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Abstract

Electromyography (EMG) signals provide significant information for the diagnosis of
neuromuscular disorders like Amyotrophic Lateral Sclerosis(ALS) which is a form of
Motor Neuron Disease(MND). Due to the stochastic nature of EMG signals different
preprocessing and feature extraction techniques need to be applied in order to extract
useful information from the raw noisy signals. Time-Frequency analysis and EMG
Decomposition are two of the widely implemented techniques for feature extraction
from EMG signals. However, due to extrinsic and intrinsic artifacts any one feature
extraction technique alone does not provide enough information in order to show a
consistent performance of classification across a variety of dataset. EMG signal data
set acquired from different sources provide varying outcome when passed through
the same classification technique. This is a major problem while creating software
which is able to perform automated classification and analysis of EMG signals on a
wide variety of data set with minimum human intervention. This paper proposes a
method for classification of ALS based on evaluation of multiple features extracted
from three domains of EMG signal: time domain representation, frequency domain
representation and Muscle Unit Action Potential( MUAP) waveform acquired via
EMG decomposition of the signal. 43 features were evaluated using feature selection
techniques like chi-squared test and recursive feature elimination. Our experimental
results show that amplitude, duration and area of the MUAP waveform estimated for
each motor unit, inter-spike-intervals of the motor units, variance, zero crossings,
zero lag of autocorrelation, waveform length and slope sign change of the time
domain representation, average spectral amplitude, total power, variance of central
and mean frequency from feature domain representation of the signal provides the
best accuracy at an average rate of 85%, a true positive rate(TPR) of 86% and a
false positive rate(FPR) of 20% approximately.

Keywords: Signal Processing; Machine Learning; Amyotrophic Lateral Sclerosis;
EMG Classification
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Chapter 1

Introduction

This chapter presents a brief overview of the research by introducing the problem
followed by the aims, objectives and the outline for conducted research.

1.1 Overview

Amyotrophic Lateral Sclerosis(ALS), also known as Lou Gehrig’s disease or motor
neuron disease(MND) is a neuromuscular disorder caused due to the deterioration
of motor neurons in the central nervous system which causes loss of voluntary move-
ment[67]. The term Motor Neuron Disease(MND) is generally used to denote ALS
which is one form of MND and is sometimes used for the entire group. While MND
refers to a collection of diseases there are numerous other kinds of diseases that af-
fects the motor neurons of the nervous system. Therefore, diseases related to motor
neurons are called "Motor Neuron Disorders’ which includes MND and other kinds of

diseases that affect motor neurons like Spinal Muscle Atrophies [57]. Here, the term
MND will refer to ALS and not other motor neuron disorders. The effected regions
generally are bulbar, thoracic, abdominal and limb muscles [22]. The exact cause of

MND is still unclear but some of the factors that are considered to cause MND are
genetic and environmental factors, ageing, exposure to chemicals, fractures and in-
juries, stress, viral infection, etc. From a neurological viewpoint the causes of MND
are Faulty Scaffolding, disruption in transportation of RNA - a protein molecule
responsible for transmitting impulses from motor neurons to different parts of the
body, formation of abnormal clumps of protein molecule in motor neurons, formation
of Oxygen free radical which is a toxic waste near the cells, abnormal functioning
of mitochondria and due to glia cells near the motor neurons[27], [50], [68], [102].
About eighty percent of patients of MND are affected by ALS. The symptoms of
ALS tends to start from the muscles of hand and feet. The muscles initially seems to
become stiff and weak which is accompanied by difficulty in swallowing and speech
[70].

Currently there is no cure for MND and the life expectancy of a patient with MND
is from two to five years although there might be some exception[10], [50]. The
diagnosis of MND is usually done by recording the electrical impulses created within
the nervous system by motor neurons. EMG, Magnetic Resonance Imaging(MRI),
Transcranial Magnetic Stimulation and Surface EMG(SEMG) are some of the signal
acquisition techniques used for recording the activities of motor neurons of a nervous
system. Currently the disease has no definite means of identification but is rather



identified by the process of eliminating the possibilities of other diseases. This task
is not only tedious but also daunting for the patients and their family members.
Therefore, early detection of MND will not only minimize the suffering for patients
undergoing several tests just for the detection of this disease but will also provide a
platform to invent a method for preventing the disease from spreading.
Electromyography(EMG) is an electrodiagnostic technique which is used for eval-
uating and recording the electrical activity produced by different skeletal muscles
of the body [39]. EMG is a very useful device for detection of different myopathic
and neuropathic diseases like ALS as it can directly measure the electrical current
of different regions of the body. However, due to a lot of noise information (also
known as artifacts) because of external factors like ambient noise, inherent noise
in electronics equipment, motion artifact, muscle cross-talk, baseline shift, nearby
electrical equipment like cell phones or lights, etc. [103]. As are result the EMG
signal needs to be filtered, smoothed and preprocessed before use in order to obtain
important information that might be useful for classification of different diseases
like ALS. Different kinds of signal processing techniques have been implemented in
order to extract useful information from EMG signals which might be relevant for
the diagnosis of ALS.

1.2 Problem Statement

Time-Frequency Analysis(TFA), Discrete Wavelet Transform(DWT) and EMG De-
composition Algorithm(EDA) are three of the commonly used techniques for the
classification of Electromyography(EMG) signals of neuropathic, healthy and my-

opathic subjects[15], [20], [35], [56], [61], [77), [90], [91], [107]. However, the per-
formances of these techniques vary with respect to the dataset using which the
classification is being performed. As for example, according to Subasi|[90], classifica-

tion of myopathic, neuropathic and healthy subjects provide a performance accuracy
of 96.75%, 95.1% when classified with SVM and KNN algorithms respectively. The
data was acquired from biceps brachii of the muscle using a concentric needle elec-
trode with a bandpass filer of 5Hz to 10KHz and a sampling rate of 20KHz sampled
for a duration of 5 seconds. The force applied by the muscle was 30% Maximum
Voluntary Contraction(MVC) under isometric conditions. The data was later passed
through DWT using Daubechies4(db4) wavelet and 5 level of decomposition. The
features extracted were Mean of the absolute Value(MAV), Standard Deviation(SD)
and Average power(AP) of each sub-band coefficient and the Ratio of the absolute
mean values(RMAV) of adjacent sub-bands. Total number of features extracted
from each signal were 23(3x6=18 for 6 wavelets and 1x5=5 for 5 wavelets). In
comparison to that, when the same EMG technique was used on a datset provided
by Nikolic M. at Faculty of Health Science, University of Copenhagen in 2001[/1]
which also uses similar parameters provide a performance accuracy of around 60%
and 70% for SVM and KNN classifiers respectively. This clearly shows a variation in
performance of different EMG classification algorithms when subjected to different
dataset. Furthermore, our study shows that the accuracy of TFA ranges around 70-
100% when conducted under some experimental setup whereas its accuracy drops
down to a range of 50-70% and 70-90% for real clinical and simulated EMG sig-
nal data when the classification is performed using open data. Furthermore, the
accuracy of DWT fluctuates around 95-97% for some experimental data whereas



it fluctuates around 60-80% and 70-75% for real clinical and simulated EMG sig-
nals respectively when conducted with open data. Similarly, the accuracy of EDA
ranges around 60-70% and 70-75% for real and simulated signals respectively. Such
variation of performance acts as a barrier to the development of an automated and
adaptable software capable of consistent performance on a wide variety of dataset.
Moreover, redundant feature selection is one of the main problems in classification
of EMG and a careful selection of feature is required based on the problem space
in order to perform efficient classification[25], [71], [21], [87]. Each of the three
aforementioned analysis techniques have quite a large number of possible candidate
features which is likely to carry important information regarding the problem in
hand. As for example, Phinyomark et al. [31] evaluated 37 time and frequency
domain features for classification of wrist and hand movements and Boostani et
al.[11] evaluated 19 features for the control of a prosthetic hand. Moreover, even
though some of the classification techniques show a high accuracy|[36], [64], [77],
[78] using a single domain feature extraction techniques the algorithm is unable to
show a consistent performance when the algorithms are implemented on variety of
dataset.

1.3 Aim of Study

The main purpose of this study is divided into two of the following parts:

1.3.1 Review of different EMG feature extraction and clas-
sification techniques and their limitations during the
development of a general purpose application software

This paper performs a systematic comparison of TFA, DWT and EDA for classifica-
tion of ALS and healthy subjects based on the variation of dataset. The variation of
dataset are based on three factors: change of data repository which shows the vari-
ation of performance for dataset acquired from two different clinical environments,
change of size of input data for training a classifier which shows the adaptation ca-
pability of the algorithm to varying size of training data and change of signal type
which shows the variation of performance for dataset acquired for two different types
of signal like simulated EMG signals and Real EMG signals.

1.3.2 A new Multi-Domain approach for the classification
of Amyotrophic Lateral Sclerosis

The main purpose of this paper is to extract 17 time domain features, 8 time-
frequency domain features, 15 features obtained from the morphology of MUAP
waveform and 3 features obtained from the firing pattern of motor units calcu-
lated using EMG decomposition. Two candidate best-feature-sets are created using
two feature selection techniques(FST): chi-squared Test(CST) and recursive-feature-
elimination(RFE). Finally the two different feature sets are individually classified
using the Random Forest Algorithm(RFA) which is an ensemble supervised learn-
ing method for classification and K-Nearest Neighbor(KNN) classifier which is a
non parametric clustering method used for classification and regression. The hyper



parameters such as the optimum number of decision trees(RFA) or neighbors(KNN)
are selected using Particle Swarm Optimization(PSO) which is a is a computational
method that optimizes a problem by iterative attempt to improve a candidate so-
lution with regard to a given measure of quality. Performance of the classifiers
were then evaluated using Receiver Operating Characteristic(ROC) curve which is
a graphical plot that illustrates the diagnostic ability of a binary classifier system
as its discrimination threshold is varied.

1.4 Thesis Outline

1. Chapter 2 provides a brief discussion starting from the human nervous system
up to motor neurons and finally about ALS, its type and causes in section
2.1. Section 2.2 contains a review of different machine learning algorithms
currently used for classification and regression. It also provides a brief review
on existing systems used for the diagnosis of ALS in section 2.3. Section 2.4
of this paper provides a brief introduction to EMG followed by a brief review
of the existing EMG classification systems currently being implemented in
clinical sectors and in research laboratories for diagnosis of ALS.

2. Chapter 3 provides a detailed description of the procedures followed in or-
der to prepare the dataset in section 3.1. Rest of the chapter is divided into
two parts. Section 3.2 provides a detailed description about the system ar-
chitecture developed in order to compare the performance of different EMG
classification algorithms as mentioned in section 1.3.1. Section 3.2 provides
the detailed description of the system architecture developed in order to per-
form classification of ALS using multi-domain feature extraction and selection
as mentioned in section 1.3.2.

3. Chapter 4 is divided into two main sections. Section 4.1 provides the exper-
imental results obtained from the system architecture mentioned in section
3.2. It also performs a detailed analysis of the results found. Similarly, section
4.2 provides the experimental results obtained from the system architecture
mentioned in section 3.3 and performs a detailed analysis on the obtained
results.

4. Chapter 5 concludes the paper with general remarks and a brief discussion on
the limitations and scope of improvement.



Chapter 2

Literature Review

2.1 The Nervous System and Motor Neuron Dis-
ease

2.1.1 The Nervous System

Nervous system is the part of an animal that detects change in environment that
leaves a direct or indirect impact on the body(like touch, perfume, etc.) and then
works in coordination with Endocrine system of the body in order to respond to
such events [58]. It helps to coordinate our actions and process information also
known as external stimuli which it receives from the outside world. In vertebrate,
the nervous system is mainly divided into two parts: Central Nervous System(CNS)
and the Peripheral Nervous System(PNS). CNS is the main processing unit of the
nervous system and PNS are bundles of fibers with neurons that help to transmit
information from different parts of the body to the Central Nervous System and
vice versa.

[ NERVOUS SYSTEM |
T

¥ ¥
[ cenmaLnervoussystem | | pemipHEralnERvOUS SYSTEM |
I i
¥ ¥ ¥ ¥
BRAIN | semacoro | [ somamc | [ avrowomnc | | enremic |
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oR oR

EFFERENT AFFERENT

Figure 2.1: Classifications of the Nervous System

Figure 2.1 shows classification of the nervous system in vertebrates.

Central Nervous System(CNS)

It is the main and largest portion of the nervous system consisting of the brain
and spinal cord. It integrates information that it receives in form of stimuli and
coordinates action of bilaterally symmetric animals. There are different kinds of
cells in brain and spinal cord of the Central Nervous System that manages different
parts of the body and CNS. Some of the cells are discussed below.



1. Astrocytes: It is a kind of glial cell that removes chemicals and protein
that might be harmful for the neurons of CNS. Glutamate is an example of
Astrocyte which kills neuron by a process called excitotoxicity. They produce
proteins known as neurotrophic factor.

2. Microglia: They are immune cells in the body that responds to injured part
of a body by removing dead or dying cells.

3. Oligodendrocyte: It is a cell that wraps around axons of a neuron in order
to transmit information in form of electrical signals at a faster rate. Normally
electrical messages are transmitted via axons at a speed of one meter per
second but with Oligodendrocytes wrapped around the axons, information is
transmitted at a speed of one hundred meter per second.

Peripheral Nervous System(PNS)

The Peripheral Nervous System consists of ganglia and nerves which are bundles
of axons that connects to the different parts of body at one end and the Central
Nervous System in other. It serves as an information relay system between body
and CNS [69].The Peripheral Nervous system is volatile to toxicity and mechanical
injury as it is not protected by skull and the vertebral column.

Brain

It is the central organ of CNS which helps in processing of information, coordination
of activities and decision making of an animal. It mainly consists of cerebrum,
cerebellum and the brain stem.

Spinal Cord

Spinal cord is the tube like bundle of tissues in an animal that extends from medulla
oblangata of the brain to lumbar region of the vertebral column. It acts as the
pathway for transfer of information between the body and brain. The transfer of
information takes place by interconnected neurons which is made up of cell body,
axons and dendrite.

Somatic Nervous System

The Somatic Nervous System is located in PNS which consists of the sensory nervous
system and somatosensory system. It consists of twelve pairs of Cranial Nerve that
transmits somatosensory information from body and head [35].

Autonomic nervous System

it is located in the Peripheral Nervous System and largely controls different functions
of internal organs of the body like heart beat, digestion,etc [15]. It is also responsible
for flight-or-fight response of the body. Most of the functions of Autonomic Nervous
System takes place unconsciously and is regulated by the hypothalamus.



Sympathetic Nervous System

It consists of neurotransmitter like Norepinephrine and Epinephrine which increases
bodily functions like heart rate and decreases the functions that are non critical
for survival like digestion. It is activated during the flight-or-fight response of the
body [109]. It controls activities that are responsible for survival. It functions
involuntarily i.e. we cannot control activities of the sympathetic nervous system.
As for example, the shaking of knee in the state of fear, increase of heart rate, etc.

Parasympathetic Nervous System

Parasympathetic Nervous System helps the body to function in the state of rest
or digestion. When an animal is not in a state of flight or fight then the activity
of sympathetic nervous system decreases and the parasympathetic nervous system
increases.As a result, there is an increase and salivation and activities related to
digestion [541]. The parasympathetic nervous system can be controlled voluntarily
like urination and defecation.

Enteric Nervous System

Enteric Nervous System is a part of the autonomic nervous system which is located at
the digestive tract. It functions on its own without any input from the Sympathetic
or Parasympathetic Nervous System but can still interact with rest of the body [38].
It has various functions related to digestive system.

Afferent Neurons

Afferent or Sensory Neurons in a nervous system are the neurons that receive input
from the outside world in form of external stimuli like light, sound, etc. and converts
it into electric signal by a process called sensory transduction in order for the brain
to process the information [25]. The electric signals are also known as action or
graded potential. As for example, some neurons respond to tactile stimuli like heat,
pressure, etc. and activate motor neurons in order for a muscle to contract or expand
as a response.

The cell bodies of Afferent neurons are located in dorsal ganglia of the spinal cord
which receives external stimuli from the body and transmits it via Afferent nerve
fiber which is a bundle of axons to the brain [76]. Some Afferent neurons receive
external stimuli and hence are known as extoreceptors while others receive internal
stimuli from the body and hence are known as interoreceptors. There are different
kinds of Afferent Neurons based on their functionalities. They are as follows

1. Olfactory Receptor Neuron: Some of the Afferent neurons receive external
stimuli like molecules of odor from the air which later undergoes transduction
and forms the perception which we known as ’Scent’ [35].

2. Gustatory Receptor Neuron: Some of the Afferent neurons receive exter-
nal stimuli from molecules of chemical and undergoes transduction in order to
form the perception of "Taste’.



3. Photo Receptor Neuron: These Afferent neurons receive external stimuli
in form of light or electromagnetic radiation which undergoes transduction in
order to form the perception of "Vision’ [74].

4. Auditory Neuron: these Afferent neurons receive waves generated from
vibrating air molecules and undergoes mechano-electrical transduction in order
to form the perception of ’Sound’. These transduction is performed using the
hair cells of ear which hyper-polarizes and de-polarizes due to movement and
thus releases neurotransmitters.

5. Thermoreceptor Neuron: These afferent neurons converts an external stim-
uli in order to form the perception of "Warm’ or ’Cold’. The mechanism by
which transduction occurs is still unclear.

6. Mechanoreceptor Neuron: These neurons respond to mechanical forces
such as pressure or distortion and converts it into action potential in order for
the brain to perceive "Touch’.

7. Proprioceptor Neuron: These neurons provide spatial information about
different parts of the body to the brain.

8. Nociceptor: These neurons respond to damaging stimuli such as damage to
tissues in the body and forms the perception of "Pain’ [100]. Apart from that
it also responds to stimuli that might represent a potential damage to a cell.
They are found both in internal and external organs of the body. Nociceptors
are of three kinds. They are: thermal, mechanical and chemical.

Efferent Neuron:

An efferent or motor neuron receives information from the Central Nervous System
and transmits it to an effector organ of the body in order to generate an action like
movement. These neurons instruct the muscles to perform an action. These neurons
are mainly of two types: Upper and Lower Motor Neurons [55]. Upper motor neurons
are located in motor cortex of the brain while the lower motor neurons are located
near spinal cord of the body. Information is transmitted from upper to lower motor
neuron which later affects the effector organs of the body.

2.1.2 Motor/Efferent Neuron

Motor Neurons of the nervous system helps in voluntary and involuntary movement
of organs like hand, facial skin, ventilation system of the body, etc. They are
generally located in the motor cortex, brain stem and spinal cord. These neurons
are mainly of two types. They are:

1. Upper Motor Neuron located in cerebral cortex of the brain.

2. Lower Motor Neuron located in ventral horn of the spinal cord’s gray matter
and cranial nerves of the brain stem.

Upper motor neurons transmit information in form of electro-chemical impulses to
the lower motor neurons directly or through inter-neurons which is later forwarded
from the spinal cord to the effectors.
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Figure 2.2: Classification of motor neurons

Figure 2.2 displays different types of motor neurons of the nervous system. The
term 'motor neuron’ generally refers to the lower motor neurons.

Upper Motor Neuron

Betz cells are the largest pyramidal cell that make up the primary motor cortex of
the precentral gyrus. Upper motor neurons or the Efferent neurons are located V of
the primary motor cortex whose axons travel down to form the corticospinal tract
in medulla oblangata on each side of the spinal cord.

Lower Motor Neuron

Lower Motor Neurons function as the interconnection between Upper Motor Neurons
and the muscles or effector organs. They are located anterior gray column, anterior
nerve root or the nuclei of cranial nerve in the brain stem and is responsible for
all voluntary movement of the face like movement of eyes, face, tongue, chewing,
vocalization and swallowing.

Mechanism for muscle movement

Glutamate released from Upper Motor neurons trigger depolarization of the Lower
Motor neurons located in the anterior gray column. As a result an action potential
travels through the axons of the Lower Motor neurons to the neuromuscular junction
where Acetylcholine is released. It carries the signal across synaptic cleft to the post
synaptic receptors of the muscle cell membrane. As a result muscle contracts which
results in movement.

Somatic Motor Neuron

The Somatic Motor Neuron originating in the Central Nervous system is involved
in locomotion. They are connected to skeletal muscles via their axons or efferent
nerve [17]. They are responsible for voluntary movement of the body which makes
up the Somatic Nervous System of PNS.

Alpha Motor Neuron

Alpha Motor Neuron is a type of Somatic Motor Neuron that is responsible for in-
nervating the extrafusal muscle fibers [¢]. These fibers are the main force generating
component of the muscles. A single motor neuron with all its connected muscle fiber



is known as a "Motor Unit’. These Motor Units, based on physiological classification
may be of three types. They are:

1. Slow Motor Unit: These motor units are responsible for controlling small
muscles. They are very resistant to fatigue as they contract very slowly and
hence provides small amount of energy [5]. These muscles as a result sustain
contraction is used to keep the body upright. These muscles gain their energy
via oxidative means and hence requires energy. These muscle fibers are also
called 'Red fibers’.

2. Fast Fatiguing Motor Unit: These motor units are responsible for con-
trolling large muscles. They are very less resistant to fatigue but can apply
a large amount of force. These muscles are used for task that require short
burst of energy like running, jumping, etc. These muscles gain their energy
via glycolytic means and hence do not require oxygen. These fibers are also

called "White fibers’.

3. Fast Fatigue Resistant Motor Unit: These motor units stimulate medium
sized muscles that is much more resistant to fatigue than Fast Fatiguing Motor
Unit but cannot react as fast as them. These muscles provide a greater force
than the red fibers and use both oxidative and glycolytic means in order to
acquire energy.

The number of Alpha Motor Neuron is directly proportional to the amount of fine
motor control in the body. As for example, the number of Alpha motor neurons
involved to move a finger is greater than that of quadriceps.

Location of Alpha Motor Neuron

1. Spinal Cord: The cell bodies of Alpha motor neurons are located in ven-
tral horn of the spinal cord and have the ability to synapse with around one
hundred and fifty muscles fibers on an average [58]. Higher segments of spinal
cord contains muscle that stimulates higher parts of the body like segment C5
to C7 contains Alpha motor neurons that stimulates the muscle of biceps. on
the other hand, muscles of leg are controlled by Alpha motor neurons located
in the lower segments of spinal cord like S1 and S2. In spinal cord, Alpha
Motor neurons are located in Lamina IX region of gray matter in the spinal
cord.

2. Brain Stem: In brain stem the Alpha motor neurons are located within a
cluster of cells called the nuclei along with other neurons like neurons of cranial
nerve. Not all cranial nerve motor contains Alpha motor neuron. It is also
found in medulla, pons and mid-brain.

Renshaw Cells in Alpha Motor Neuron

These cells are inhibitory interneurons found in the gray matter of spinal cord.
These cells are kept informed of how vigorously the Alpha motor neurons are firing
as they receive excitatory stimuli from the Alpha motor neurons as they emerge. It
is also connected to the pool of corresponding Alpha motor neurons as it synapses
with one of the neurons from the pool and thus sends inhibitory stimuli. In this way
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the Renshaw cells represent a negative feedback mechanism for the Alpha Motor
neurons [33].

Inputs to Alpha Motor Neuron

1.

Upper Motor neuron: Alpha motor neurons receive input from the Upper
motor neurons via several path including but not limited to Corticonuclear,
Corticospinal and Rubrospinal tracts [110]. The Corticospinal and Corticonu-
clear tracts are involved in information transfer from upper to the lower motor
neurons regarding voluntary movement.

. Periphery: The sensory input to Alpha motor neurons is extensive and has its

origin in the Golgi tendon organs and other sensory neurons of the periphery.
It creates a complex neural circuit which is responsible for reflex like knee jerk
during fear.

. Interneurons: The most extensive input to Alpha motor neuron is from local

interneurons of the spinal cord.

Outputs from Alpha Motor Neuron

1.

Like other neurons Alpha motor neurons transmit information in form of elec-
trochemical impulses known as action potentials. Action potentials are rapid
changes in electrical activity that is transmitted from cell body of the neuron
to its axon [3].

. In order to increase the speed of information transmission, these neurons have

large diameters and are myelinated by Oligodendrocytes and Schwann Cells.

Oligodendrocytes myelinate the portion of axon of Alpha motor neurons that
lies in the CNS while Schwann Cells myelinate the the axons that lie in PNS.

. The transition between information of CNS and PNS takes place at the level of

Pia meter which is the most delicate and innermost layer of meningeal tissue
surrounding components of the Central Nervous System.

. the axon of an Alpha motor neuron connects with the extrafusal muscle fiber

via neuromuscular junction which is a special type of chemical synapse. This
chemical synapse differs in structure and function from chemical synapses
that connect other type of neurons. As for example, although both synapses
transduce electric signals to chemical signals using neurotransmitters, synapses
of neuromuscular junction uses Acetylcholine while others use Glutamate or

GABA.

. Acetylcholine released from the neuromuscular junction during transmission

of impulse from alpha motor neurons to extrafusal muscle fibers is sensed by
nicotinic Acetylcholine receptors of the fibers which finally causes contraction
in the muscles.

Alpha motor neurons have heavily myelinated axons for rapid information
transmission in contrast to the axons of Gamma motor neurons.
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Beta Motor Neuron

Beta motor neurons are responsible for innervating the intrafusal muscle fibers of
the muscle spindles with collaterals to extrafusal muscle fibers [(]. In terms of
functionality Beta motor neurons are generally of two types. They are:

1. Slow Contracting: These form of Beta neurons are responsible for innervat-
ing the extafusal muscle fibers.

2. Fast Contracting: These form of Beta motor neurons are respsonsible for
innervating the intrafusal muscle fibers. Intrafusal muscle fibers are special
type of skeletal muscle fibers that serve as specialized sensory organs known
as Proprioceptor that detect the change of length in a muscle. They contain
muscle spindles and are inverted by axons of one sensory and one motor neuron.

In terms of innervation of nuclear fibers of muscle spindles, Beta Neurons can be
classified into two types. They are:

1. Static Beta Neuron: These Beta neurons innervate the nuclear chain fibers
of the muscle spindles with collateral to extrafusal muscle fibers. Nuclear
chain fiber is a special type of intrafusal muscle fiber or more precisely a
sensory organ contained within the muscles which along with the Nuclear bag
fiber is responsible for detection of change in length of a muscle. There are
almost three to nine Nuclear chain fibers per muscle spindle and their nuclei
are aligned in a chain that are responsible for exciting the secondary nerve.
'Nuclear chain’ refers to the structure of central region of the muscle fiber
where sensory axon wraps around the intrafusal fibers.

The secondary Nerve association is involved in detecting stress and strain
placed on a muscle which is later interpreted by the afferent and efferent
pathways in order to measure the amount of stretch in a muscle and forwarded
to the Central nervous System.

2. Dynamic Beta neuron: These Beta neurons innervate the nuclear bag fibers
of the muscle spindles with collaterals to the extrafusal muscle fibers. The
Nuclear bag fiber is a type of intrafusal muscle fiber that lies in the center of
a muscle spindle. Each Nuclear bag fiber has a large number of concentrated
nuclei in bags and causes excitation of both primary and secondary nerve.
There are two types of Nuclear Bag fiber based on the speed of contraction and
innervation of muscles. They are Bagl and Bag2. These Bags are responsible
for sensing dynamic length of a muscle and are sensitive to length as well as
velocity.

Gamma Motor Neuron

Gamma Motor neurons are responsible for innervating the intrafusal muscle fibers
and regulates the sensitivity of a muscle spindle to muscle stretching [7]. Intra-
fusal muscle contracts with the activation of Gamma motor neurons so that only a
small stretch is required in order to activate the sensory neurons and stretch reflex.
Gamma motor neurons can generally be divided into two types. They are:

1. Dynamic Gamma Motor Neuron: These motor neurons manages the
BAGT1 fiber of Nuclear bag fiber and enhances dynamic sensitivity.
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2. Static Gamma Motor Neuron: These motor neurons manage BAG2 fibers
of the Nuclear bag fiber and enhances stretch sensitivity.

Cell bodies of Gamma motor neurons are located in the anterior gray column of
the spinal cord. They receive input from the reticular formation of Pons and Brain
stem. They are not directly involved in contraction and expansion of muscles but
helps in keeping the muscles taut so that alpha motor neurons can fire continuously
leading to muscle contraction. It also plays a role in adjusting sensitivity of a muscle
spindle.

Alpha Gamma Co-activation

When the Central Nervous System sends a signal to Alpha Motor neurons, it also
gets transmitted to Gamma motor neurons in order to keep the muscle taut [110].
This is known as Alpha-Gamma co-activation. Without Gamma motor neuron,
muscles would be very loose with the increase in contraction of the muscles. This
would prevent the muscle spindles from detecting a precise amount of stretch.

Fusimotor System in Gamma Motor Neuron

It is a system by which the Central Nervous System controls the sensitivity of muscle.
It consists of muscle spindle, Gamma and Beta neurons. As Beta Motor neurons
innervate extrafusal and intrafusal muscles, it is known as Skeletofusimotor neuron.
Gamma Motor Neurons are efferent part of the Fusimotor System whereas muscles
spindles are afferent part as they send information from muscle towards brain and
spinal cord.

Gamma Bias

The consistent level of activity of Gamma motor neuron is known as Gamma Bias.
Smaller Gamma motor neurons require a small amount of excitatory input in order
to reach the threshold. Therefore, Gamma motor neurons are likely to fire more than
Alpha Motor neurons and hence creates a situation where Gamma motor neuron
also fires consistently in the absence of a muscle stretch.

Visceral Motor Neuron

Visceral Motor Neurons control involuntary functions mediated by the activity of
smooth muscle fibers, cardiac muscle fibers and glands [13]. Homeostatis is the
continuous regulation of the expenditure and refilling of body’s resources in order to
maintain the balance of physiological functions of the body.Visceral Motor neurons
are mainly controlled by the hypothalamus and the complex circuitry of the spinal
cord.

General Visceral Motor Neuron

These Visceral motor neurons provide innervation to smooth muscles, cardiac mus-
cles and glands of the body. The fibers of General Visceral Motor neurons can either
be sympathetic or parasympathetic and exists in Oculomotor nerve, Facial nerve,
Glossopharyngeal nerve and Vagus nerve of the Crania nerves.
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Special Visceral Motor Neuron

Special Visceral Motor neurons provides innervation of the muscles of Pharyngeal
arches in humans and Branchial arches in fish. It exists within Trigeminal nerve, Fa-
cial nerve, Glossopharyngeal nerve, Vagus nerve and Accessory nerve of the Cranial
nerves.

Movement of Muscles due to Motor Neurons

A single motor neuron has the ability to innervate multiple muscle fibers and a single
muscle fiber can undergo many action potentials in the time taken for a single twitch
of the muscles. As a result the twitches can superimpose on each other if an action
potential arrives before a twitch. This superimposition takes place either through
summation of the twitches or through tetanic contraction.

In case of summation, the muscle is stimulated repeatedly in such a way that ad-
ditional action potentials coming from the Somatic Nervous System arrive before
the twitch. The twitches thus superimpose on each other generating a force greater
than a single muscle twitch.

In case of tetanic Contraction, the action potentials arrive so rapidly that individ-
ual twitches are indistinguishable and tension rises smoothly eventually reaching a
plateau.It is a form of constant but very high frequency stimulation of muscles.

2.1.3 Motor Neuron Disease

Motor Neuron Disease (MND) is a neurological condition that progressively damages
the specialized nerve cells in our body known as motor neurons. This disease leads to
progressive weakness of different muscles of our body that are involved in voluntary
and involuntary movement. The effected regions generally are bulbar, thoracic,
abdominal and limb muscles[22]. It has no known cause and is usually followed by
death due to loss of muscle movement in organs that is used for ventilation like
respiratory organs.

2.1.4 Types

Motor Neuron Disease can be of different types depending on the affected region of
the Nervous System and origin. Some form of MND affects the upper motor neurons
which is also known as spasticity or hyperreflexia while others can affect the lower
motor neurons in the spinal cord which is also known as weakness or atrophy|[16].

Amyotrophic Lateral Sclerosis (ALS)

This form of Motor Neuron Disease leads to Upper and Lower motor neuron de-
generation. This is the most common type of MND and generally motor neuron
disease refers to ALS. About eighty percent of patients of MND are affected by
ALS. The symptoms of ALS tends to start from the muscles of hand and feet. The
muscles initially seems to become stiff and weak which is accompanied by difficulty
in swallowing and speech [70].

14



Hereditary Spastic Paraplegia (HSP)

This form of Motor Neuron Disease leads to degeneration of upper motor neurons
only. In this form of MND the predominant symptom is confined to lower extremity
(like the lower limbs) which may include weakening, involuntary spasm and muscle
stiffness [51]. Other symptoms may also include gradual weakness in muscles, in-
creased muscle tone, urinary problems, lack of sensation in feet, epilepsy, dementia,
ichtyosis and loss of hearing.

Primary Lateral Sclerosis (PLS)

This form of Motor Neuron Disease (MND) leads to degeneration of upper motor
neurons and pyramidal tracts in the brain and spinal cord with lower motor neurons
preserved [32]. It is a rare form of Motor Neuron Disease which mainly causes
weakness in legs and muscles. Some people is also known to have felt clumsiness in
hand and speech.

Progressive Muscular Atrophy (PMA)

This form of Motor Neuron Disease leads to degeneration of lower motor neurons
in the spinal cord. However, degeneration of upper motor neurons may occur in
twenty to thirty percent of the patients with initial diagnosis within typically five
years from onset up to 10 years [95]. The small muscles of the hand and feet are
usually affected first but the muscles do not become stiff.

Progressive Bulbar Palsy (PBP)

It is a very rare form of Motor Neuron Disease which affects the Bulbar region of
the lower motor neurons in spinal cord. The muscles involved in talking, chewing
and swallowing i.e. the Bulbar muscles are affected in this form of MND.

Pseudobulbar Palsy

This form of motor neuron disease affects the Bulbar region of the upper motor
neurons in the brain. The symptoms are slow and indistinct speech, difficulty in
swallowing (also known as Dysphagia), Dysarthria, labile affect and brisk jaw jerk.

2.2 Machine Learning Algorithms

Learning is a many-faceted phenomenon that requires acquisition of new declarative
knowledge, development of motor and cognitive skills through practice or instruc-
tion, generalization of acquired knowledge, effective representation of the knowledge
and interpretation of new acts through observation and analysis [36]. The study of
computer science in which algorithms are designed to provide machines the ability to
learn in a similar way through experience and practice is known as machine learning.
The process of Machine Learning is similar to that of data mining and predictive
modeling. It requires searching through data in order to look for patterns and self
adjust accordingly. Machine Learning can mainly be divided into two types. They
are:
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1. Supervised Learning: Supervised machine learning is a process in which
the machines are trained first to perform a specific classification or regression
using labeled and preprocessed data from which the machines try to find a
pattern through trial and error that will be useful for predicting output from
an unknown data [08]. This process is generally known as training the machine
so that it can provide a desired output when supplied with an unknown data.
Some examples of supervised machine learning algorithms are Support Vector
Machine, Deep Neural networks, Random Forest Algorithm, etc.

2. Unsupervised Learning: Unsupervised Machine learning includes predic-
tion of an outcome like supervised learning but it does not require to be trained
from a set of known and labeled data first. As a result, although it does not
have a means of calculating accuracy of the output it uses an iterative approach
to extract various key features of the data in order to predict an output. Some
of the examples of Unsupervised Machine Learning algorithms are K-Means
clustering, Auto Encoder Neural Networks, Method of moment, etc.

2.2.1 Linear Regression

Regression is a statistical approach for detecting relationship between a variable of
interest or prediction class and a set of predictor variables also known as features
[30]. It is a method of supervised machine learning in which a set of training data is
provided to a multidimensional feature space of some independent and one depen-
dent variable. If multiple dependent variables exist that are not correlated to each
other then the regression is known as Multiple Linear Regression. In case of multi-
ple correlated variables, the regression is known as Multivariate Regression analysis.
The model tries to find an equation that best fits the data in that given feature
space. In simple linear regression this is done by finding a straight line that best fits
the data and hence is known as the Best Fit Line.
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Figure 2.3: Linear Regression Graph

Figure 2.3 shows a graph of Linear regression where X-axis contains the independent
variable also known as feature and Y-axis contains the dependent variable. The
points in the graph are labeled data set that contains labeled prediction for the
respective input features. The straight line is the best fit line that describes the
data set in the feature space. Any value for the independent variable will produce
the corresponding value for the dependent variable on the Best Fit Line.
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The equation for the best fit line can be written as:
y=mx+b (2.1)

Here 'm’ is the slope, 'x’ is the input value, 'b’ is the y-intercept and 'y’ is the
predicted value for the given input.
The equation for determining the slope of Best Fit line is as follows:
XY - XY
(X)2 - X2
Here X is the mean of all values of dependent variables of the training set and
Y is the mean of all values of the labeled predicted or independent variable of the
dataset. This equation is applicable for two dimensional feature space i.e. containing
one dependent and one independent variable.
The equation for determining intercept of the best fit line is as follows:

b=Y —mX (2.3)

The error for each data in the training dataset can be calculated using the R Squared
algorithm by calculating error i.e. the square of the Euclidean distance between the
data point and the best fit line. The equation for calculating the Co-efficient of
determination is as follows:

R(Y)?

T (2.4)

Co — ef ficientofdetermination = 1 —

Here Y is the best fit line. Co-efficient of determination is used to determine the
quality of the best Fit line produced where high Co-efficient of determination in-
dicates a better fitted line for the dataset. Hence, a best fit line has the highest
Co-efficient of determination and thus can be used as a proof for the best regression.
Accuracy of the model is directly proportion to the Co-efficient of determination.

2.2.2 K-Nearest Neighbor

K-Nearest Neighbor is a non-parametric supervised machine learning algorithm for
classification where labeled data of different classes or groups are fed to a model
which tries to group the data based on their respective classes [19]. As a result
when an unknown data is fed to the model, 'K’ nearest data points to the unknown
data elects to determine to which class the unknown data point belongs. Here, 'K’ is
the user defined number of data points with the minimum Euclidean distance from
unknown data. Normally the value of K is selected to be a number such that the
election does not contain any tie. Generally it depends on the number of available
classes.

The equation for the Euclidean distance between two data points is as follows:

Euclideandistance = (2.5)

Here 'n’ is the number of dimensions of features, 'q’ is one point and ’p’ is the other
point whose distance needs to be calculated. Distance between unknown and each
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data point is calculated this way and K nearest points with the minimum distance
determines the class for unknown data.

One advantage of this algorithm is that the confidence of the model can be deter-
mined which is equal to the percentage of votes received for a correct predicted
class.

2.2.3 Random Forest Algorithm

Random forest Algorithm is a supervised Ensemble Learning algorithm where mul-
tiple decision trees are constructed using labeled training data and a set of features
for the data [108]. A set of such decision trees provide classification output for an
unknown data and the final classification output is determined by the majority vote.

Decision Tree

It is an algorithm that takes a set of correlated data that shares some common
features or attributes and splits the data into a logical tree in order to perform
classification.The basic idea of Decision Tree is to build a tree greedily by choosing
the 'most significant attribute’ to be the root of the tree and then splitting the
dataset based on the attribute values and repeating the process on new terminal
leaves [62].
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Figure 2.4: Example of Decision Tree

Figure 2.4 shows a table containing of 8 inputs data each of which is a row containing
the weather, wind and humidity condition for each day and a decision based on the
three features whether ’X’ played on that day.

Therefore, the decision tree for the prediction of whether "X’ will play if the outlook
of the weather is 'Rain’, Humidity is 'High’ and the wind is "Weak’:

Figure 2.5 shows a decision tree for whether "X’ will play in the provided conditions
or not. The shaded region indicates nodes of the tree that are features of the dataset
and are selected using algorithms like Information Gain, GIGI index approach, etc.
The leaves without any child are "Pure subsets’ as the node provides only one decision
output. The non-shaded circles indicate all possible values of the attribute. The
attribute "Vote’ indicates the number of votes provided by the specific node for each
output. It is also known as the ’Confidence’.

In order to determine whether X will play if the outlook of the weather is 'Rain’,
Humidity is 'High’ and the wind is "Weak’ can be determined by traversing the
decision tree in the following way:

1. Start from root node 'Outlook’. For the problem, as the value of outlook is
'Rain’, traversing down that parameter provides the feature Node "Humidity’.
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Figure 2.5: Example of Decision Tree(contd.)

2. Traversing down the node of "Humidity’ the node 'High’ is chosen to be tra-
versed next as it is the value of the required Humidity.

3. Since the node "High’ is a pure subset, the decision of this node is taken as
the final decision value which is "Yes’.

4. Therefore according to the classification of the decision tree, X will play in the
aforementioned conditions.

Iterative Dichotomizer(ID) 3 Algorithm

ID3 is an iterative approach invented by Ross QUinlan to generate a decision tree
[L1]. It splits a set of training data among each leaf node in order to create a set
of pure subsets that will take part in decision making process. The algorithm is as
follows:

—split(node, dataset) :

1. A < — The best attribute for splitting dataset

2. attribute < — Decision tree attribute for node A

3. For each value of A create a child node and add it to a list
4. Split dataset among the child nodes.

5. For each child node in the list, if the subset is not pure then split(childnode, subseto f datasetintl

Choosing the best attribute

In order to choose the best attribute from the list of features in the data set we need
to expand(or split into child nodes) each feature and measure purity for each split
so that the machine can decide which split will be the most efficient. The metric
used for measuring purity of the split is known as 'Certainty’.
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Entropy

It is the mechanism to measure uncertainty of a class in a subset of examples. It
provides a value between 0 and 1 which indicates the rate of uncertainty regarding
a certain decision. The equation for Entropy is:

H(S) = —P,.logs(Py) — P_.logs(P-) (2.6)

Here 'S’ is the subset of training examples, P, and P_ are the percentage of positive
and negative examples in the set. H(S) is the entropy or uncertainty for the training
subset.

Information Gain

Information Gain is an algorithm that aggregates information from different child
nodes of a decision tree in order to measure purity or uncertainty of a parent node
[96]. Generally, the number of pure(positive or negative) subsets provides a better
purity for the parent node. The equation for the expected drop in entropy after
splitting training examples among the child node is as follows:

Gain(S,A) = H(S) = > |?|H(Sv) (2.7)

veValues(A) | |

Here v’ is the possible values for attributes ’A’, 'S’ is the set of training examples 'x’
and ’S,’ is the subset of examples where x4 = v. Gain(S, A) is the average purity
for the attribute node. An attribute with the highest gain has the highest priority
of being chosen as the attribute node to be expanded in the decision tree.
Some of the problems with Information Gain is that it is biased towards the node
having many values whether the values be the one which will provide the desired
output or not. Moreover, the algorithm does not work if a new value for a specific
feature or attribute of the training dataset is added. In this case, the best solution
is to use Gain Ratio whose equation is as follows:
, , Gain(S, A)

GainRatio(S, A) = SplitEntropy(S. A) (2.8)
Here Gain Ratio penalizes the attribute with many values in order to reduce the
bias. The equation for Split Entropy(S, A) is as follows:

Sy Sy
Split Entropy(S, A) = — Z ’S|.log|—s| (2.9)
veValues(A) ‘ | ‘ |
Here ’A is the candidate for Attribute whose Gain Ratio has to be calculated, v’
is the possible values of "A’, 'S’ is the set of training examples 'X’ and ’S,’ is the

subset where X4 =V

Multi Class Classification

The equations provided are for a decision tree that can perform binary classifica-
tion(0 or 1). But for generating decision trees that can perform Multi Class Classifi-
cation the structure of the algorithm will be the same but the tree will predict most
frequent class in the subset of nodes. The equation for Entropy will also change in
this case.
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Regression

A Decision tree is also able to perform Regression where the predicted output will
be the average of training examples in the subset. It will also require a different
equation for entropy and can use linear regression at leaves.

Random Forest

It is an algorithm where multiple decision trees are generated and each tree performs
independent classifications for a specific prediction and the final output will be
selected by the votes of the trees where each tree votes for a specific output.

2.2.4 Support Vector Machine

Support Vector Machine is a supervised machine learning algorithm invented by
Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963 [23]. It can perform both
classification and regression by creating a Maximum Margin Hyperplane that lies
in a transformed input space and splits the example classes while maximizing th
distance to the nearest cleanly split example [60].
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Figure 2.6: Support Vector Machine Graph

Figure 2.6 shows the output graph for a Support Vector Classification where the
points represent the coordinates of training data in a two dimensional feature space
and color of the point represents a class e.g. yellow indicates data points of class "0’
and purple points indicate the class '1’. The dashed(—) straight lines represent the
edges of the hyperplane separating data points of the two classes. The points on
the dashed lines are known as support vector, the line in between the dashed line
represents the median of the hyperplane and the dashed rectangular region is the
Maximum Margin Hyperplane.

Maximum Margin Classifier

It is a hypothetical classifier where the number of input space forms an 'n’ dimen-
sional space where 'n’ is the number of input variables.
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Hyperplane

It is a line in Maximum Margin Classifier that splits the input variable space. In
Support Vector Machines, the hyperplane separates the input space based on spec-
ified class.

Margin

It is the perpendicular distance between hyperplane and closest data points to it.
The data points are known as support vectors.

Maximum Width

Distance or width between the support vectors of the split classes in an input space
is known as the ’Street’. Width of the split is directly proportional to the efficiency
of the model. So, the maximum width of the street can be calculated as follows:

1 -
i i
Here, o represents Langragian multipliers, 'y’ represents the classification output

for training data and ’x’ represents input training data vector. 'L’ is the maximum
width of the hyperplane due to constraints y;(wz; + b) — 1.

2.2.5 Neural Networks

Artificial Neural Networks can be characterized as computational models inspired
from biological neurons and neural network with particular properties such as the
ability to learn and adapt, to generalize, cluster or to organize data. The first
computational model for neural networks was designed by Warren McCulloch and
Walter Pitts in 1943 [2]. However, as we still know a very little about biological
system, the models designed are oversimplification of biological neural networks
[29]. An Artificial Neural Network(ANN) is composed of a large number of highly
interconnected processing elements(also known as neuron or perceptron) working in
unison to solve computational problems like pattern recognition or data classification
through adaptive learning.It is a form of supervised machine learning.

Types

There are different kinds of Neural Networks designed using different computational
models starting from a single cell neuron to complex multi-layered neural networks
with memory.

Figure 2.7 displays different models of Artificial Neural Networks used for different
kind of computational problems.

1. Perceptron: Perceptron is the fundamental building block of an Artificial
Neural Network just like a neuron which is the fundamental building block of
a biological neural network. However, unlike biological neurons which process
information using electrical and chemical medium, Perceptrons use numerical
data (also known as weights and biases) and mathematical equations in order
to process information. From the viewpoint of Computer Science, it is an
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algorithm for supervised machine learning that can perform binary classifica-
tion for linearly separable problems. This model of Neural Network was first
designed by Frank Rosenblatt in 1957 at the Cornell Aeronautical Laboratory

[4]-

®
Input, I,
‘Weight, W;
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Function | > Output

Weight, W,

Input, I, Bias

Figure 2.8: Structure of a Perceptron

Figure 2.8 represents the structure of a Perceptron with two inputs and one
output. Each input connection contains an adjacent weight which is an ad-
justable numerical value which is multiplied by their respective inputs. The
sum of these weighted inputs determine the output when passed through an
activation function. Each perceptron has a bias which is also an adjustable
numerical value used in order to remove ambiguity from the predicted output.
In this way a single perceptron performs binary classification for a set of inputs
and this process of prediction is also known as forward propagation.

Z = U(Z WiI; + B) (2.11)

Here "W’ represents the weight for Input 'I’, 0’ represents the activation func-
tion and ‘B’ represents the bias of the Perceptron for predicting an Output
7.

Feed Forward Neural Networks: Neural Networks where the data flow
from input to output unit is strictly feed forward and can exist over multiple
layers each containing multiple perceptrons without any feedback connection
are known as Feed Forward Neural Network.
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. Radial Basis Network: Radial Basis Networks are multi-layered Neural
Networks containing Radial Functions which is a special type of function whose
characteristic feature is that the response changes monotonically with distance
from a center point. It was first formulated by Broomhead and Lowe in 1988
[12]. The center, distance from the center and precise shape of the radial
functions are parameters to the model. A Radial Basis Network is linear for
fixed parameters and non-linear if the radial functions can move, change size
or contains multiple hidden layers. There are different kinds of radial function.
The equation for a Gaussian Radial Function for scalar input is as follows:

(x —¢)?

= ) (2.12)

h(z) = exp(—
Here 'c’ is the center, 'r’ is the radius and 'x’ is the input to Gaussian Radial
Function.

. Deep Feed Forward Network: Deep Forward Neural Networks are multi-
layered Feed Forward Neural Network that can perform classification for mul-
tiple output classes. This form of Neural Network can perform classification
for linearly inseparable problems. Convolutional Neural Networks(CNN) are
a form of Deep Feed Forward Neural Networks.

. Recurrent Neural Networks: Recurrent Neural Networks are a form of
Artificial Neural Network designed in 1980s for pattern recognition taking
time and sequence into account i.e it possesses a temporal dimension. Hopfield
networks were discovered by John Hopfield in 1982. Each hidden unit in the
network contains a form of temporary memory where an output is stored and
used with the next input for classification. This creates a relationship between
each sequences of input and hence provides a temporal dimension.

. Long/Short Term Memory Network: Long/Short Term Memory(LSTM)
Networks are a form of Recurrent Neural Network that is capable of learning
long-term dependencies. It was discovered by Hochreiter and Schmidhuber in
1997 [30]. Its default behavior is to remember information for long period of
time. Even though LSTM has a chain like structure for remembering informa-
tion, unlike RNN it has a different structure for repeating modules. The cells
in LSTM has the ability to add or remove information from cell states which
is carefully regulated by structures called gates. Gates are way to regulate the
transmission of information by either permitting or denying the passage of an
information.

. Gated Recurrent Unit Network: Gated Recurrent Unit(GRU) Networks
are a form of RNN that solves the Vanishing Gradient Problem of RNNs by
using gates like LSTM Networks. It was first introduced in 2014 by Kyunghyun
Cho et al [92]. In order to solve the Vanishing Gradient Problem GRU uses
update and reset gates with Long Term Memory.

. Auto Encoder Networks: An Auto Encoder(AE) Neural Network is a type
of Artificial Neural Network which is used to learn efficient data encoding
using unsupervised machine learning mechanism. It encodes a set of data
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generally for the purpose of dimensionality reduction and is often integrated
within sparse and deep neural networks. Some of the forms of Auto Encoders
are Variational AE that can make strong assumption about the distribution of
latent variables, Sparse AE which solved the difficulties which were associated
with training traditional AE and Denoising AE that takes partially corrupted
input and while training in order to recover the original undistorted input.

Activation Functions

In Artificial Neural Networks inspired from Biological Neural Networks, the activa-
tion function is usually an abstraction representing the rate of action potential firing
in each neuron or perceptron. In the most simplest form the function is binary i.e.
it decides whether the perceptron will fire or not. This form of activation function
is known as Threshold functions. There are other forms of activation function e.g.
identity function, binary step function, bipolar step function, sigmoidal function,
ramp function, etc. Some of the popular non-linear activation functions are:

1. Rectified Linear Unit(ReLU) function [Range: 0 to oo]
2. Tanh function [Range: -1 to 1]
3. Sigmoid function [Range: 0 to 1]

4. Leaky ReLU [Range: -co to o0
Some of the desirable properties of activation functions are:

1. The function should be non-linear.
2. The function should be continuously differentiable.

3. The range of activation function should be finite as it makes gradient based
optimization methods more stable.

4. The function should be monotonic or should have a monotonic derivative.

Cost Function

It is a function that evaluates whether the current set of weights in an Artificial
Neural Network are doing a good job for regression. In other words, it is used to
determine the amount of loss for a predicted output while training an ANN which
is later used to optimize the network. As a result it is also known as Loss Function.
One of the most common form of Cost Function used is Mean-Squared Error(MSE)
loss Function. The equation for MSE function is as follows:

m

700 = 5 > lha, (o — O (2.13)

i=1
Here 'm’ is the number of items in the training dataset, ’i’ is the i-th element of the
input training dataset and 'y’ is the label or desired output for the i-th element of
the dataset.
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The more generalized form of equation for calculating the Cost function for a par-
ticular training dataset is as follows:

. m K ‘ )\ L—-1 S Sp+1
)= = 7> lilog (ho(w)))+(1—i)log (1= (ho(a e+ DD~ D (0}
i=1 k=1 TS s

1
(2.14)
Here 'm’ is the number of input dataset, 'L’ is the number of Layers in the network,
'K’ is the number of output classes, 'Sy’ is the number of neurons in Layer 'L’, 6"
is the weight matrix of layer "I, "y, is the desired output for class 'k’ and "hy(z?)’ is
the predicted output for input data ’a%’.

2.3 Diagnosis of Motor Neuron Disease

In order to perform diagnosis of MND data can be extracted in different formats
from the patients. Some of the data acquisition techniques are discussed below.

2.3.1 ALS Functional Rating Scale

One of the data acquisition techniques contain questionnaire-based scale that mea-
sures the physical functioning while the patient carries out daily activities of liv-
ing. This form of data acquisition technique is known as ALS Functional Rating
Scale(ALSFR) [1041]. However, this technique is useful for tracking the progress of
the disease rather than detection of it as the technique relies on verbal response of
patients and can only be used when the disease progresses so far that the patient
starts to notice physical problems.

2.3.2 Medical reports

Another form of data acquisition technique requires the patient to undergo differ-
ent medical tests which is used for the detection of ALS. This dataset contains
clinical reports, lab reports, demographic data, family history, etc. of a patient
which is used to detect the disease.Pooled Resource Open-Access ALS Clinical Tri-
als Database(PRO-ACT) is an example of a web application that contains dataset
of such kind. These reports help to detect various symptoms of ALS in a patient
and also helps to rule out other diseases that might mimic ALS.

2.3.3 Nerve Conduction Study

Nerve Conduction Study(NCS) is a medical diagnostic test that evaluates the ability
of electrical conduction of the motor and sensory nerves of the human body by
producing artificial stimulus to the nerves and measuring the response in different
regions of the corresponding motor units. It is an integral part for the evaluation of
ALS in patients and is also useful in distinguishing ALS from other neuropathic and
myopathic diseases. It is usually done by measuring whether abnormal conduction
velocity, distal latency, F-wave latency, etc. exceeds from what is expected from

ALS alone [20].
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2.3.4 Brain Computer Interface

Brain Computer Interface(BCI) is a communication pathway between a wired brain
and an external device. It provides pathway for bidirectional communication with
the brain and is often used for researching, mapping, assisting, augmenting, or re-
pairing human cognitive or sensory-motor functions [99]. This technique uses signals
recorded from the scalp, surface of the cortex or from inside the brain in order to
communicate with the external devices. Electrodiagnostic devices like Electroen-
cephalography(EEG) and Surface EMG are generally used for this purpose. Even
though it is a comparatively new technology researches are currently being per-
formed to use BCI for analyzing different neuropathic diseases like ALS [53].

2.3.5 Electromyography

It is an electrodiagnostic technique which is used for evaluating and recording the
electrical activity produced by different skeletal muscles of the body [29]. It is
done with the help of an electromyograph and shows the waveform of the recorded
electrical activity as a function of time and amplitude. The amplitude generally
represents the electrical voltage produced at in instant in time which might corre-
spond to force generated by the muscle under examination. In case of isometric
contraction of muscles, the relationship between muscle force and smooth rectified
Electromyograph(EMG) signal is usually linear [31]. As ALS is a progressive neu-
rodegenerative disease that gradually destroys the lower motor neurons of the body
and affects the electrical current of the muscles. EMG is a very useful device for
detection of ALS as it can directly measure the electrical current of different regions
of the body. However, raw EMG signals contain a lot of noise information (also
known as artifacts) because of external factors like ambient noise, inherent noise
in electronics equipment, motion artifact, muscle cross talk, baseline shift, nearby
electrical equipment like cell phones or lights, etc. [103]. As are result the EMG
signal needs to be filtered, smoothed and preprocessed before use in order to obtain
important information that might be useful for classification of different diseases like
ALS.

EMGLab is an example of a database containing EMG signal records of different
neuropathic(ALS), myopathic and normal subjects recorded using different types
of Electromyograph (like monopolar, concentric, quadrifilar, etc. needle electrodes)
and different types of muscular contraction (like isometric, ramp and trapezoidal
contraction) [11].

2.4 Electromyography and ALS Classification

Due to its complex nature, a lot of experiments have been conducted in order to
extract information from EMG Signal. Some of the unconventional feature ex-
traction techniques include Linear Predictive Coding(LPC), Multiscale entropy-
based approach, Ensemble-Empirical-Mode-Decomposition-Based Intrinsic Compo-
nent Analysis(ICA), second order volterra series, etc[31], [63], [32], [L01]. However,
state-of-the-art techniques used for feature extraction from EMG signals can be gen-
eralized into three primary types: time domain analysis, frequency or time-frequency
domain analysis and feature extraction from decomposed EMG signals[15], [26], [38],
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[56], [61], [77], [90], [91], [107]. Fattah et al.[78] used Time and Frequency Domain
Features along with Fast Fourier Transform in order to classify healthy subjects
and subjects affected by Amyotrophic Lateral Sclerosis. Pandey et al. used in-
tegrated intelligent computing model for the interpretation of EMG based neuro-
muscular diseases[59]. Christodoulou and Pattichis[30] used Self-organizing Feature
Map(SOFM) and Learning Vector Quantization(LVQ2) technique in order to de-
compose EMG signals into potential MUAPs and to extract different features from
the MUAP waveform and their firing rates. They conducted the experiment using 40
subjects and acquired a success rate of 97.6% and 95.3% when EMG decomposition
was performed using Artificial Neural Networks and statistical learning respectively.
Subasi used soft computing techniques, multi-layer perceptron neural network, dy-
namic fuzzy neural network and adaptive neuro-fuzzy inference system in order to
perform classification of EMG signals using different feature extraction method like
Wavelet Transform and Frequency Domain Features[31]. Rafiee et al. used wavelet
domain features in order to classify EMG signals[73].
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Chapter 3

System Architecture

This chapter contains a detailed description about the insights and procedures fol-
lowed in order to collect and process EMG signal data for the diagnosis of ALS in
Section 3.1. It also discusses the system architectures developed for classification of
ALS using Time-Frequency Analysis|[75], Discrete Wavelet Transform[90] and EMG
Decomposition[30] in Section 3.2. These classifications were performed in order to
compare the change of performance of these classification algorithms as mentioned
in Section 1.3.1. Section 3.3 discusses about a new system architecture developed for
the classification of ALS using selected features from multiple domain representation
of the data.

3.1 Data Collection and Preprocessing

3.1.1 Data Type

The total dataset consists of three main attributes:

1. Subject type: The data acquired are either collected from or simulated for
healthy subjects and subjects affected via ALS.

2. Repository: The data can either be from repository of Nikolic M. at Faculty of
Health Science, University of Copenhagen in 2001[11] or from the repository
of Hamilton-Wright[15].

3. Signal Type: The data can either be a real EMG signal acquired from healthy
and neuropathic subject or it can be a simulated EMG signal representing the
same muscle location.

3.1.2 Subject Group(Nikolic M.)

The material consisted of a normal control group and a group of patients with ALS.
The control group consisted of 10 normal subjects aged 21-37 years of which 4 of
them are females and 6 of them are males. None in the control group had signs
or history of neuromuscular disorders. The ALS group consisted of 8 patients of
which 4 are female and 4 of them are male aged 35-67 years. Besides clinical and
electrophysiological signs compatible with ALS, 5 of the them died within a few
years after onset of the disorder, supporting the diagnosis of ALS[/1].
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Figure 3.1: EMG signal acquired from a subject suffering from ALS - by Nikolic M.

Figure 3.1 and 3.2 shows the EMG signals acquired from a subject suffering from
ALS and a normal subject respectively. The data was acquired from the repository
of Nikolic M. X-axis represents the sample points in the signal and Y-axis represents
the amplitude(uV).

The EMG recording conditions for the dataset are provided below:

1. The recordings were made at low voluntary and constant level of contraction.
2. Visual and audio feedback was used to monitor the signal quality.
3. A standard concentric needle electrode was used.

4. The EMG signals were recorded from five places in the muscle at three levels
of insertion (deep, medium, low).

5. The high and low pass filters of the EMG amplifier were set at 2 Hz and 10
kHz.

Table 3.1 shows the description of each patient from whom EMG recordings were
acquired. The ID column show each subject ID followed by his/her age, gender,
status(whether the subject is healthy or suffering from ALS), duration(the duration
of progression of the disease) and the number of EMG signals recorded from the
subject.

3.1.3 Subject Group(Hamilton-Wright)

The data are simulated EMG signals generated for Normal and Neuropathic sub-
jects using the simulator published as [18]. Myopathic/Neuropathic data has been
simulated for 25, 50 and 75% fibre/motor unit involvement. Each study contains
5 contractions, each is in the range 7.5-12.5 MVC. EMG signals demonstrate the
muscle activity of Biceps Brachii.
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Figure 3.2: EMG signal acquired from a healthy subject - by Nikolic M.

SL No. | ID | Age | Gender | Diagnosis | Duration | Total
1 a0l | 56 M ALS 0.5 years | 12
2 a03 | 61 F ALS 1.5 years | 20
3 a04 | 67 F ALS 0.5 years | 20
4 a0b | 52 F ALS 1.5 years | 3
5 a06 | 56 M ALS 0.5 years | 17
6 a07 | 65 M ALS 1 year 10
7 a08 | 60 F ALS i0.5 years | 15
8 c01 | 29 M Normal N/A 27
9 c02 | 26 F Normal N/A 23
10 c03 | 37 M Normal N/A 30

Table 3.1: Details of subjects - from the repository of Nikolic M.

3.1.4 Data Format/Structure

1. The main dataset directory consists of two folders (train and test) where the
'test’ folder contains patient records for testing the classifier and 'train’ folder
contains patient record for training the classifier.

2. Each of the train/test directory consists of two folders(ALS and normal) where
each folder contains folders for different subjects who falls under the specified

group.

3. The record folders of each subject is stored in a folder(patient folder) bearing
a unique ID number(e.g. a0l_patient, cOl_patient, etc.) for each indi-
vidual patient. Each patient folder can have multiple EMG record folders
obtained from the brachial biceps of the subject. Each record folder contains
information related to each signal recorded from the specific patient.

4. Each record folder of the subjects also bear a unique ID number(e.g. N2001A01BB05,
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N2001A01BBO06, etc.) and each folder contains three files. They are ’data.npy’
and ’data.hea’.

5. data.npy: This file contains the EMG signal recorded from an electromyo-
graph. The data is stored as a Numpy one dimensional array where the length
of array indicates the number of samples obtained at a specific sampling fre-
quency. Number of samples for each signal data is 262124 for a sampling
frequency of 23437.5Hz.

6. data.hea: This is a header file that contains all the information regarding
subject under investigation and recorded EMG signal from the subject. As
for example it contains the sampling frequency and total number of samples
obtained from the signal, gender of the subject, period of diagnosis, duration
of disease, location of placement of electrode, filters used, level of insertion of
needle, etc. The data is stored as a text file.

3.1.5 Data Preprocessing

The raw digital signal obtained from an electromyograph is not very useful as it
contains a lot of noise in the data i.e. it has a very low signal to noise ratio. It
is due to the fact that the recording of nerve activity of a specific muscle region is
interfered due to external factors like nearby electrical equipment. The voltage read-
ing obtained while recording is often a mixture of voltages obtained from multiple
nearby electrical sources [105]. Since there might be multiple cause of random noise,
its signal to noise ratio cannot be known a priori [06]. As a result raw EMG signal
needs to be preprocessed first in order to filter out the noises as much as possible
and keep the important information for further processing and classification. The
Power Density Function of Surface EMG signals contain most of the information in
between 5-10Hz to 400-450Hz. So, these signals are usually filtered within a range of
5Hz(High Pass) to 500Hz(Low Pass). On the other hand, as intramuscular and nee-
dle EMG is recorded from within the muscles, it is usually filtered with a minimum
low pass filter of 1500Hz [37]. Moreover, one of the most important source of noise
for signals with typically low amplitude(mV) is the interference caused by the power
lines(50/60Hz) and their harmonics[12]. Usually these type of noises are removed
using a notch filter. The steps included for preprocessing the data are discussed
below. The signal in the experiment was filtered using a second order Butterworth
Filter with a low pass frequency of 1500 Hz and a High pass frequency of 20Hz.

3.2 System Architecture for ”Review of differ-
ent EMG feature extraction and classification
techniques and their limitations during the
development of a general purpose application
software”

Time-Frequency Analysis(TFA), Discrete Wavelet Transform(DWT) and EMG De-
composition Algorithm(EDA) are three of the commonly used techniques for the
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classification of Electromyography(EMG) signals of neuropathic, healthy and myo-
pathic subjects. However, the performances of these techniques vary with respect to
the dataset using which the classification is being performed. As for example, our
study shows that the accuracy of TFA ranges around 70-100% when conducted un-
der some experimental setup whereas its accuracy drops down to a range of 50-70%
and 70-90% for real clinical and simulated EMG signal data when the classification
is performed using open data. Furthermore, the accuracy of DWT fluctuates around
95-97% for some experimental data whereas it fluctuates around 60-80% and 70-75%
for real clinical and simulated EMG signals respectively when conducted with open
data. Similarly, the accuracy of EDA ranges around 60-70% and 70-75% for real
and simulated signals respectively. Such variation of performance acts as a barrier
to the development of an automated and adaptable software capable of consistent
performance on a wide variety of dataset.

The system architecture developed performs a systematic comparison of Time-
Frequency Analysis(TFA), Discrete Wavelet Transform(DWT) and EMG Decom-
position Algorithm(EDA) for classification of ALS and healthy subjects based on
the variation of dataset. Classification was performed for features extracted from
cach of the three techniques according to the procedure mentioned in [78], [90] and
[36]. The variation of dataset are based on three factors: change of data repository
which shows the variation of performance for dataset acquired from two different
clinical environments, change of size of input data for training a classifier which
shows the adaptation capability of the algorithm to varying size of training data
and change of signal type which shows the variation of performance for dataset ac-
quired for two different types of signal like simulated EMG signals and Real EMG
signals.
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Figure 3.3: Block Diagram for classification using TFA

Figure 3.3, 3.4 and 3.5 shows the block diagrams of the system architecture used for
the classification of ALS using TFA, DWT and EDA respectively. Raw EMG signals
are provided as input to the system and a metric for the measure of performance
of the classifier along with predicted class is obtained as the final outputs. The
complete algorithms are provided in [78], [90] and [30].

3.2.1 Dataset

The total dataset consists of three main attributes:
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Figure 3.5: Block Diagram for classification using EDA

1. Subject type: The data acquired are either collected from or simulated for
healthy subjects and subjects affected via ALS.

2. Repository: The data can either be from repository of Nikolic M. at Faculty of
Health Science, University of Copenhagen in 2001[11] or from the repository
of Hamilton-Wright[15].

3. Signal Type: The data can either be a real EMG signal acquired from healthy

and neuropathic subject or it can be a simulated EMG signal representing the
same muscle location.
Data from other repositories

The main purpose of this research is to compare the classification performance for
a specific classification technique based on variation of input dataset. The classifi-
cation techniques which will be applied for analysis are:

1. Identifying the motor neuron disease in EMG Signal using Time and Frequency
Domain Features with comparison by Fattah et al.[78].
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2. Classification of EMG signals using PSO optimized SVM for diagnosis of neu-
romuscular disorders by Subasi[90].

3. Unsupervised Pattern Recognition for the Classification of EMG Signals by
Christodoulos et al.[30].

3.2.2 Feature Extraction

The following features were extracted for each of the classification techniques:

Feature Extraction using Time-Frequency Analysis

In the paper presented by Fattah et al.[78] data was extracted from the time domain
of low-pass filtered data and frequency domain after performing Fourier Analysis of
the data.The features that were used in this study for the classification of ALS in-
cluded ’Average Amplitude of Spectral Peaks(ASP)” and "Mean Frequency(MNF)’
obtained from magnitude spectrum of FFT of segmented data, 'zero lag of Auto-
correlation(ZLA)” and "Zero Crossing rate(ZCR)’ of time domain of the segmented
EMG signal. Classification was performed based on each of these features extracted
from each segment(frame) of a segmented EMG signal.

Feature Extraction using Discrete Wavelet Transform

In the paper presented by Subasi[)0], data was extracted MAV, AP and SD of the
detail(Level 1 to Level 5) and approximate(Level 1) coefficients of DWT in each
sub-band for a 5th level decomposition of EMG using db4 wavelet.

Feature Extraction using MUAP Decomposition

In the paper presented by Christodoulos et al.[30], features were extracted from the
MUAP waveform and firing pattern identified after decomposing a raw EMG signal
to its constituent potential MUAPs using EDA. The features used for classification
included 'Amplitude difference(AD)’ between maximum negative and minimum pos-
itive peaks, 'Duration’ from the beginning of the MUAP waveform where the signal
is greater than a threshold equal to 1/15 of the amplitude for the MUAP wave-
form, Area of Rectified MUAP(ARM) integrated over the calculated duration, Rise
Time(RT) between maximum negative peak and the preceding minimum positive
peak within the duration, 'Phases’ or Number of baseline crossings within the du-
ration where amplitude exceeds 25 V(plus one) and 'Number of Turns(NOT)’ or
positive and negative peaks where the differences from the preceding and following
turn exceed 25 V for the MUAP waveform.

3.2.3 Classification

The following three classification techniques were used for the three domain features
extracted in previous step:
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Classification for Time-Frequency Analysis

KNN was used to classify subjects with ALS and healthy subjects[75]. The number
of neighbors used in the classification was not mentioned in the paper and hence
PSO was used to calculate the parameter for the number of nearest neighbors.

Classification for Discrete Wavelet Transform

The classifiers used for the classification of EMG signal are KNN, SVM and SVM
optimized using PSO[90]. Random Forest Algorithm(RFA) is also used alongside
these classifiers in order to analyze the performance of RFA in classifying EMG
using the features extracted from DWT.

Classification for MUAP analysis

The paper presented by Christodoulos et al.[36] SOFM and SOFM with LVQ2 was
used to classify healthy subjects and subject affected by neuropathy.

3.2.4 Comparison strategy

In order to analyze the performance of different classification techniques with varying
dataset the following steps were followed:

1. The signals were preprocessed(filtered, cropped, etc.) according to format
defined in the respective papers[78][90][30].

2. The features were extracted according to format defined in the papers.

3. Classification was performed using classifiers and parameters mentioned in the
papers. In case of absence of mention of a classifier parameter, PSO was used
in order to calculate the parameter if it existed within a bounded range; else
a standard value was used for it.

4. The classification algorithms were presented with data from the same muscle
location(Biceps Brachii) and signal type(Real or Simulated) but collected from
different sources. In this case, the first source was the data acquired in the
respective papers and its corresponding performance metrics. The second
source was the data collected from same muscle location but the repository of
Nikolic M.[41].

5. The classification algorithms was then presented with data of different amount
in order to observe the change pf performance with increase in training data.
The data was used from same repository(Nikolic M.). However, due to the
insufficiency of open data for EMG signals of ALS and healthy subjects the
highest size of dataset was limited to only 177 for real EMG signal and 100
from simulated EMG signal.

6. The Classification algorithms were finally presented with data acquired from
the repository of Hamilton-Wright[!8] which simulated EMG signals of Biceps
Brachii of Neuropathic and Healthy subjects. The performance of this dataset
was compared with the performance of real EMG signal obtained from clinical
setup but from the same muscle location.
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7. The performance of each classification technique was then measured using
performance charts, Receiver Operating Characteristic(ROC) curve and Area
Under the Curve(AUC) generated during classification.

8. All the algorithms were reconstructed according to the procedure described in
respective papers.

3.2.5 Parameter Measurement
Time domain Parameters

A 6s long time-series EMG signal was used for extracting time domain features from
the signal. The signal was lowpass filtered at 8KHz and high-pass filtered at 60Hz
respectively. Noise was removed from the signal using DWT with a daubechies-4
wavelet and soft thresholding. 5 levels of decomposition was used for DWT.

Time-Frequency domain Parameters

Power Spectrum(PS), Fourier Coefficients and Power Spectral density(PSD) of the
time-series signal was used for extracting features from the frequency and time-

frequency domain of the signal. A 10ms long window was used in order to estimate
AMD, VCF and VMF from spectrogram of the signal.

EMG Decomposition Parameters

EMG Decomposition was performed according to the procedure mentioned in [30].
The decomposition was performed for 8 motor units. This parameter was chosen
since it has been mentioned in [30] that concentric needle electrodes can record the
electrical activity of 5 to 10 motor units simultaneously. The minimum peak rise
threshold for MUAP waveform was selected as 100 micro-volts as mentioned in [30].
The minimum threshold for potential rise duration was selected to be 0.5ms. This
parameter was chosen in order to remove artifacts with high amplitude[36]. The
MUAP waveform length was chosen to be 10ms.

3.3 System Architecture for ” Multi-Domain Fea-
ture Extraction from EMG Signals and Eval-
uation for the Classification of Amyotrophic
Lateral Sclerosis”

Electromyography(EMG) signals provide significant information for the diagnosis
of neuromuscular disorders like Amyotrophic Lateral Sclerosis(ALS). Due to the
stochastic nature of EMG signals different preprocessing and feature extraction tech-
niques need to be applied in order to extract useful information from the raw noisy
signals. Time-Frequency analysis and EMG Decomposition are two of the widely
implemented techniques for feature extraction from EMG signals. However, due to
extrinsic and intrinsic artifacts any one feature extraction technique alone does not
provide enough information in order to show a consistent performance of classifica-
tion across a variety of dataset. This paper proposes a method for classification of
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ALS based on evaluation of multiple features extracted from three domains of EMG
signal: time domain representation, frequency domain representation and Muscle
Unit Action Potential( MUAP) waveform acquired via EMG decomposition of the
signal. 43 features were evaluated using feature selection techniques like chi-squared
test and recursive feature elimination.

Preprocessing

! ! !

Time Domain | F2duency EMG
Analysis Analysis Decomposition
{Feature Extraction) (Festurs Extraction) {Feature Extraction)

Feature Selection
(Chi-Square Test & Recursive Feature Elimination)

¥

Classification
(Random Forest Algorithm and K-Nearest Neighbor)

¥

Performance Evaluation

Figure 3.6: Block Diagram for classification using Multi-Domain Feature Extraction

Figure 3.6 shows a block diagram of the system architecture developed for the
classification of ALS using feature extraction and selection from multiple domains.

3.3.1 Dataset

The dataset was collected from the repository of Nikolic M. which consisted of a
normal control group and a group of patients with ALS.

3.3.2 Feature Extraction and Preprocessing

Signals in the dataset were first cropped from a total duration of eleven seconds
to six seconds. Then DWT was applied in order to remove noise from the EMG
signals. DWT applied with a soft thresholding is useful for removing artifacts from
EMG signals[72], [75]. The denoised signal was later lowpass filtered at 8KHz using
a second order butterworth filter in order to remove high frequency noise from
the signal. The filtered signals were then passed on to the next stage for feature
extraction.

Table 3.2 contains the features which were extracted via each of the aforementioned
three feature extraction techniques. Full name along with details for the acronym
of each feature is provided later in Chapter 4.

Time domain Features

Features extracted from time-series representation of EMG signals provide important
information regarding probable abnormalities in the signal. Features like Mean
Absolute Value, Cepstrum coefficient, entropy, Average Amplitude Change, etc. are
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Time Domain | Time-Frequency Domain | EMG Decomposition
MAC MDF A.Dur
IMAC MNF V.Dur
RMS TOP A Amp
STD VCF V.Amp
VAR AMD A Ris
ENT VMF V.Ris
ZCR ASA A.Pha
ZLA MNP V.Pha
SKW - A.Are
KUR - V.Are
MAV - Min.Amp
WVL - Max.Amp
WLA - S.Amp
SSC - V.Amp
LDE - V.Min
MMAV - SCR
SMAD - ISI

- - FF

Table 3.2: Candidate Features extracted via Time-Series Analysis, Time-Frequency
Analysis and EMG Decomposition

some of the useful time domain features that provide relevant information regarding
electrical activity within the skeletal muscles of the body[97], [106]. 17 time domain
features were extracted from each time-series signal and later passed on for feature
selection.

Time-Frequency Features

Time-Frequency analysis is a signal processing technique which studies a signal
both in time and frequency domain simultaneously using different time-frequency
representations like power spectrum(PS), power spectral density(PSD), Short-Time
Fourier Transform(STFT), etc[¢1]. This technique is quite better than frequency
domain analysis because it retains some temporal information even after converting
a time-series signal to its corresponding frequency-domain representation. We used
PS and PSD of each EMG signal in order to extract 8 features provided in the table
above.

EMG Decomposition Features

EMG signals recorded using needle electrode comprises of MUAP or spike trains
generated from multiple motor units(MU) within the region of interest. Therefore,
the signal contains rich information about the discharge pattern and organization of
different MUs[19]. In order to extract information regarding different Mus, the signal
needs to undergo a process known as EMG Decomposition which decomposes a signal
into its probable constituent MUs by clustering groups of similar MUAP waveform
based on their morphology[36]. Features like inter-spike-interval, rise time, duration,
etc. can then be extracted from firing patterns and MUAP waveform obtained for
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different MUs in order to perform classification. The EMG decomposition procedure
which is implemented in this paper follows the algorithm presented by Christodoulou
and Pattichis[36]. This algorithm was chosen due to its high decomposition accuracy
and simplicity. Self-Organizing Feature Map(SOFM) was used for identification of
similar MUAP waveform as described in [36]. 18 features were extracted from the
morphology and firing pattern of MUAP waveform in order to perform classification.

3.3.3 Feature Selection

While extracting high level features from a low level data representation, it is likely
that the data may contain irrelevant or redundant features that affect the analysis
negatively. Even though feature extraction in pruning the data and identifying
candidate variables, in many cases the size and dimensionality of scientific data make
it difficult to use available domain information to identify features that discriminate
between the classes of interest[1(]. Feature Selection is a process of selecting some
subset of a learning algorithm’s input variables upon which it should focus attention,
while ignoring the rest, also known as Dimensionality Reduction. There are different
kinds of feature selection algorithms like Principal Component Analysis(PCA), Chi-
Squared Test(CST), Recursive Feature Elimination(RFE), Ridge-Regression(RR),
etc. The following two feature selection techniques were implemented in order to
select the best subset of features from the set of candidate features extracted from
each of the three domains:

Chi-Squared Test

Chi-Squared Test(CST) or Pearson’s chi-squared test is a statistical test applied to
sets of categorical data to evaluate how likely it is that any observed difference be-
tween the sets arose by chance. It is suitable for unpaired data from large samples|1],
[79]. The equation for calculating CST is as follows:

1 <= (O}, — E})?
x2=—2—( kEk t) (3.1)
k=1

Here, 'O’ is the number of observed count and "E’ is the number of expected counts
and "x? is the measure of correlation between a feature and its corresponding
class[33], [15], [94].

15 best features were selected in this paper using CST. The feature selection was
performed using 5-fold Cross Validation and the best 15 features throughout all
steps of the cross validation were selected as final feature set which was later used
for classification.

Recursive Feature Elimination

Recursive Feature Elimination(RFE) is a feature selection technique that fits a model
and rank features recursively according to some measure of importance. It uses
the model accuracy to identify which attributes (and combination of attributes)
contribute the most to predicting the target attribute. The pseudo-code for RFE
is as follows: T <« {Xi,Xs,..., X, } T is the training set consisting of n samples
F «—{fi, fa, ..., [} F is the set of p features M (T, F') Ranking Method
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i =1 to p Rank set F using M(T,F) f* < last ranked feature in F R(p+1—1) < f*
F < F — f* The aforementioned pseudo code for RFE has been collected from [52].
15 best features were selected in the paper using RFE. The feature selection was
performed using 5H-fold cross Validation and the best 15 features throughout all
steps of the cross validation were selected as final feature set which was later used
for classification.

Each of the 15 best features selected using the aforementioned techniques were
passed on to the classifier individually for classification.

3.3.4 Classification and Performance Evaluation

In order to classify healthy subjects and subjects affected with ALS 15 best features
were extracted from each signal in the dataset according to the procedure mentioned
above. K-Nearest Neighbor(KNN) and Random Forest Algorithm(RFA) are the two
supervised machine learning algorithm used in this experiment for classification.
RFA is an ensemble learning algorithm introduced by Ho which builds multiple trees
in randomly selected sub-spaces which enables them to generalize their classification
in complementary ways, and their combined classification can be monotonically
improved of the feature space[24]. It implements stochastic discrimination approach
to classification proposed by Eugene Kleinberg|17].

K-Nearest Neighbor Algorithm is a type of instance-based learning or non-generalizing
learning: it does not attempt to construct a general internal model, but simply stores
instances of the training data. Classification is computed from a simple majority
vote of the nearest neighbors of each point: a query point is assigned the data class
which has the most representatives within the nearest neighbors of the point. It is
a non-parametric method used for classification and regression[19].

The hyper-parameters used in KNN and RFA are the number of neighbors and the
number of decision trees respectively. The optimal hyper-parameter for each classi-
fier was selected using Particle Swarm Optimization(PSO). It is a population-based
search technique that utilizes the concept of social sharing of information[90]. The
PSO algorithm which is implemented in this paper follows the procedure described
in [90]. The dataset consisted of two output classes: normal subjects and ALS
affected subjects. The performance of the classifiers are discussed in Chapter 4.

3.3.5 Parameter Measurement
Time domain Features

The following features were extracted from the time-series signal for classification:

1. Maximum Autocorrelation(MAC): Autocorrelation is the correlation of
a signal with a delayed copy of itself as a function of delay. The maximum
value of autocorrelation was selected as a feature as it provides information
about periodic nature of the signal.

2. Index of Maximum Autocorrelation(IMAC): The index of maximum
value of autocorrelation was selected as a feature as it provides information
about the point where a signal is correlated with itself the most. It is usually
at the 0" index of autocorrelation.
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10.

11.

. Root Mean Square(RMS): The equation for RMS is as follows[%1]:

RMS = (3.2)
Here 'x’ is a signal of length 'N’.
Standard Deviation(STD): The equation for STD is as follows[97]:
L
R )2
STD,o N1 ;(xk 1) (3.3)
Here 'x’ is a signal of length N’ and g is mean of the signal.
. Variance(VAR): The equation for VAR is as follows[97]:
VAR = (0)? (3.4)
Zero Crossings(ZCR): The equation for ZCR is as follows[31]:
N-1
ZCR = Z[sgn(xn % Tp_1 N |y — Tpyt| > threshold] (3.5)
n=1

Here 'x’ is a signal of length "N’ and sgn(z;) is the sign of the value of 'x’ at
index 1.

Zero Lag of Autocorrelation(ZLA): The value at 0" index or time of
autocorrelation of the signal is ZLA of the signal.

Skewness(SKW): The equation for SKW is as follows[97]:

N
% Zn:l(xn - /’6)2

SKW = 3 (3.6)
. Kurtosis(KUR): The equation for KUR is as follows[97]:
1N — )4
KUR=1X Zn:l(ff” 2 (3.7)
o
Mean Absolute Value(MAV): The equation for MAV is as follows[(5]:
| X
MAV = > X (3.8)
k=1
Here, 'X’ is a signal of length 'N’.
Waveform length(WVL): The equation for WVL is as follows[97]:
N—1
WVL =Y [X,1— X, (3.9)
n=1
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12.
13.
14.
15.
16.

Willson Amplitude(WLA): The equation for WLA is provided in [97].
Slope Sign Change(SSC): The equation for SSC is provided in [97].
Log Detector(LDE): The equation for LDE is provided in [65].
Modified MAV(MMAYV): The equation for MMAYV is provided in [31].

Slope of Mean Absolute Deviation(SMAD): The equation for Mean
Absolute Deviation(MAD) is provided in [97]. SMAD is the average difference
between MAD calculated using a 10ms window on the time-series signal.

Time-Frequency Features

The following features were extracted from frequency domain(power spectrum and
Fourier coefficients) and time-frequency domain (power-spectral-density and power
spectrum) of the signal:

1.
2.

Mean Frequency(MNF): The equation for MNF is provided in [21].

Median Frequency(MDF): The equation for MDF is provided in [31].

. Median Power(MNP): The equation for MNP is provided in [$1].
. Total Power(TOP): The equation for TOP is provided in [31].

. Variance of Central Frequency(VCF): The equation for VCF is provided

in [31].

. Average Maximum Density(AMD): Power-Spectral-Density(PSD) is the

spectral energy distribution per unit time of the frequency components of a
signal. AMD is the average of the maximum power-spectral-density(PSD)
calculated with a 10ms window and no overlap.

Variance of Maximum Frequency(VMF): VMF is the variance of the
maximum densities calculated over each 10ms window of the PSD.

. Average Spectral Amplitude(ASA): ASA is the average of all peak am-

plitudes(above mean amplitude) of the Fourier Coefficients of a signal.

EMG Decomposition Features

The definitions for MUAP duration, amplitude, rectified area, rise time, phases,
beginning point and ending point are provided in [36]. The following features were
extracted from the average MUAP waveform and firing pattern calculated for each
motor unit(MU) using EMG Decomposition:

1.

2.

Average MUAP Duration(A.Dur): A.Dur is the average of all the du-
ration calculated for average MUAP waveform of each MU of a decomposed
EMG Signal.

Variance of MUAP Duration(V.Dur): V.Dur is the variance of all the
duration calculated for average MUAP waveform of each MU of a decomposed
EMG Signal.
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10.

11.

12.

13.

14.

15.

. Average MUAP Amplitude(A.Amp): A.Amp is the average of all the

amplitudes calculated for average MUAP waveform of each MU of a decom-
posed EMG Signal.

. Variance of MUAP Amplitude(V.Amp): V.Amp is the variance of all

the amplitudes calculated for average MUAP waveform of each MU of a de-
composed EMG Signal.

. Average MUAP Rise Time(A.Ris): A.Ris is the average of all the rise

time calculated for average MUAP waveform of each MU of a decomposed
EMG Signal.

. Variance of MUAP Rise Time(V.Ris): V.Ris is the variance of all the

rise time calculated for average MUAP waveform of each MU of a decomposed
EMG Signal.

Average MUAP Phase(A.Pha): A.Pha is the average of all the phases
calculated for average MUAP waveform of each MU of a decomposed EMG
Signal.

. Variance of MUAP Phase(V.Pha): V.Pha is the variance of all the phases

calculated for average MUAP waveform of each MU of a decomposed EMG
Signal.

. Average MUAP Rectified Area(A.Are): A.Are is the average of all the

rectified areas calculated for average MUAP waveform of each MU of a de-
composed EMG Signal.

Variance of MUAP Rectified Area(V.Are): V.Are is the variance of all
the rectified areas calculated for average MUAP waveform of each MU of a
decomposed EMG Signal.

Minimum Amplitude(Min.Amp.): Min.Amp. is the minimum amplitude
obtained from the average waveform calculated from the MUAP waveform of
each MU.

Maximum Amplitude(Max.Amp.): Max.Amp. is the maximum ampli-

tude obtained from the average waveform calculated from the MUAP waveform
of each MU.

Slope between Minimum and Maximum Amplitude(S.Amp.): S.Amp.
is the difference between Min.Amp. and Max.Amp.

Variance between Maximum and Minimum Amplitude(V.Amp.):
V.Amp. is the variance of MUAP waveform between Min.Amp. and Max.Amp.

Variance between Beginning Point and Minimum Amplitude(V.Min.):
V.Min. is the variance of the MUAP waveform between beginning point and

minimum amplitude of the average MUAP waveform obtained from the wave-
form of each MU.
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16.

17.

18.

Spike-Count-Rate(SCR): SCR is obtained by counting the number of ac-
tion potentials or spikes that appear during a trial in a spike train and dividing
the result by duration of the trial. The spike train was obtained from firing
sequence of the different MU via EMG Decomposition.

Mean Inter-Spike-Interval(ISI): ISI is the average time duration between
two spikes in spike train of a decomposed EMG signal.

Fano Factor(FF): Fano factor is one of the most widely used measures of
variability of spike trains. Its standard estimator is the ratio of sample variance
to sample mean of spike counts(SCR) observed in a time window[93]. A 10ms
window was used to calculate FF from the spike train of a decomposed EMG
signal.
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Chapter 4

Experimental Results

This chapter contains the experimental results obtained from the classification tech-
niques used in Section 3.2 and 3.3. Section 4.1 contains the results obtained from
Section 3.2 followed by a detailed analysis of the whole classification procedure
along with its results. Similarly, Section 4.2 contains a detailed analysis report for
the classification algorithm proposed in Section 3.3.

4.1 Experimental results for ”Review of differ-
ent EMG feature extraction and classification
techniques and their limitations during the
development of a general purpose application
software”

This section of the paper presents a brief description of procedures followed in or-
der to reconstruct the algorithms being analyzed, result obtained in the respective
papers and the results obtained by applying the same classification techniques on
different dataset.

4.1.1 Classification using Time-Frequency Analysis

EMG signal being stochastic in nature contains a lot of noise information due to var-
ious factors[103]. It is necessary to extract the useful information out of raw EMG
data which requires rather a complex set of statistical analysis technique. One of
them is to extract information from time domain as well as from frequency domain of
a preprocessed signal[77]. Some of the common statistical features extracted from
the time domain of a signal are MAV, Maximum Scatter Difference, Root Mean
Square, SD or Variance, Approximate Entropy, Autoregressive coefficients, Cepstral
coefficients, Histogram, Higuchi’s Fractal Dimension, Kurtosis, etc. Moreover, the
statistical features extracted from the frequency domain of the signal requires some
kind of transformation of the signal to its corresponding frequency domain using
techniques like Fourier Transform[!10] introduced by Joseph Fourier, DWT[39] in-
troduced by Alfred Haar, etc. The common frequency domain features are MNF,
Median Frequency, Peak Frequency, Spectral Moment, Spectral Amplitude, etc.
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These extracted features are used as input to various classification algorithms like
KNN, SVM, etc.

Filtered Signal [LOWPASS: 1500 Hz] of 5 random frames from each subject: Neurogenic(ALS)-Top, Healthy-Bottom
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Figure 4.1: Filtered Segments/Frames

Figure 4.1 consists five random segments from the filtered EMG signal of a Neu-
ropathic and a Healthy Subject. The signal was lowpass filtered at 1500Hz. Figure
4.2 shows the corresponding output of Magnitude spectrum for each filtered seg-
ment using FFT for a neuropathic(Top) and a healthy subject(bottom). Figure 4.3
shows the corresponding output of Autocorrelation for each filtered segment for a
neuropathic(Top) and a healthy subject(bottom).

SL No. | Type Maximum | Minimum | Average
0 Neuropathic | 0.76155e5 0.975e3 0.13761e5
1 Healthy 0.105759e6 | 0.751e3 0.10104eb
2 Neuropathic | 0.41662e5 0.54e2 0.4866e4
3 Healthy 0.16210e5 0.296e3 0.2812e4
4 Healthy 0.105762e6 | 0.851e3 0.7392e4
5 Neuropathic | 0.33692e5 0.198e3 0.4863e4

Table 4.1: Spectral Amplitude of 3 Neuropathic(ALS) and 3 Healthy Patients using
Magnitude Spectrum of FFT

Table 4.1 shows the Maximum, Minimum and Average ASP obtained from the
filtered EMG signal of 6 random subjects using magnitude spectrum of FFT.

Figure 4.4 shows performance graph for classification of EMG signal using ASP
of each signal frame as a feature. X-axis of the graph represents the number of
dataset used for training and evaluating each new instance of a classifier and Y-
axis shows the performance unit in percentage. The blue line shows change in test
accuracy of the classifier as the number of training data was increased. Similarly
orange line shows the change of validation or evaluation accuracy using unknown
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FFT of 5 random frames from each subject: Neurogenic(ALS)-Top, Healthy-Bottom

Segment No. 7 Segment No. 17 Segment No. 16 Segment No. 14 Segment No. 15
80000 + 40000 40000 50000
50000
40000
60000 4 30000 4 30000 ~ 40000
2 ] 1z ] t& 30000 -
= ] = 2 | IS 30000 2
£ 40000 £ 20000 - £ 20000 5 =
g g g g 20000 - £ 20000
20000 4 10000 10000 10000 10000 4
0 0 0 0 0
T T T T T T T T T T
0 500 0 500 0 500 0 500 0 500
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz)
Segment No. 11 Segment No. 23 Segment No. 20 Segment No. 8 Segment No. 2
40000 30000 | 20000 2000 ]
30000
30000 -
2 & 20000 4 1% 20000 s 4 6000
£ 20000 1 = E |2 20000+ 2
£ g 3 g §m
10000 10000
10000 10000 4 2000 4
0 0 0 0 0
0 500 0 500 0 500 0 500 0 500
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz)

Figure 4.2: Magnitude Spectrum of Fast Fourier Transform

data, purple line shows the number of Nearest Neighbors used for classification of
the input dataset, red line shows the change in Specificity of the classifier and green
line shows change in Sensitivity of the classifier. KNN has been used for performing
classification where the number of neighbors are optimized with Particle Swarm
Optimization. The range of performance is from 0 to 100 percent and the range of
input training dataset is from 0 to 177. It can be observed from the figure that even
though training or test accuracy of the classifier fluctuates within 60%-70% with
an increase of input dataset, the validation or evaluation accuracy increases slightly
from 65% to 80%. The variation of training and test accuracy generally occurs due
to over-fitting of training data when the model adapts to noise and detail such that
it negatively impacts the performance of the model on new data. On the other
hand, reduction of accuracy of test data with increase in number of classification
input data shows the degradation in performance of the classifier while handling
large dataset.

Table 4.2 shows the average performance metrics(Average Accuracy-AAC, Aver-
age Specificity-ASP, Average Sensitivity-ASE) for classification with different input
features(for real and simulated EMG signal) over varying amount of input dataset.
The values range from 0 to 100%. Here 'Feature’ column represents the input fea-
ture used for classification. The input features are Average Amplitude of Spectral
Peak(ASA), Mean Frequency(MNF), Zero Lag of Autocorrelation(AZL) and Zero
Crossing rate(ZCR). Here, 'PSO’ indicates that Particle Swarm Optimization(PSO)
was used for choosing best fitted nearest neighbors(else 1 Nearest Neighbor was
used). The input dataset contained a maximum of 177 data of Neuropathic and
Healthy patients and 99 data of Simulated EMG signals of Neuropathic and Healthy
patients. Ten fold cross validation is used for testing and validating the classifier.
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Autocorrelation of 5 random frames from each subject: Neurogenic(ALS)-Top, Healthy-Bottom
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Figure 4.3: Autocorrelation

4.1.2 Classification using Discrete Wavelet Transform and
Particle Swarm organization

One of the approaches for classification of EMG Signals is DWT. It is a wavelet
transformation technique initially introduced by Haar that divides a signal into
sub-bands of different frequency resolution. These sub-bands or basic functions
are known as wavelets[90]. Like Fourier Transform, it helps to analyze a signal
in its frequency domain. However, one of its advantages over Fourier Transform
is that it has a changeable window dimension i.e. for lower frequencies it is wide
and for higher frequencies it is narrow and hence provides a maximum frequency
resolution at all intervals[G1]. One of the constraints of DWT is that a predefined
mother wavelet needs to be chosen for decomposition. There are different kinds
of mother wavelets and db4 wavelet is chosen in the paper for decomposition. A
five level decomposition is used which produces five details and one approximation
coefficient. These coefficients are a list of values at different frequency resolution of
the signal. Features are extracted from these six set of values for each EMG signal.
This feature extraction technique is applied in order to reduce the dimensionality
without losing much important information.

Table 4.3 shows the average performance metrics(Average Accuracy-AAC, Aver-
age Specificity-ASP, Average Sensitivity-ASE) for classification with different in-
put features over varying amount of input dataset. The ’Classifier’ Column repre-
sents the classifier used for performing classification. SVM with RBF Kernel(SVM-
RBF), SVM with Polynomial Kernel(SVM-POLY) and KNN classifiers are used
here. Fewer number of EMG signal data were used in this experiment( 177 for real
signals and 99 for simulated signals) compared to 1200 as mentioned in the paper
in order to observe the performance of the algorithm for reduced number of data.
DWT Features were used for classification.

4.5 and 4.6 shows the Performance Graph for classification of real and simulated
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Feature AAC(%) | ASP(%) | ASE(%)
ASA(Test, Real) 68.22 18.66 57.10
MNF (Test, Real) 43.39 66.90 52.77
AZL(Test, Real) 74.63 25.43 73.19
ZCR(Test, Real) 71.69 37.89 84.62
ASA(Validation, Real) 68.22 63.11 69.92
MNF (Validation, Real) 48.01 52.41 46.50
AZL(Validation, Real) 58.43 69.05 54.56
ZCR(Validation, Real) 49.56 32.12 69.99
ASA(Test, Simulated) 72.40 100 92
MNF (Test, Simulated) 89.22 90.47 98.21
AZL(Test, Simulated) 78.43 100 100
ZCR(Test, Simulated) 66.73 90.47 87.44
ASA (Validation, Simulated) | 69.58 0 90.07
MNF (Validation, Simulated) | 66.43 4.76 92.85
AZL(Validation, Simulated) | 77.80 0 93.57
ZCR(Validation, Simulated) | 85.91 0 96.82

Table 4.2: Average performance table for classification of Neuropathic and Healthy
patients based on different test and validation data(TFA Features).
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Classifier

SVM-RBF (Test, Real)
SVM-POLY (Test, Real)
KNN(Test, Real)

SVM-RBF (Validation, Real)
SVM-POLY (Validation, Real)
KNN(Validation, Real)
SVM-RBF (Test, Simulated)
SVM-POLY (Test, Simulated)
KNN(Test, Simulated)

SVM-RBF (Validation, Simulated)
SVM-POLY (Validation, Simulated)
KNN(Validation, Simulated)

AAC(%)
71.46
52.97
76.87
74.32
57.32
77.11
90.34
72.54
68.004
68.35
70.18
72.40

ASP(%)
32.53
100
35.51
55.91
28.57
59.52
100
07.14
82.14
0.0
0.0
0.0

ASE(%)
75.08
100
93.19
80.59
71.42
85.71
96.42
100
92.85
100
100.0
93.65

Table 4.3: Average performance table for classification of Neuropathic and Healthy
patients based on different test and validation data(DWT Features) using real and
simulated EMG signal.
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Figure 4.4: Performance graph for EMG Classification of Neuropathic(ALS) and
Healthy subjects.

EMG signal using DWT, SVM with RBF kernel and PSO. The x-axis represents the
number of input data provided to the classifier and y-axis represents the percentage
of Test Accuracy, Validation Accuracy, Specificity and Sensitivity of the classifier.
Figure 4.7 shows the ROC Curve and corresponding AUC for classification perfor-
mance of KNN classifier. MAV, SD, AP and RMAV were extracted as features from
the coefficient sub-bands of DWT.

The performance graph shows an average increase in performance for increasing
dataset size than TFA. However, the average accuracy for smaller dataset size shows
a decrease in classification accuracy which varies from 70%-80% for small dataset
of 177 patient records compared to that of 1200 patient records[90] which shows an
accuracy above 90%.

4.1.3 Classification using unsupervised pattern recognition
and EMG Decomposition technique

One of the approaches for classification of EMG signal is decomposition of the sig-
nal into its constituent MUAP and firing pattern for estimated number of motor
units(MU). These information(waveform of the MU and firing table) are then used
to identify different abnormalities in the EMG signal. This approach mimics the
traditional manual form of identification of diseases in clinical sectors where an ex-
pert usually identifies different probable MUAP waveform by observing the signal
manually and template matching techniques. Algorithms proposed by Dorfman|! 3]
and LeFever[9] are some of the examples of manual or operator dependent method
of EMG decomposition. However, manual form of EMG decomposition is not only
time consuming but generally provides only 1% or less information about few MUAP
waveform[21]. However, such small percentage of information still provides a high
accuracy for diagnosis. Automated EMG decomposition technique loosely mimics
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Figure 4.5: Performance Graph for Classification of real EMG Signal using Support
Vector Machine with RBF Kernel for varying length of input dataset

the manual operator dependent procedures followed in order to decompose a signal
into its constituent MUAP waveform and firing patterns and then perform diag-
nosis by extracting different features like phase, number of turns, etc. from these
waveform. The algorithm proposed Christodoulos et. al.[36] uses SOFM which is a
neural network model and LVQ2 method in order to decompose a raw EMG signal
into their constituent(actual and superimposed) MUAP for a predefined number of
MUs. The superimposed waveform are then decomposed using the template ob-
tained from the actual MUAP waveform in order to construct a firing table for the
motor units. Features like Turns, Number of Phases, Rectified Area, Duration and
Amplitude are then calculated from average MUAP waveform of each motor unit in
order to perform classification of the signal.

Table 4.4 shows the average performance metrics(Average Accuracy-AAC, Average
Specificity-ASP, Average Sensitivity-ASE) for the classification of the decomposed
EMG signals using different classifiers for an increasing number of dataset. The
classification was performed using 177(7 neuropathic and 3 healthy subjects) real
EMG signals obtained from biceps brachii and 99(15 Neuropathic and 5 Healthy
subjects) simulated signals.

Figure 4.8, 4.9 and 4.10 shows the MUAP waveform decomposed from the EMG
signal, the average MUAP waveform for each MU along with their extracted fea-
tures and the firing table constructed using the EDA respectively. It was presented
by Christodoulos et. al[36]. Figure 4.8 contains eight plots where each plot dis-
plays the different MUAP templates obtained from the signal which is expanded
according to the technique mentioned in the paper. Figure 4.9 contains the aver-
age MUAP class calculated from the previous templates of each motor unit. The
red, green and blue cross marks show the Beginning Extraction Point(BEP), End
Extraction Point(EEP) and the waveform Peaks calculated in order to obtain the
desired features from each motor unit. The title bar of each motor unit plot con-
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Performance Graph - Feature: SVM(RBF)

100 4 — Test Accuracy
Validation Accuracy

—— Sensitivity

—— Specificity

80

60

Performance

40 4

20+

T T T T T T
40 50 60 70 80 20
No. of Input Data

Figure 4.6: Performance Graph for Classification of simulated EMG Signal using
Support Vector Machine with RBF Kernel for varying length of input dataset

tains the Peak to Peak Amplitude(A), Duration(D), Rectified Area(Ar), number of
turns(T) and Phases(P) of the average MUAP waveform. Figure 4.10 shows the
candidate MUAP waveform(Top) calculated using peak detection and thresholding
technique before MUAP segmentation and classification. Red Waveform represents
the candidate MUAP waveform detected and the green mark on top represents the
peak from which the waveform was obtained. It also shows the firing table calcu-
lated(Middle) for each motor unit before the decomposition of superimposed MUAP
and the bottom graph shows the final firing table obtained after the decomposition
of the superimposed waveform using the template MUAP waveform obtained during
segmentation. Each color of the waveform represents a different Motor Unit class.
Figure 4.11 and 4.12 shows the Performance Graph for classification of real and
simulated EMG signal using EDA, KNN and PSO. The x-axis represents the number
of input data provided to the classifier and y-axis represents the percentage of Test
Accuracy, Validation Accuracy, Specificity and Sensitivity of the classifier.

4.1.4 Discussion

Electromyography is a very useful technique for diagnosis of different neuromuscular
disorders. Despite of the stochastic nature and inherent noises of EMG signals, it is
very effective even with the small amount of information which is currently retrieved
from it. However, the techniques used for detection of these disorders are very much
dependent on operator. A software which is able to automate this process of signal
classification can provide a fast and detailed insight about the significant differences
between nerve activity of neuropathic, myopathic and healthy subjects.

But one of the important properties of a good software is reliability. It needs to be
adaptive to different kind of dataset which means that the output accuracy should
be similar even when the analysis is performed for different set of data like from dif-
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Figure 4.7: ROC Curve for K Nearest Neighbor using real signal

ferent sources, different signal type and even with different number of training data
as it is impractical for every user to acquire a large training dataset before start-
ing to perform analysis. Different kind of techniques(for needle electrode EMG)
for classification of neuropathic, myopathic and healthy subjects can be generalized
into three basic types: Classification of signal using TFA of the Signal, classifica-
tion of the signal using DWT and classification using EDA. The previous section
presented performance metrics of three classification algorithms each belonging to
a different classification technique. This section discusses about the performance of
these classification algorithms when it is provided with training data(EMG signals
using Needle Electrode from biceps brachii) having three different properties:

1. The classification algorithms are reconstructed in a similar way as described
in the respective papers but using training dataset acquired from open source
data repositories. This factor was considered as the development of an artificial
intelligence requires constant testing and often with readily available dataset.
In this age of collaboration and networking, one of the best ways to acquire
sufficient data is from open source data repositories.

2. The number of training data is either larger or smaller than the training dataset
used in the classification algorithms.

3. The type of training data is changed from real clinical EMG signals to simu-
lated experimental EMG signals.

Table 4.5 shows the performance chart of TFA, DWT and EDA for classifica-
tion of EMG signals of healthy and neuropathic subjects. The performance met-
rics(accuracy, specificity and sensitivity) for each classification technique is divided
into 3 main columns: Metrics obtained from real clinical EMG signal(Real), met-
rics obtained from simulated EMG signal(Sim) and the average performance metric
for varying amount of training data(Avg). TFA and DWT classification techniques
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10
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Feature

SVM-RBF(Test, Real)

SVM-POLY (Test, Real)

KNN(Test, Real)

SVM-RBF (Validation, Real)

SVM-POLY (Validation, Real)
KNN(Validation, Real)
SVM-RBF (Test, Simulated)

SVM-POLY (Test, Simulated)
KNN(Test, Simulated)
SVM-RBF (Validation, Simulated)

SVM-POLY (Validation, Simulated)

KNN(Validation, Simulated)

AAC(%)
67.82
46.98
60.71
74.32
72.33
58.33
66.31
81.16
80.69
68.34
86.12
75.65

ASP(%)
64.28
85.71
55.0
55.91
51.83
14.28
100.0
100.0
100.0
0.0
0.0
0.0

ASE(%)

84.64
100

80.25
80.99
91.66
71.42
100.0
100.0
91.51
100.0
100.0
91.50

Table 4.4: Average performance table for classification of Neuropathic and Healthy
patients based on different test and validation data(EDA Features) using real and
simulated EMG signal.

Metric TFA \ DWT \ EDA
(%) Exp Real Sim Avg Exp Real Sim Avg Real Sim Avg
100(1) 682 69.6 634 952(a) 771 724 777 583(a) 75.6 68.1
Acouracy 695(2) 481 664 425 967(b) 57.32 702 576 723(b) 861 86
100(3) 584 77.8 T1.1 97.4(c) 743 683 73.6 74.3(c) 683 60
722(4) 496 859 738 - - i -
100(1) 6311 0 8L4 92(a) 595 0 654 143(a) 0 457
Specificity 907(2) 524 48 328 035(b) 286 0 0 5L8bH) 0 0
1003) 691 0 75 953(c) 559 0 686 559(c) 0 428
722(4) 321 0 63 - - o i -
100(1) 699 901 574 96.7(a) 857 93.6 92.8 7l4(a) 915 814
Sensitivity 7222 465 928 54 90(b) 7L4 100 100 OL7(h) 100 100
100(3) 54.6 93.6 73.6 99(c) 80.6 100 75 80.6(c) 100 90.7
722(4) 70 968 847 - - i -

Table 4.5: Comparison of performance of 3 different classification techniques(TFA,
DWT and EDA) for different type of dataset containing EMG records of healthy
and neuropathic subjects.
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Figure 4.8: MUAP Waveform decomposed and extracted for each Motor Unit of a
neuropathic patient affected by Amyotrophic Lateral Sclerosis.

contain one additional column(Exp) that shows the performance metrics obtained in
the respective papers. The algorithm proposed by Christodoulos et. al[30] did not
perform classification of EMG signals for neuromuscular disorder and hence it does
not contain any column for ’Exp’. The performance metric obtained for each pa-
rameter(accuracy, specificity and sensitivity) in TFA are divided into four rows(1, 2,
3 and 4). Each row contains the performance metric for classification using four dif-
ferent features: Spectral Peak(1), Mean Frequency(2), Autocorrelation(3) and Zero
Crossing rate(4). On the other hand, performance metric obtained for each parame-
ter in DWT and EDA are divided into three rows(a, b and ¢). Fach row contains the
performance metric for classification using four different classifiers: KNN(a), SVM
with polynomial kernel(b) and SVM with RBF kernel and optimized using PSO(c).
The classification of TFA analysis was performed using KNN.

The following facts can be observed from the performance chart of different EMG

classification techniques for detection of neuropathy (Amyotrophic Lateral Sclerosis)
and healthy subjects:

1. The performance accuracy for each classification technique(TFA and DWT)
varied considerably when the same technique was used on dataset obtained
from different repositories(Nikolic M., Hamilton-Wright and dataset used in
the original papers). This fact can be observed by comparing the performance
metric of each of the four columns of TFA and DWT analysis technique.

2. The performance metric of each classification technique(TFA and DWT) showed
a better performance when the classification was performed in respective pa-
pers of each analysis technique(Exp or experimental dataset column). The
specificity and sensitivity for experimental dataset columns showed a bet-
ter performance when classification was performed using DW'T. On the other
hand, even though optimal sensitivity was obtained, the algorithms provided
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Figure 4.9: MUAP Waveform averaged and baseline rectified for each Motor Unit
of a neuropathic patient affected by ALS.

poor specificity metrics when classification was performed with real and sim-
ulated signal.

3. DWT and EDA analysis techniques perform better when classification is per-
formed using real EMG signals(Real column). However, the accuracy is below
90% when classification is performed using signals obtained from the reposi-
tory of Nikolic M.

4. EDA and TFA analysis techniques show a better accuracy when classifica-
tion is performed using simulated EMG signals(Sim column) obtained from
the repository of Hamilton-Wright. However, all the three classification tech-
niques show poor specificity for simulated signals but a high sensitivity for
neuropathic patients.

5. The classification accuracy for each technique(TFA, DWT and EDA) varies
within a range of 50% to 80% for clinical EMG signals(Real) obtained from
biceps brachii using a needle electrode[!1]. On the other hand, when the same
classification technique was applied in the experiment(TFA) it displayed an
accuracy of 100% for Spectral Peak(1) and Autocorrelation(3). This shows
the variation of performance when classifying stochastic signals like EMG are
obtained from different data acquisition setup or data repositories. It is one of
the primary factors that acts as a barrier when trying to develop an adaptable
software. Although this problem can be reduced by adjusting the parameters
of described algorithms, this increases the need for operator assistance and
reduces the prospect for automation. Similarly, the classification accuracy for
DWT analysis reduced from range of ninety percent and above to around 70-
80%. The reduction of specificity and sensitivity of the algorithms can also be
observed in the same way.
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Figure 4.10: Firing Table constructed for each motor unit using decomposed MUAP
waveform of a patient affected by Amyotrophic Lateral Sclerosis.

6. The classification of simulated EMG signals provides a better performance
metric than classification of real clinical EMG signals. Both signal cate-
gories(real and simulated) represent the electrical activity of biceps brachii
of healthy and neuropathic patients obtained using a needle electrode. One
of the probable reason for this might be the representation of signal to noise
ratio(SNR) for real and simulated EMG signals. The nature of noise among
acquired data is likely to vary greatly when obtained from clinical setup than
simulations. The variation of performance metric can be observed from the
'Real” and ’Sim’ column of each(TFA, DWT and EDA) classification tech-
nique. The highest accuracy obtained for real signals is 77.1%(DWT) and for
simulated signals is 86.1%(EDA).

7. EDA provides a better performance metric when classification is performed
using different amount of input or training data(Avg column). The highest
average accuracy for varying amount of input data is 86%. It was obtained
when classification was performed for real signals using SVM and Polynomial
Kernel(b). The chart shows that EDA provides a good metric for average
sensitivity while providing a poor metric for average specificity. This shows
the reduction of performance of the classification algorithms when provided
with small amount of dataset. This causes a problem during development of
the automated software as it requires a large training dataset which is not
always available due to aforementioned causes.

8. The sensitivity of the classification techniques(TFA, DWT and EDA) is gen-
erally better than their specificity. This shows that the algorithms provide
a good probability metric while identifying a neuropathic patient when the
disease is present(sensitivity). On the other hand, it provides a poor probabil-
ity metric for True Negative(specificity). One of the probable reason for the
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Figure 4.11: Performance Graph for Classification of real EMG Signal using K-
Nearest neighbor for varying length of input dataset.

contrast between specificity and sensitivity might be the usage of unbalanced
dataset which will generally be the case when trying to build an adaptable
software. This factor can be controlled by balancing the dataset but it would
depend more on trimming specific amount of data rather than adding it which
would reduce the number of input or training data and again increase the need
for manual preprocessing of data.

9. classification of EMG signals using different machine learning algorithms de-
pend greatly on the nature and attributes of input or training data provided
to the classifiers for training. This results in varying outcome when perform-
ing classification with a specific technique in different clinical or experimental
setups. An automated software for general purpose usage needs to be robust
and adaptable to different kinds of training data. This requires algorithm
that can perform in the same way even when the aforementioned attributes
of the training data are changed in order to minimize the need for human
intervention.

4.2 Experimental results for ” Multi-Domain Fea-
ture Extraction from EMG Signals and Eval-
uation for the Classification of Amyotrophic
Lateral Sclerosis”

This paper proposes a multi-domain feature extraction method for the classification

of EMG signals acquired from healthy subjects and subjects affected with ALS. The
EMG signals are first resized, denoised using DW'T and lowpass filtered at 8KHz
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Figure 4.12: Performance Graph for Classification of simulated EMG Signal using
K-Nearest Neighbor for varying length of input dataset.

using a second order butterworth filter. Then the time domain signal is converted to
its corresponding time-frequency domain representation and its constituent MUAP
waveform using EMG decomposition. Features are then extracted from the three
domains and the best features are selected using CST and RFE. The best features
obtained individually from the two feature selection techniques(FST) are then used
for classification and evaluation of the signals. RFA and KNN were chosen as clas-
sifiers and their performance was evaluated using ROC Curve.

4.2.1 Feature Selection Technique

Two different FSTs were used for selection of the best features from candidate
features obtained from each of the three domain representations. The results are
discussed below.

Chi-Squared Test

Figure 4.13 shows the normalized scores obtained for each feature (x-axis) using
CST. The scores represents the number of times each feature was selected by CST
during feature selection using a 5-fold Cross Validation. The score(y-axis) of a
feature is proportional to the dependence of that that feature on the given output
classes. Therefore, features with higher score are more likely to be relevant for
classification. Therefore, 'n’ features with highest scores were selected as the best-
feature-set for classification. Here, 'n’ is the hyper-parameter of CST which was
selected as to provide the most optimum classification performance. The optimal
value of 'n” was found to be 15.

Table 4.6 shows the top 15 features selected using CST from the time-series sig-
nal, time-frequency representation of the signal and the average MUAP waveform
calculated for 8 individual motor units via EMG Decomposition.
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Feature Selection-CST

T LT

No. of times selected

04 _J h

T T T T T T
0 10 20 30 40 50
Feature

Figure 4.13: Normalized scores obtained for each feature using CST.

1. V.Dur 6. ISI 11. SSC
2. V.Amp 7. Var 12. ASA
3. A.Are 8. ZCR 13. TOP
4. V.Are 9. ZLA 14. VCF
5. V. Min and Max Amp. | 10. WVL | 15.VMF

Table 4.6: Best 15 features selected using CST and 5-Fold Cross Validation

Recursive Feature Elimination

Feature Selection-RFE
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Figure 4.14: Normalized scores obtained for each feature using RFE.

Figure 4.14 shows the scores obtained for each feature (x-axis) using RFE. The
scores represents the number of times each feature was selected by RFE algorithm
during feature selection using a 5-fold Cross Validation. The score(y-axis) of a
feature is proportional to the dependence of that that feature on the given out-
put classes. Since RFE has a requirement of predefined regression model, Logistic
Regression was used as the model for selecting the best features using RFE.

Table 4.7 shows the top 15 features selected from the time-series signal, time-
frequency representation of the signal and the average MUAP waveform calculated
for 8 individual motor units via EMG Decomposition. RFE and a linear regression
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1. A Amp 6. S.Min Max.Amp | 11. Kur

2. ARis 7. A.Dur 12. MMAV

3. RMS 8. TOP 13. STD

4. VAR 9. MNF 14. AMD

5. Min.Amp | 10. V.Ris 15. V. Min and Max Amp.

Table 4.7: Best 15 features selected using RFE and 5-Fold Cross Validation

model was used for feature selection.
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Figure 4.15: ROC Curve for classification using random forest algorithm and feature
set extracted via chi-squared test.

Figure 4.15 shows the ROC curves obtained after classification of the two best-
feature-sets chosen via CST. The classifications were performed using RFA and
KNN. The classification was performed using 5-fold Cross Validation. The exper-
iments were conducted for different sizes of best-feature-set and the selecting 15
best-feature-sets provided the most optimal outcome in each case. Only results of
the best outcome are shown here. It can be observed from the above ROC Curve
that the features selected using CST provided the best accuracy(84-86%) when the
classification was performed using RFA. The hyper-parameters i.e. the number of
decision trees for RFA and the number of nearest neighbors for KNN was selected
using PSO.

While performing classification with 5-fold Cross Validation, the dataset was first
split into two parts - one containing the complete training data and the other con-
taining evaluation data. The training dataset was further split into two parts - one
containing partial training data used for training the PSO algorithm and the other
containing test data which was used to choose the best hyper-parameters for the
respective classifiers. The classifiers were then trained using the complete training
data and performance of the classifiers were evaluated using the evaluation data.
Table 4.8 shows the performance in terms of ROC curve calculated during 5-fold
Cross Validation. The True Positive Rate(TPR), False Positive Rate(FPR) and
Area under Curve(AUC) is calculated for different combinations of classifiers(CLF)
and feature sets selected using different feature selection techniques(FST). Accord-
ing to Table 4.8, the 15 best features mentioned in Table 4.6 provides the best
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Table 4.8: Performance Table for Classification using Multi-Domain Feature Ex-

traction

accuracy(85%) and TPR(86%) along with a low FPR(20%) compared to rest of the

FST | CLF | TPR | FPR | AUC

CST | RFA | 86% | 20% | 85% £2%
RFE | RFA | 78% | 25% | 75% 9%
CST | KNN | 79% | 32% | 7T7% £6%
RFE | KNN | 78% | 30% | 75% +9%

other techniques when the classification is performed using RFA.

4.2.3 Analysis

Accuracy(%) | SE(%) | SP(%) | Methods
74 80 60 26])
85 86 80 Proposed
68 70 63 (78]
77 85 60 [90]

Table 4.9: Performance Comparison with Existing Systems

Table 4.9 shows the comparison(accuracy, sensitivity-se and specificity-sp) between
the proposed method and different existing methods. The performance metric was
obtained after implementing the methods proposed in each paper with our dataset.
This was done in order to make a comparison of the performances of these algorithms
when classification is performed with the same dataset. It can be observed that the
proposed method shows a high accuracy, specificity and sensitivity even with small
dataset.
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Figure 4.16: Separation of the two classification output classes based on top 4
features selected using CST

Figure 4.16 and 4.17 shows the scatter plot for separation between two output
classes(ALS data and healthy data) of the classification algorithm using highest and
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Data Separation-CST
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Figure 4.17: Separation of the two classification output classes based on least scoring
4 features selected using CST

least ranking 4 features respectively, evaluated using CST. Each axis of the graph
represents a best-feature selected and even though the graphs of Fig. 4.16 show
a pretty distinguishable separation between healthy subjects and subjects affected
with ALS, it can be observed that a small fraction of ALS data overlaps with healthy
data. It might be due to the fact that some of the patients included in the dataset
were diagnosed within a very short duration (less than 1 year) since the onset of
disease as mentioned in [11] or probably due to the fact that not all EMG signals ac-
quired from a specific patient showed abnormal activity. Outliers were not removed
from the dataset in order to preserve the context of stochasticity and adaptivity.
It can further be observed that the Variance of Rectified MUAP Area(V.Are.) and
variance of MUAP amplitude(V.Amp) obtained via EMG decomposition tends to
be concentrated at a lower range whereas for healthy subjects whereas it tends to
shift towards higher region of the feature space for ALS subjects. This might be
due to the fact that due to changes in muscle fibers, the area and amplitude of
MUAP waveform tends to be larger for patients suffering from ALS[14]. Similarly,
Mean Frequency(MNF), Average MUAP waveform Duration(A.Dur) and Average
Maximum Density(AMD) of Fig. 4.17 creates a visible separation of classes with
higher overlap.
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