativity, however, string theory
does not hold this argument. Now, to state this argument, consider a particle on
the orbifold, which interacts with infinite collection of particles within the orbifold
geometry. If the interactions form a black hole, then we get an indicator that a
black hole is generated in the orbifold quotient space. The condition of happening
this is, the Schwarzchild radius has to be greater than the impact parameter b of
the particle, which has center of mass energy ε,

Gε > bD−3. (5.1)

Here, D= the dimension of space–time. If we consider a world–line which has null
geodesic then

Xa(λ) = paλ+ Ca. (5.2)

Here, pa= momentum and Ca= point on the geodesic. The world line of the n-th
image geodesic is

Xa
n(λ) = panλ+ Ca

n. (5.3)

Here, with the orbifold action enk, pan and Ca
n are the images. The impact parameter

b is,

b2 = Y 2 − 2(p.Y )(pn.Y )

p.pn
, (5.4)

and the center of mass energy, ε is,

ε2 = −2p.pn, (5.5)
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where Y = C − Cn. Now, under these standards, we can find out which orbifolds
are stable. First we start with the O-plane orbifold. We can define pa and Ca by

p =


p+

p−

p
−→p ⊥

 ,

and

C =


C+

0
C
−→
C ⊥

 ,

So, for the n-th image particle the momentum is

pn =


p+ − βp+

β2

2
p−

p−

p− βp−
−→p ⊥

 .

If we consider our n to be large then b and ε become

b ' 2

3
R∆(πn)2, ε ' |p−|2π∆n.

According to our standards, O-plane orbifold is stable. For null-boost orbifold, the
impact parameter becomes b ' 2C if we set R = 0. That means we get unstable
conditions for the null-boost orbifold. Similarly, we can find out that boost and
shifted-boost orbifolds are unstable too. Here one important thing to notice is
that, the stability argument only holds in three-dimension, where we get topological
gravitational interactions.

5.2 Backreaction in three–dimensions

If we ant to understand the three dimensional orbifold geometry which has small per-
turbations then it is important to discuss the two–dimensional dilaton gravity. Here,
we discuss about the backreaction problem for the null–boost and the shifted–boost
orbifolds.
Now, the general form of the three-dimensional metric is

ds2
3 = ds2

2 + Φ2(dz + A)2 . (5.6)

here, ∂z= the Killing direction. And the three–dimensional Hilbert action is∫
d2x
√
−g
(
ΦR− 1

2
Φ3F 2

)
. (5.7)

Here, we introduce Φ3 ? F , which is constant. If we scale down the z, A and Φ−1,
we can amend the constant to our desired value thus ?F = 2/Φ3. For the O-plane

28



and shift–boost orbifolds this is achievable. If we consider, F 6= 0, the equations of
motion becomes ∫

d2x(ΦR− V (Φ)), (5.8)

where, V (Φ) = 2
Φ3 . Now, we are able to follow the orbifold geometry in two dimen-

sional dilaton gravity. If we put on the matter portion, then the general form of the
action is

S2D(g,Φ) + SM(g,Φ,Matter). (5.9)

Then the equations of motion are

2∇a∇bΦ = gab(2�Φ + V )− τab ,

and R =
dV

dΦ
+ ρ , (5.10)

where,

τab = − 2∂SM√
−g∂gab

,

and ρ = − 1√
−g

∂SM
∂Φ

.

The stress energy tensor τab in terms of dilaton current ρ is

∇aτab + ρ∇bΦ = 0 . (5.11)

Now, in dilaton gravity, we define J(Φ) as [4]

J =

∫
V dΦ , (5.12)

and considering the function

C = (∇Φ)2 + J(Φ) , (5.13)

also, for the vector field we define

ka =
2
√
g
εab∇bΦ . (5.14)

Now, if we consider the solutions for vacuum then, τab and ρ becomes zero and
our function C becomes a constant and k becomes a Killing vector. For vacuum
solution, the equations of motion is given by

∇aC = −τab∇bΦ +∇aΦ(τbcg
bc) . (5.15)

For the coordinates z±, the metric becomes

− dz+dz¬eΩ (5.16)

Then, k± = ∓∇± Φ and our killing vector become ∇+∇+ Φ = ∇−∇− Φ = 0.
This is true when τab = 0. Finally, these equations are similar as

∂−k
+ = ∂+k

− = 0 .
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Now, analyzing the geometry

τ± = ρ = 0 ,

and ∂ − τ++ = ∂+τ−− = 0 .

We can describe the effect of these matters by shock wave [1], in this case our stress
energy tensor becomes

τ−−(z−) = εδ(z− − z−0 ) . (5.17)

For, τ−− = 2(∇− η)2 > 0 our equation of motion becomes

∇−C = 2τ−−∇+Φe−Ω = τ−−k
−, (5.18)

Now, if we want to focus on the orbifold, the coupling of matter in the region II
becomes

ds2
2 = −dt2

( E2x2

1− E2x2

)
+ dx2 ,

and
√
EΦ =

√
1− E2x2 . (5.19)

Here, to have normalized potential 2Φ−3, which is canonical, we rescale the field Φ
from previous section. As in vacuum solution, we get the same solutions for shock
wave but with a different constant term, which is

E ′ = E − εk− ,

here, ε is getter than zero and the direction of the killing vector is along the shock
wave. If we consider the vacuum, our killing vector is a function of z+, but in matter
the killing vector becomes

∂−k
+ = e−Ωτ−− .

Here, along the horizon, Ω is a constant and our function k+ changes position along
the shock wave. This solves the changing position for the horizon.

5.3 The Tree–level Amplitudes

Now, for the orbifolds with dimensions (M3/ek) × TD−3, we want to calculate the
tree-level amplitudes. Using the inheritance principle, we limit our focus to external
states. Under the orbifold action, these states are invariant.
Here, the n–point amplitude is given by

δ3
(∑

i

−→p i

)
A(−→p 1, ...,

−→p n) ,

where, −→p i is the momenta. Now, considering the momenta −→p i⊥ which is along the
torus directions TD−3. The mass in D-dimension is given by

m2
i = M2

i + (−→p i⊥)2. (5.20)

From, the inheritance principle, we get the following expression

1√
|Πipi+|

∫
dpi.....dpnδ

(∑
i

pi+

)
δ
(∑

i

pi

)
δ
(∑

i

pi−

)
eiϕ(pi)A(−→p i) . (5.21)

30



From the on–shell condition, we get the momenta

p− =
p2 +m2

2p+

Then, the amplitude ϕ(pi) becomes

ϕ(pi) =
1

E

∑
i

( pini
Rpi+

− pim
2
i

2p2
i+

− p3
i

6p2
i

)
. (5.22)

Here, we have counted the amplitude twice due to isometries. To solve this, we
define the following momenta transformation

p′i+ = pi+ ,

p′i = pi + βpi+ ,

and p′i− = pi− + βpi +
1

2
β2pi+ ,

where, the action of the isometry, β ∈ R. using the condition of
∑

i
−→p i = 0, we

prove that

ϕ(p′i) = ϕ(pi) +
β

ER

∑
i

ni . (5.23)

Under the conservation of the charge ni, the phase ϕ(pi) becomes invariant. Now,
from the integral form of the inheritance principle, we get∣∣∑

i

cipi+
∣∣ ∫ dβδ

(∑
i

cip
′
i

)
, (5.24)

Here, considering
∑

i cipi 6= 0, we change the variables of the momenta and get the
delta function

δ
(∑

i

cipi

)
,

Then, the normalization becomes∣∣∣∑
i

cipi+

∣∣∣ ∫ dβei
β
ER

∑
i ni → 2πER

∣∣∣∑
i

cipi+

∣∣∣δ∑
i ni

(5.25)

Using the Kronecker symbol instead of the Dirac delta function, we can write

A(pi+, ni) =(2πER)δ∑
i ni
δ(
∑
i

pi+)

∣∣∑
i cipi+

∣∣
√

Πipi+∫
dp1...dpnδ(

∑
i

pi+)δ(
∑
i

pi−)δ(
∑
i

cipi)e
iϕ(pi)A(−→p i) .

5.4 The three–point amplitude

If we consider particles 1 and 2 are coming towards and particle 3 is going outwards,
then p1+, p2+ > 0 and p3+ < 0. Here, we are considering A = 1. For the gauge
p3 = 0, the amplitude becomes√∣∣∣ p3+

p1+p2+

∣∣∣ ∫ dp1dp2dp3δ(
∑
i

pi)δ(
∑
i

pi−)δ(p3)eiϕ(pi) , (5.26)
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Considering, p1 = −p2 and p3 = 0, we get

2

√
|p3+|
|p1+p2+|

∫
dp1δ(4α + p2

1(µ12)−1)eiϕ(pi) , (5.27)

In equation 5.27,

µ12 =
p1+p2+

p1+ + p2+

,

and α =
m2
i

4pi+
.

If α > 0, the amplitude becomes zero. Thus, the general form of this in terms of ϕ
is

2

√
µ12

p̄
θ(−α) cosϕ(p̄,−p̄, 0) . (5.28)

Here, p̄ =
√
−4αµ12 .

5.5 The four–point amplitude

If we consider particles 1, 2 are coming towards and particles 3 and 4 are going
outwards, then p1+, p2+ > 0 and p3+, p4+ < 0. For the gauge p1 + p2 = 0, the
amplitude becomes

p1+ + p2+√
p1+p2+p3+p4+

∫
dp1.....dpnδ(

∑
i

pi)δ(
∑
i

pi−)δ(p1 + p2)eiϕ(pi)A(s, t), (5.29)

Here, we introduce the Mandelstam variables, which are

s = −(−→p 1 +−→p 2)2 + s⊥ ,

and t = −(−→p 1 +−→p 3)2 + t⊥ .

where, s⊥ = −(−→p 1⊥ + −→p 2⊥)2 and t⊥ = −(−→p 1⊥ + −→p 3⊥)2. Same as from the three-
point amplitude, for four-point amplitude we introduce µ12 and µ34 as

µ12 =
p1+p2+

p1+ + p2+

,

and µ34 =
p3+p4+

p3+ + p4+

.

Also, we introduce

α =
∑
i

m2
i

4pi+

Now, we can write the amplitude in terms of integral form as∫
dqdq̃δ(qq̃ − α)eiϕA . (5.30)

where, the momenta pi are as follows

p1 = −p2 =
√
µ12(q − q̃) ,

and p3 = −p4 = −√µ34(q + q̃) .
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Now, if we consider with the following terms,

n1 + n3 = p1+ + p3+ = 0 (5.31)

For this case, α = 0, and µ12 = µ34. Similarly from the previous section, the
Mandelstam variables for four-points are

s(q) = s⊥ +
(
m2(µ12)−1 + q2

)
(p1+ + p2+) ,

and t(q) = t⊥ .

Combining everything, we get the amplitude for four points,∫
dq

|q|
A(s(q), t⊥) . (5.32)

We can write this in the form of

A ∼ G
sJ

−t
,

where, G= coupling and J= spin of the coupled particle.

5.6 Eikonal Resummation

For the massless particle, we consider

−→p i⊥ = M2 = m2 = 0

Here, we introduce

δ =
1

2
√
p1+p2+

(p1+ + p3+)

and the Mandelstam variables are

α′s = α′q2(p1+ + p2+) = λ2 ,

and α′t ' −α′s∂2 = −λ2δ2 .

The amplitude is

φ(λ) ' δ

Eα′3/2p1+p2+

[
− n

R
(p1+ + p2+)α′λ+

1

6
λ3)
]
. (5.33)

Here,
−t
s
' δ2

Also, the integral form of the amplitude is

A ∼ G
s2

−t
∼ G

α′
λ2

δ2

In three dimension this becomes

A ∼ −G s2

t+ (2πGs)2
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where,

(2πGs)2 >> −t ,
and λ >> λe .

and the amplitude follows

A ∼ −1

2π2

1

G

Finally,the amplitude for the orbifold is

2
G

α′
1

δ2

∫ λ

0

dλλ− 1

2π2

1

G

∫ λt

λe

dλ

λ
∼ 1

(2π)2

1

G

[
1 + 2ln

(√α′δ2

2πG

)]
. (5.34)

5.7 One–loop Amplitudes

Now, we compute the partition function in bosonic string theory which is known as
one-loop amplitude computation. Mathematically these computations are possible,
but their physical interpretation is still not clear. They generates divergences which
are not still understood and might create a problem in perturbation theory. In
this section, we shall concentrate on the shifted boost orbifold for calculating the
one-loop amplitudes. For, shifted-boost orbifold we know that

X± ∼ e±2π∆X± ,

and X ∼ X + 2πR . (5.35)

Here we define a modified constraint which acts on the total momentum P , which
maintain e2πi(RP+∆J) = 1[3]. We can write this as,

P =
1

R
(n−∆J),

The momenta for X is

pL,R = P ± wR

2
.

For the fields X ± (z, z̃), the modes are

X±(z, z̃) = i
∑
n

( 1

n± iv
a±n
zn±iv

+
1

n∓ iv
ã±n
z̄n∓iv

)
,

where, ν = w∆ and we can write the commutative relations as

[a±m, a
∓
n ] = −(m± iv)δm+n,

[ã±m, ã
∓
n ] = −(m∓ iv)δm+n.

Here, the hermitian conditions are defined as (a±m)† = a±−m, (ã
±
m)† = ã±−m.

For zero–mode, the relations become

[a±0 , a
∓
0 ] = ±iv,
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[ã±0 , ã
∓
0 ] = ∓iv.

If we want to quantize the above relations, we can write the following combinations

a±0 = P± ± v

2
x±,

ã±0 = P± ∓ v

2
x±.

Now, to discuss about this relations interms of the orbifold geometry, we introduce
Virasoro generators, which are represented as

L0 = ....+
1

2
iv(1− iv)−

∑
n≥1

a+
n a
−
n −

∑
n≥0

a−n a
+
n ,

L̃0 = ....+
1

2
iv(1− iv)−

∑
n≥1

ã+
n ã
−
n −

∑
n≥0

ã−n ã
+
n .

Finally, the partition function Z becomes

Z = (qq̄)−
1
8

∑ R√
2τ2

∑
w,w′

exp
[
− πR2

2τ2
T T̄ − 2πτ2∆2w2

]
×q(1/2)ivTrLe

2πiT∆JLq
L

×q̄(1/2)ivTrRe
2πiT̄∆JRq̄

L̃,

Now, we introduce a constant term c, which is

c = e2πi(∆T ) = qive2πw′∆,

Then, the partition function is

Z =
R√
α′τ2

′∑
w,w′

e−(πR2/α′)(T T̄/τ2)−2πτ2∆2w2
∣∣∣θ1(i∆T |τ)

∣∣∣−2

. (5.36)
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Chapter 6

Conclusion

In this thesis, we have discussed the physics of time-dependent orbifolds and their
geometry. We have focused on the orbifolds of three-dimensional Minkowski space.
Discussing about the geometry of these orbifolds and their interactions gave us the
opportunity to discuss such problems like large black hole formation, particle pro-
duction on the orbifolds and one-loop calculations. The solutions to these problems
are essential to understand quantum gravity in a more well defined way. In future,
development in this field will definitely helps us understand the evolution of the
universe in more clear ways.
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Perturbed Ricci Tensor and Ricci
Scalar

In terms of the connection, the Ricci tensor is

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ (6.1)

The 00-component is,

R00 = ∂iΓ
i
00 − ∂0Γi0i + Γα00Γiαi − Γα0iΓ

i
0α

= ∂iΓ
i
00 − ∂0Γi0i + Γ0

00Γi0i + Γj00Γiji − Γ0
0iΓ

i
00 − Γj0iΓ

i
0j

= ∇2Ψ− 3∂0(H− Φ′) + 3(H + Ψ′)(H− Φ′)− (H− Φ′)2δji δ
i
j

= −3H′ +∇2Ψ + 3H(Φ′ + Ψ′) + 3Φ′′ (6.2)

The 0i-component is,
R0i = 2∂iΦ

′ + 2H∂iΨ (6.3)

The ij-component is,

Rij = [H′ + 2H2 − Φ′′ +∇2Φ− 2(H′ + 2H2)(Φ + Ψ)−HΨ′ − 5HΦ′]δij

+ ∂i∂j(Φ−Ψ) (6.4)

Now, for Ricci scalar
R = g00R00 + 2g0iR0i + gijRij (6.5)

Which leads to

a2R =(1− 2Ψ)R00 − (1 + 2Φ)δijRij

=(1− 2Ψ)[−3H′ +∇2Ψ + 3H(Φ′ + Ψ′) + 3Φ′′]− 3(1 + 2Φ)

[H′ + 2H2 − Φ′′ +∇2Φ− 2(H′ + 2H2)(Φ + Ψ)−HΨ′ − 5HΦ′]

− (1 + 2Φ)∇2(Φ−Ψ)

=− 6(H′ +H2) + 2∇2Ψ− 4∇2Φ + 12(H′ +H2)Ψ + 6Φ′′

+ 6H(Ψ′ + 3Φ′) [Removing the non-linear terms] (6.6)
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Overleaf: GitHub for LATEX
projects

This Project was developed using Overleaf(https://www.overleaf.com/), an online
LATEX editor that allows real-time collaboration and online compiling of projects
to PDF format. In comparison to other LATEX editors, Overleaf is a server-based
application, which is accessed through a web browser.

39

https://www.overleaf.com/

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	Introduction
	Geometry and Dynamics
	Metric
	Kinematics and Momentum
	Dynamics

	Cosmological Perturbation Theory
	Perturbed metric
	The Gauge Problem
	Gauge Transformations
	Gauge Fixing
	Perturbed Matter
	Linearised Evolution Equations
	Conservation Equations
	Perturbed Einstein Equations
	Adiabatic Perturbations
	Curvature Perturbations

	Time Dependent Orbifolds
	Orbifold classification and generalities
	Shifted-boost orbifold
	Boost orbifold
	O-plane orbifold
	Null-boost orbifold

	Strings on Orbifolds-Stability
	Formation of large black–holes
	Backreaction in three–dimensions
	The Tree–level Amplitudes
	The three–point amplitude
	The four–point amplitude
	Eikonal Resummation
	One–loop Amplitudes

	Conclusion
	Bibliography
	Appendix A Perturbed Ricci Tensor and Ricci Scalar
	Appendix B Overleaf: GitHub for LaTeX projects

