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ABSTRACT 

MERS coronavirus is an emerging virus which causes Middle East respiratory syndrome. MERS 

outbreak has been appearing in 27 different countries over a span of around six years with a 

mortality rate greater than 35% and claimed over 800 lives in the process. However, there is not 

any clinically approved vaccine or therapeutic agent available for treatment of MERS. Therefore, 

it is crucial to design an effective vaccine or therapeutic agents against MERS coronavirus. This 

study aimed to find vaccines/therapeutic agents against MERS coronavirus using 

immunoinformatics which could reduce both time and cost needed for laboratory analysis and 

vaccine development. Since nsp3 protein is an essential component of the replication/transcription 

complex of MERS coronavirus, the discovery of an nsp3 inhibitor will be a major leap towards 

developing an anti-viral agent that can interfere with MERS coronavirus replication. In the present 

study, two different strategies were explored. The first strategy was to design an epitope-based 

vaccine. For designing an epitope-based vaccine, nsp3 protein sequence was extracted from the 

NCBI database and then the sequence was put in T-cell and B-cell epitope prediction servers to 

generate a list of potential T-cell and B-cell epitope candidates. T-cell and B-cell epitope 

candidates are then screened using several software and tools. FAFETGLAY appeared to be the 

best T-cell epitope candidate. However, the only drawback was that FAFETGLAY was found as 

an allergen in allergenicity prediction tools. FVDWRSYNYAVSSAFWLF, 

LKFKEVCKTTTGIPEY and LKFKEVCKTTTGIPEYNF showed promise as epitope candidates 

for peptide-based vaccine design among the selected B-cell epitopes. The second strategy was 

focused on identifying effective flavonoids that can be used as nsp3 inhibiting therapeutic agents 

against MERS coronavirus. In this study, 18 flavonoids were selected as potential nsp3 inhibitor 

candidates and their anti-viral activities were assessed using molecular docking study. Molecular 

docking study revealed that among 18 flavonoids, apiin and naringin exhibited the most potent 

antiviral activity against MERS coronavirus nsp3 protein as they showed the best binding affinity 

of -10.1 kcal/mol which was higher than the binding affinity of ADP-ribose. In addition, apiin and 

naringin had the lowest Ki value of 0.0390649 μM. Furthermore, the molecular visualization of 

the docked complexes suggested that both apiin and naringin formed three or more hydrogen bonds 

ranging from moderate to weak. Therefore, apiin and naringin can be considered good candidates 

for further evaluation as potential anti-viral agents against MERS-CoV. 
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The Middle East is a region centered on most of western Asia, Turkey and Egypt containing 18 

countries. The history of the Middle East dates back to ancient times and even now it is one of the 

busiest politico-economic centers in the world. The Middle East exhibits many unique religious 

and cultural practices because many major religions which are still practiced today throughout the 

world originated in this region. The Middle East comprises a vast number of ethnic groups with 

an estimated population of over 411 million as of 2016. In addition to that, people living in this 

densely populated region have relied on camels for food and transportation for ages. These distinct 

regional features have provided favorable conditions for new emerging viruses such as Middle 

East respiratory syndrome coronavirus to appear. Middle East respiratory syndrome coronavirus 

(MERS-CoV) has originated from animal reservoirs and crossed interspecies barriers to infect 

humans and caused a severe outbreak of respiratory infection in the Middle East since 2012 and 

has spread to Europe, Africa, Asia, and North America. The disease caused by MERS-CoV is 

known as the Middle East respiratory syndrome (MERS). It was originally reported as a “SARS-

like” infection because unlike other human CoVs infections which cause only mild upper 

respiratory tract infections such as the common cold, MERS causes lower respiratory tract 

infection which is often fatal. MERS-CoV is listed as Category C Priority Pathogen in NIAID’s 

pathogen priority list and this virus is considered to be a potential pandemic threat due to person-

to-person transmission capability and lack of effective drugs. In addition, MERS epidemic has 

kept on appearing in different countries for several years with a mortality rate greater than 35% 

(Chafekar et al., 2018; Chan et al., 2015). As of November 30, 2018, the total number of 

laboratory-confirmed MERS-CoV cases reported globally to WHO is 2274 with 806 associated 

deaths. 

1.1 Genome Structure and Function of MERS-CoV 

MERS-CoV is a member of the family Coronaviridae which comprises enveloped single-stranded 

RNA viruses. The Coronaviridae family is divided into four genera based on phylogenetic 

clustering: alpha, beta, gamma, and delta coronaviruses. These genera are further subdivided into 

distinct lineages. MERS-CoV is a lineage C β-Coronavirus. It has a positive-sense single-stranded 

RNA (ssRNA) genome about 30-kb in size (Chafekar et al., 2018). 
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Figure 1.1: Taxonomy of Coronaviridae (Chan et al., 2015) 

182 full-length genomes or multiple concatenated genome fragments have been analyzed as of 

2016. Among these genomes/genome fragments, 94 are from humans and 88 are from dromedary 

camels. MERS-CoV genomes share more than 99% sequence identity suggesting low mutation 

rate and low variance among the genomes. MERS-CoV genomes are roughly divided into two 

clades: clade A and clade B. Clade A contains only a few strains whereas clade B contains most 

strains. (Chafekar et al., 2018) 
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The MERS-CoV genome consists of 11 open reading frames (ORFs) (Boheemen et al., 2012). The 

first 5′ two-thirds of the MERS-CoV genome encodes the replicase complex (ORF1a and ORF1b) 

whereas the remaining 3′ one-third encodes the structural proteins spike (S), envelope (E), 

membrane (M), and nucleocapsid (N), as well as five accessory proteins (ORF3, ORF4a, ORF4b, 

ORF5, and ORF8b). These accessory proteins are not required for genome replication but are 

likely involved in pathogenesis as recent studies by reverse genetics demonstrated that the absence 

of the genes encoding these proteins as a group may attenuate viral titers and these accessory 

proteins do not share homology with any known host or virus protein, apart from those of its 

closely related lineage C βCoVs (Chafekar et al., 2018; Zhang et al., 2014). The flanking regions 

of the MERS-CoV genome contain UTR regions (Chafekar et al., 2018).  

 

Figure 1.2: Genomic and schematic diagram of MERS-CoV structure (Zhang et al., 2014) 
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The S protein of MERS-CoV is a heavily glycosylated type I membrane protein that is of 

paramount importance for attachment to the host receptor. MERS-CoV uses dipeptidyl peptidase 

4 (DPP4), a multifunctional 766-amino-acid-long type II transmembrane glycoprotein present at 

the surface of many different cell types, as the receptor which mediates cell entry (Zhang et al., 

2014). 

Table 1.1: Functions of MERS-CoV polypeptides (Zhang et al., 2014) 

Gene Encoded 

polypeptides 

Length 

(nucleotides) 

Function 

1 1a 13,176 Encodes viral proteases mainly 

2 1b 8,061 Encodes RNA polymerase, helicase and ribonucleases 

mainly 

3 S 4,062 Mediates receptor binding and membrane fusion 

4 N 1,242 Associates with RNA genome and interacts with C-

terminal domain of M protein 

5 4b 741 Blocks host interferon production 

6 5 675 Interferon antagonist with no effect on interferon beta 

promoter activation 

7 M 660 Incorporates viral components into virions and interacts 

with the N protein in infected cells 

8 8b 339 Not known 

9 4a 330 A dsRNA-binding protein with a dsRNA-binding 
domain (residues 3 to 83) that potently antagonizes host 
interferon response via inhibition of interferon 
production (interferon beta promoter activity, IRF-3/7 
and NF-κB activation), ISRE promoter element 
signaling pathways, and/or suppression of PACT-
induced activation of RIG-I and MDA5 in an RNA-
dependent manner; not essential for virus replication in 
Vero A66 and Huh-7 cells 

10 3 312 Not known 

11 E 249 Ion channel activity 
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Figure 1.3: MERS-CoV replication strategy (Chan et al., 2015) 

The interferons are a family of cytokine mediators that have anti‐cancer, anti‐proliferative, anti‐

viral and immunomodulatory functions (Taylor et al., 2013). Interferons alert the cellular immune 

system and activate immune cells whenever viral infection occurs. The most important immune 

response to any viral infection is the activation of the type I interferon-mediated innate immune 

response through the production of type I IFNs (IFN-α and IFN-β) (Chafekar et al., 2018). Viruses 

evade such host innate immunity by synthesizing IFN antagonist proteins which block one or more 

key signaling proteins in the IFN and NF-κB pathways to ensure and enhance viral replication and 
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pathogenesis (Chafekar et al., 2018; Taylor et al., 2013). MERS-CoV uses these mechanisms to 

evade the innate immunity of host as well. For instance, MERS-CoV M, ORF4a, ORF4b, and 

ORF5 proteins are found to be strong IFN antagonists in a study (Yang et al., 2013). In addition to 

that, these accessory proteins can impede not only type I IFN induction but also NF-κB signaling 

pathways (Niemeyer et al., 2013; Matthews et al., 2014). MERS-CoV ORF4a particularly acts as 

an IFN antagonist by inhibiting both the interferon production (IFN-β promoter activity, IRF-3/7, 

and NF-κB activation) and the ISRE promoter element signaling pathways. Moreover, MERS-

CoV ORF4b is an enzyme in the 2H-phosphoesterase (2H-PE) family with phosphodiesterase 

(PDE) activity which can prevent activation of RNase L. Furthermore, MERS-CoV replicase 

proteins also interfere with the innate immune response signaling pathways through different 

mechanisms (Chafekar et al., 2018). 

1.2 nsp3 protein of MERS-CoV 

The MERS-CoV genome comprises 16 non-structural proteins. In the midst of these non-structural 

proteins, the non-structural protein 3 (nsp3) is the largest protein encoded by the MERS-CoV 

genome. nsp3 has several domains. Among them, a macro domain is embedded in nsp3 which can 

bind to adenosine diphosphate ribose (ADP-ribose), an ester formed between the aldehydic carbon 

of ribose and the terminal phosphate of adenosine diphosphate (Cho et al., 2016). 

 

Schematic diagram of the composition of structural and non-structural proteins (NSPs) in MERS-

CoV genome. Functional domains of nsp3 are highlighted. NSPs encoded by ORF1a and ORF1b 

are numbered in green and blue, respectively. 

Figure 1.4: Genome organization of MERS-CoV (Cho et al., 2016) 
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1.3 Major Histocompatibility Complex (MHC) 

The portion of antigen molecules which can be specifically bound by the antibody or antigenic 

receptor of lymphocytes is called an epitope. The size of an epitope is generally equivalent to 5-

15 amino acids or 3-4 sugar residues or 6-8 nucleotide. T-cell epitopes are presented by the MHC 

molecules of antigen presenting cell. There are two types of classes: MHC-I and MHC-II. MHC 

class II is presented by specialized cell types such as B-cells, macrophages and dendritic cells 

whereas MHC class I is presented by all nucleated cell bodies. The MHC-I presents peptides of 8-

11 amino acids whereas MHC-II present 11-25 amino acids. MHC molecules are the most 

polymorphic proteins which contain over 6000 classes listed in IMGT/HLA (Patronov et al., 

2013). As determining all the peptide binding preferences of alleles in vitro is a very difficult 

technical challenge, in silico methods are used instead as a time-saving and cost-effective solution 

for primary virtual screening of potential peptide binding preferences of alleles. T-cell epitope 

prediction algorithms can screen and predict specific epitopes which can be later produced in vitro 

to check whether these epitopes are effective or not. 

1.4 MERS-CoV: Epidemiology 

Even though the first MERS case was reported from Jeddah in September 2012, retrospective 

studies identified the first case from an outbreak involving 13 persons in March/April 2012 in 

Zarqa, Jordan (Zumla et al., 2015). Since then, MERS cases have been reported in 27 countries. 

The largest series of outbreaks occurred in 2014 in Saudi Arabia, when around five hundred 

hospital-acquired cases appeared throughout the country within a few months. Increased 

awareness and meticulous focus on infection control measures finally put an end to these 

outbreaks. Later an outbreak of 186 MERS cases occurred in the Republic of Korea in 2015. This 

outbreak was the second largest worldwide and the largest reported outside the Middle East region. 

MERS outbreak in South Korea was halted after approximately 17,000 individuals were 

quarantined. Among them, 36 patients died from the infection (Fehr et al., 2016). According to the 

WHO website, the total number of laboratory-confirmed MERS-CoV cases reported globally to 

WHO is 2274 with case fatality rate around 35.4% as of November 30, 2018. 
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Figure 1.5: MERS situation update according to the World Health Organization (WHO) 

Transmission from camels has been linked to human MERS-CoV infection, although very few 

MERS patients have a history of direct camel exposure. Less direct exposure such as consumption 

of unpasteurized camel milk may lead to such cases as MERS-CoV RNA has been detected in raw 

milk collected in the marketplace of Qatar. However, the source of infection in many patients 

remains undetermined. MERS-CoV may have originally transmitted from bats to camels and other  

Figure 1.6: Ecology and transmission of MERS-CoV (Zumla et al., 2015) 
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intermediate hosts. After interspecies-transmission, MERS-CoV has circulated in camel 

populations in Africa and the Arabian Peninsula for at least 20 years. In 2012, MERS-CoV crossed 

interspecies barriers to infect human populations (Fehr et al., 2016). 

Person-to-person transmission occurs through large droplets. However, aerosol or fomite 

transmission has not been ruled out (Fehr et al., 2016). Conclusive evidence of human-to-human 

transmission of MERS-CoV was first found in the United Kingdom where an adult male 

transmitted the virus to two of his family members (Milne-Price et al., 2014). MERS-CoV may 

persist in the environment for up to 24 hours, which may also contribute to human infection. 

Sequence analyses of virus isolated from patients revealed little evidence for directed mutation, 

lead to the belief that unlike SARS-CoV, MERS-CoV is not adapting to human populations (Fehr 

et al., 2016). 

The fact that the average MERS patient is ~50 years old suggests that age is a risk factor for 

developing severe MERS. Elderly patients have a greater risk of dying from the disease, with a 

fatality rate of nearly 90% for patients over 80 compared to ~10% for those under the age of 20. 

Presence of underlying co-morbidities is another risk factor for developing severe MERS since 

approximately 75% of all documented cases occurred in patients with co-morbidities (Fehr et al., 

2016). 

1.5 MERS-CoV: Pathogenesis, Pathology and Immunity 

MERS pathogenesis begins with the entry of the virus via the respiratory tract where the spike (S) 

protein interacts with its cellular receptor DPP4. DPP4 is expressed in the respiratory tract on type 

I and II pneumocytes, non-ciliated bronchial epithelial cells, endothelial cells, and some 

hematopoietic cells. Besides respiratory tract, DPP4 is also widely expressed on the epithelial cells 

of several other organs and tissues such as kidneys, intestine, liver, thymus and bone marrow. Lack 

of patient autopsy or surgical pathology samples from the Middle East or the Korean outbreak has 

limited studies of MERS-CoV pathogenesis (Fehr et al., 2016). 

Severe MERS-CoV infection causes acute pneumonia which is often lethal. In addition, renal 

dysfunction/failure may occur as a result of either hypoxic damage or direct infection of the kidney 

as DPP4 is expressed at high levels in the kidney (Fehr et al., 2016). 
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Despite having a lack of knowledge on what constitutes a protective immune response in MERS 

patients who recover, it can be concluded that coordinated innate and adaptive immune responses 

are required for effective and long-lasting immunity. MERS-CoV induces attenuated innate 

immune responses with delayed pro-inflammatory cytokine induction in cell culture and in vivo, 

which may lead to a dysregulated immune response. Based on studies conducted on SARS-CoV 

infection, it can be expected that vaccines inducing antibody responses only may not provide long-

lasting immunity against MERS-CoV despite being useful in the short term (Zumla et al., 2015). 

 

Figure 1.7: Schematic representation of major pathways of immune response (Skwarczynski 

et al., 2015) 

1.6 Vaccine Development and Treatment 

No MERS-CoV-specific vaccines are currently approved for use in humans. Even though several 

types of vaccines have been developed, none have been approved for clinical trials (Fehr et al., 
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2016). As there is no specific approved therapeutic agent or vaccine available to treat or prevent 

MERS infection, supportive care is the main focus of treatment. 

1.7 Epitope-based Vaccine  

T-cell epitope-based vaccines have potential as therapeutic vaccines against viral infection as 

epitope-based vaccines with adjuvants can induce a strong immune response with high 

immunogenicity (Kametani et al., 2015). However, identifying a few epitopes among a mixture of 

above 10,000 MHC class I associated epitopes extracted from virus-infected cells is very difficult. 

Many software can correctly identify epitopes on a protein sequence using several databases. In 

this way, a probable epitope can be identified easily prior to vaccine design. Such computational 

approach not only speeds up the time but also lowers the cost needed for laboratory analysis as 

well as vaccine development. 

 

Figure 1.8: Schematic diagram of epitope-based vaccine formulation using 

immunoinformatics  

1.8 Advantages of Epitope-based Vaccine 

An epitope-based vaccine formulated with an adjuvant can induce a strong immune response with 

high immunogenicity. Several peptide vaccines are already in development and some of them are 

being clinically tested (Lambert et al., 2015). T-cell epitopes are usually peptide fragments 

whereas B-cell epitopes can be either protein, lipids or carbohydrates. 

Peptides have become ideal candidates for vaccines because: 

 Peptide-based vaccines are produced almost exclusively using chemical synthetic 

approaches. 
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 Production of peptides is simple, easily reproducible, fast and cost-effective. 

 Chemical synthesis eliminates all the problems associated with the biological 

contamination of the antigens. 

 These vaccines are typically water-soluble and stable. In addition, they can be freeze-dried. 

 Peptides can be customized to target very specific objectives. The immune responses can 

be directed against naturally non-immunodominant epitopes. By the use of a multi-epitope 

approach, a single peptide-based vaccine can be designed to target several strains, different 

stages of the life cycle or even different pathogens. 

 Peptide antigens are less likely to induce allergic or autoimmune responses due to the lack 

of redundant elements (Skwarczynski et al., 2015). 

1.9 Flavonoids: Potential Anti-viral Agents against MERS-CoV 

Flavonoids are part of the polyphenol class of phytonutrients. Polyphenols have traditionally been 

utilized in Chinese and Ayurvedic medicine. There are several groups of flavonoids having many 

subgroups, including flavones, flavonols, flavanones, flavanonols, flavanols or catechins, 

anthocyanins and chalcones (Panche et al., 2016). Each type of flavonoid carries its own distinct 

set of actions and beneficial properties. 

 

Figure 1.9: Flavonoid classes, subclasses and natural sources (Panche et al., 2016) 
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Plant-derived flavonoids are a large group of naturally occurring phenylchromones found in fruits, 

vegetables, tea, and wine. They have been shown to have a wide range of biological activities, 

including antiallergic, antibacterial, antidiabetic, antiinflammatory, antiviral, antiproliferative, 

antimutagenic, antithrombotic, anticarcinogenic, hepatoprotective, oestrogenic, insecticidal, and 

antioxidant activities (Orhan et al., 2010). Large studies have successfully shown that various types 

of flavonoids have significant antiviral activities against a wide range of viruses. Therefore, 

flavonoids may become potential anti-viral agents against MERS-CoV. 

1.10 Aims and Objectives 

 Studying about MERS-CoV and its current consequences. 

 Exploring the possibilities of drug development against MERS-CoV using 

immunoinformatics. 

 Identifying competent peptides for developing a vaccine against MERS-CoV. 

 Exploring potential anti-viral effects of Flavonoids against MERS-CoV. 
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Materials and 

Methods 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

16 | P a g e  
 

2.1 Method Summary 

This study was divided into two sections. The first section was focused on designing an epitope-

based vaccine whereas the second section was focused on identifying effective flavonoids in order 

to use them as nsp3 inhibiting therapeutic agents against MERS-CoV. For this study, only open-

source immunoinformatics software and tools were used.  

To design an epitope-based vaccine, nsp3 protein sequence was first extracted from the NCBI 

database and was checked for antigenicity using VaxiJen 2.0. For prediction of T-cell epitopes, the 

sequence of nsp3 protein was put in the NetCTL 1.2 server to identify probable T-cell epitopes in 

the target sequence. Antigenicity of selected epitopes was then evaluated using VaxiJen 2.0 

followed by IEDB T-cell class I pMHC immunogenicity predictor. Then prediction of peptide-

MHC class I binding was performed using both Proteasomal cleavage/TAP transport/MHC class 

I combined predictor and NetMHC 4.0 server. Afterward, the selected epitopes were used for the 

prediction of MHC-II alleles using IEDB Peptide binding to MHC class II molecules predictor. 

Then, population coverage of identified MHC-I-binding alleles with a high binding affinity of 

selected epitopes was analyzed using the IEDB Population Coverage Analysis tool. Then selected 

epitopes were checked for conservancy using IEDB conservancy analysis tool. Then, the toxicity 

of the epitope candidates was predicted using ToxinPred. Finally, allergenicity was anticipated 

using AllergenFP v1.0 and AllerTOP v2.0. For prediction of B-cell epitopes, nsp3 protein 

sequence was put in B-cell epitope predicter tools such as BCPREDS and BepiPred 2.0. and 

epitopes generated by these tools were screened using VaxiJen 2.0. Then overlapping B-cell and 

T-cell epitopes were identified and were selected for further evaluation. Conservancy analysis was 

performed using the IEDB conservancy analysis tool. Afterward, these epitopes were checked for 

the presence of beta-turn, surface accessibility, flexibility, antigenicity and hydrophilicity using 

several IEDB B-cell tools Then, the toxicity of these epitope candidates was predicted using 

ToxinPred. After that, allergenicity was anticipated using AllergenFP v1.0 and AllerTOP v2.0. 

Finally, docking analysis was performed using common MHC allele as the macromolecule. For 

docking analysis, the 3D structures of selected epitope candidates were predicted using PEP-FOLD 

2.0 server. A control ligand was also selected for comparing results. Then, energy minimization of 

macromolecules and ligands were carried out using UCSF Chimera 1.13. After the minimizing 
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process, PyRx was used for molecular docking. Finally, molecular visualization of the best 

docking poses was performed using UCSF Chimera 1.13 

Molecular docking was used to identify effective flavonoids in order to use them as nsp3 inhibiting 

therapeutic agents against MERS-CoV. In this study, several flavonoids were selected as potential 

nsp3 inhibitor candidates. Each of these flavonoids was used as a ligand separately in molecular 

docking. MERS-CoV macro domain within nsp3 protein was selected as the macromolecule. To 

perform molecular docking, 3D structures of ligands were retrieved from PubChem in SDF format. 

After that, the three-dimensional crystal structure of the macro domain within nsp3 protein was 

retrieved from RCSB Protein Data Bank in PDB format. Then, undesired ligands along with water 

molecules were removed, and energy minimization was done using Dock Prep tool in UCSF 

Chimera 1.13. Ligand minimization was done by PyRx prior to docking. After the minimizing 

process, PyRx was used for molecular docking. The protein was placed in a grid box and ADP-

ribose was first re-docked into the ADP-ribose binding site of nsp3, and the resulting interactions 

were later compared with those found by docking 18 flavonoids into the similar active site using 

the same grid box. The docking poses were ranked according to their docking scores. The 

conformation with the lowest binding affinity was selected as the best docking pose. Afterward, 

the Ki value was measured for each compound. Finally, the molecular visualization of the docked 

complexes was performed using UCSF Chimera 1.13, and the intermolecular H bonds between 

each compound with MERS-CoV nsp3 macro domain were listed along with their respective 

distances.  
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2.1.1 In silico Analysis of Epitope-based Vaccine Candidates 

 

Figure 2.1 Summary of the methodology of in silico analysis of epitope-based vaccine 

candidates 
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2.1.2 Assessing Potential Anti-Viral Activity of Selected Flavonoids against MERS-CoV 

using Immunoinformatics 

 

Figure 2.2: Summary of the methodology of assessing the potential anti-viral activity of 

selected flavonoids against MERS-CoV using immunoinformatics 
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2.2 Databases used for obtaining data: 

2.2.1 NCBI 

The National Center for Biotechnology Information (NCBI) was established in 1988 as a national 

resource for molecular biology information. NCBI houses several public databases relevant to 

biotechnology and biomedicine, conducts research in computational biology, develops software 

tools for analyzing genome data, and disseminates biomedical information. 

URL link: https://www.ncbi.nlm.nih.gov 

2.2.2 PDB 

The Protein Data Bank (PDB) is a crystallographic database for the three-dimensional (3D) 

structural data of large biological molecules, such as proteins and nucleic acids. The data, typically 

obtained by X-ray crystallography or NMR spectroscopy and submitted by biologists and 

biochemists from around the world, are freely accessible on the Internet via websites of its member 

organizations (PDBe, PDBj and RCSB). The PDB is overseen by an organization called the 

Worldwide Protein Data Bank, wwPDB. 

URL link: https://www.rcsb.org 

 

2.3 Software and tools used for analysis: 

2.3.1 UCSF chimera 1.13 

Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the 

University of California, San Francisco (supported by NIGMS P41-GM103311). It is a highly 

extensible program for interactive visualization and analysis of molecular structures and related 

data. High-quality animations and images can be produced by this tool. It can be downloaded from 

the UCSF Chimera website (http://www.cgl.ucsf.edu/chimera). 

2.3.2 PyRx 

PyRx is a Virtual Screening software for Computational Drug Discovery that can be used to screen 

libraries of compounds against potential drug targets. PyRx includes docking wizard with an easy-

to-use user interface which makes it a valuable tool for Computer-Aided Drug Design. PyRx also 
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includes chemical spreadsheet-like functionality and powerful visualization engine that are 

essential for structure-based drug design. It can be downloaded from the website 

(https://pyrx.sourceforge.io). 

2.3.3 VaxiJen 2.0 

VaxiJen is the first server for alignment-independent prediction of protective antigens of bacterial, 

viral and tumor origin. VaxiJen contains models derived by auto- and cross-covariance pre-

processing of amino acids properties. The models showed remarkable stability, as tested by 

combinations of the positive set and five different negative sets. Thus, VaxiJen is a reliable and 

consistent tool for the prediction of protective antigens. 

URL link: http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html 

2.3.4 BepiPred 2.0 

BepiPred 2.0 is a web server that allows users to predict B-cell epitopes from antigen sequences. 

The server is based on a random forest algorithm trained on epitopes annotated from antibody-

antigen protein structures. 

 URL link: http://www.cbs.dtu.dk/services/BepiPred 

2.3.5 BCPPREDS  

BCPREDS is another web server used for predicting B-cell epitopes from sequences. It currently 

uses three prediction methods. It lets the user change various parameters such as sequence length 

and specify threshold as well. BCPREDS server allows users to choose the method for predicting 

B-cell epitopes among several developed prediction methods. 

URL link: http://ailab.ist.psu.edu/bcpred/ 

2.3.6 IEDB tools 

IEDB is a collection of tools for predicting and analyzing of immune epitopes.  It is as a companion 

site of the Immune Epitope Database (IEDB), a manually curated database of experimentally 

characterized immune epitopes. 

URL link: http://www.iedb.org/ 
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2.3.6.1 Chou & Fasman Beta-Turn Prediction 

The Chou–Fasman method is an empirical technique that helps to predict secondary structures in 

proteins. This method originally was developed in the 1970s by Peter Y. Chou and Gerald D. 

Fasman. It relies on the relative frequencies of each amino acid in alpha helices, beta sheets, and 

turns based on known protein structures solved with X-ray crystallography. 

2.3.6.2 Emini surface accessibility prediction tool:  

 The calculation is based on the surface accessibility scale on a product instead of an addition 

within the window. It is one of the parameters required to be an ideal epitope. 

2.3.6.3 Karplus and Schulz Flexibility prediction tool:  

 In this method, flexibility scale based on the mobility of protein segments on the basis of the 

known temperature B factors of the a-carbons of 31 proteins of known structure was constructed. 

The calculation based on a flexibility scale is similar to classical calculation, except that the center 

is the first amino acid of the six amino acids window length, and there are three scales for 

describing flexibility instead of a single one. 

2.3.6.4 Kolaskar and Tongaonkar antigenicity prediction tool:  

It is the simplest method for the prediction of antigenic determinants. This method predicts 

antigenic epitopes of given sequence based on physicochemical properties of amino acid residues 

that frequently occur in experimentally determined antigenic epitopes. Previously reported data 

appreciated this method as it gives 75% experimental accuracy. 

2.3.6.5 Parker Hydrophilicity prediction tool:  

In this method, the hydrophilic scale based on peptide retention times during high-performance 

liquid chromatography (HPLC) on a reversed-phase column was constructed. A window of seven 

residues was used for analyzing the epitope region. The corresponding value of the scale was 

introduced for each of the seven residues and the arithmetical mean of the seven residues value 

was assigned to the fourth, (i+3), residue in the segment. 
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2.3.6.6 Epitope Conservancy Analysis 

This tool computes the degree of conservancy of an epitope within a given protein sequence set at 

a given identity level. Conservancy is defined as the fraction of protein sequences that contain the 

epitope, and Identity is the degree of correspondence (similarity) between two sequences. 

2.3.6.7 Proteasomal cleavage/TAP transport/MHC class I combined predictor 

This tool combines predictors of proteasomal processing, TAP transport, and MHC binding to 

produce an overall score for each peptide's intrinsic potential of being a T-cell epitope. 

2.3.6.8 T-cell class I pMHC immunogenicity predictor 

This tool uses amino acid properties as well as their position within the peptide to predict the 

immunogenicity of a class I peptide MHC (pMHC) complex. 

2.3.6.9 Peptide binding to MHC class II molecules predictor 

This tool employs different methods to predict MHC Class II epitopes, including a consensus 

approach which combines NN-align, SMM-align and Combinatorial library methods. 

2.3.6.10 Population Coverage 

This tool calculates the fraction of individuals predicted to respond to a given set of epitopes with 

known MHC restrictions. This calculation is made on the basis of HLA genotypic frequencies 

assuming non-linkage disequilibrium between HLA loci. 

2.3.7 NetCTL 1.2 Server 

NetCTL 1.2 server predicts CTL epitopes in protein sequences. The version 1.2 expands the MHC 

class I binding prediction to 12 MHC supertypes including the supertypes A26 and B39. The 

accuracy of the MHC class I peptide binding affinity is significantly improved compared to the 

earlier version. Also, the prediction of proteasomal cleavage has been improved and is now 

identical to the predictions obtained by the NetChop-3.0 server. The updated version has been 

trained on a set of 886 known MHC class I ligands. The method integrates prediction of peptide 

MHC class I binding, proteasomal C terminal cleavage and TAP transport efficiency. 

URL link: http://www.cbs.dtu.dk/services/NetCTL/ 
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2.3.8 NetMHC 4.0 Server 

NetMHC 4.0 Server predicts peptide-MHC class I binding using artificial neural networks (ANNs) 

which generate rank of the predicted affinity(%Rank) by comparing to a set of 400.000 random 

natural peptides. This measure is not affected by the inherent bias of certain molecules towards 

higher or lower mean predicted affinities. The peptide will be identified as a weak binder if the % 

Rank is above the threshold of the strong binders (0.5% by default) but below the specified 

threshold for the weak binders (2% by default). 

URL link: http://www.cbs.dtu.dk/services/NetMHC/ 

2.3.9 ToxinPred 

ToxinPred is an in-silico method, which is developed to predict and design toxic/non-toxic 

peptides. The main dataset used in this method consists of 1805 toxic peptides (<=35 residues). 

One of the major features of the server is that it also calculates various physicochemical properties. 

Peptide analogs can be displayed in sorting order based upon desired properties. 

URL link: http://crdd.osdd.net/raghava/toxinpred/  

2.3.10 AllergenFP v1.0 

AllergenFP v1.0 is an alignment-free method to predict allergenicity of target peptide. 

URL link: http://www.ddg-pharmfac.net/AllergenFP/ 

2.3.11 AllerTOP v2.0 

AllerTOP v2.0 is a robust bioinformatics tool for in-silico allergenicity prediction. 

URL link: https://www.ddg-pharmfac.net/AllerTOP/ 

2.3.12 PEP-FOLD 2.0 

PEP-FOLD is a de novo approach aimed at predicting peptide structures from amino acid 

sequences. 

URL link: http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/ 
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Results 
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3.1 Result Summary 

In the present study, nsp3 protein sequence was extracted from the NCBI database and was 

checked for antigenicity using VaxiJen 2.0. The result of VaxiJen 2.0 indicates that nsp3 protein 

is antigenic with a value of 0.4794 which is over the threshold for virus model (0.4). For prediction 

of T-cell epitopes, the sequence of nsp3 protein was put in NetCTL 1.2 server to identify probable 

T-cell epitopes in the target sequence, and 30 T-cell epitopes were selected which achieved 

threshold value of 1.25. Antigenicity of selected epitopes was then evaluated using VaxiJen 2.0 

followed by IEDB T-cell class I pMHC immunogenicity predictor. Only six T-cell epitopes had 

achieved the threshold value of 0.4 in VaxiJen 2.0 and positive immunogenicity score in IEDB T-

cell class I pMHC immunogenicity predictor. Then prediction of peptide-MHC class I binding was 

performed using both Proteasomal cleavage/TAP transport/MHC class I combined predictor and 

NetMHC 4.0 server. In Proteasomal cleavage/TAP transport/MHC class I combined predictor tool, 

FAFETGLAY showed the highest affinity and was recognized by 20 MHC-I alleles. 

FAFETGLAY showed the highest affinity in NetMHC 4.0 server as well and was recognized by 

37 MHC-I alleles. Moreover, FAFETGLAY was recognized by 44 MHC-I alleles combined. Next, 

FVDWRSYNY had the second highest affinity and was recognized by 23 MHC-I alleles 

combined. After that, LLLAGTLHY was recognized by 17 MHC-I alleles combined. Next, 

KTTTGIPEY was recognized by 14 MHC-I alleles combined. Finally, both LSSVYHLYV and 

STDFIALIM showed the least affinity as LSSVYHLYV, along with LSSVYHLYV, was 

recognized by 11 MHC-I alleles combined. HLA-A*01:01 is the only MHC-I allele that had 

affinity with all of the selected T-cell epitopes. Afterward, the selected epitopes were used for the 

prediction of MHC-II alleles using the IEDB Peptide binding to MHC class II molecules predictor. 

Afterward, identified MHC-I-binding alleles with high binding affinity of six epitopes were 

considered to analyze population coverage using the IEDB Population Coverage Analysis tool. 

IEDB Population Coverage Analysis tool revealed that these epitopes and their HLA-alleles cover 

98.55% of the world population cumulatively. The highest population coverage was found in the 

South Africa region (99.66%) while the lowest population coverage was found in Central America 

(9.07%). The cumulative population coverage in Southwest Asia was 96.40%. whereas the 

cumulative population coverage in East Asia was 96.86%. Then those six epitopes were checked 

for conservancy using IEDB conservancy analysis tool. Conservancy analysis revealed that all of 

them had the maximum identity (100%) for conservancy hit. In addition, all six of the selected 
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epitopes were found non-toxic in ToxinPred. Finally, allergenicity was anticipated using 

AllergenFP v1.0 and AllerTOP v2.0. STDFIALIM, LSSVYHLYV, FAFETGLAY, 

LLLAGTLHY, FVDWRSYNY were found as probable allergens in AllergenFP v1.0 while 

KTTTGIPEY was found non-allergenic. On the contrary, STDFIALM and LSSVYHLYV were 

found non-allergenic in AllerTOP v2.0. KTTTGIPEY was found non-allergenic in both 

AllergenFP v1.0 and AllerTOP v2.0. Then, molecular docking analysis was performed using 

HLA-A∗01:01 as the macromolecule. The crystal structure of the HLA-A∗01:01 protein molecule 

(PDB ID:4nqx) was retrieved from the RCSB Protein Data Bank in PDB format, and UCSF 

Chimera 1.13 was used to remove undesired ligands and molecules. The 3D structures of selected 

epitope candidates were predicted using PEP-FOLD 2.0 server. Besides these T-cell epitope 

candidates, NP44-S7N mutant peptide (CTELKLNDY) was also selected as a ligand to be used as 

a control. After the minimizing process, PyRx was used for molecular docking.  HLA-A∗01:01 

protein was placed in a grid box measuring 52.8351 Å × 68.2709 Å × 61.7293 Å along the x, y 

and z axis, respectively, where the position of the center was X:-63.5001, Y:-17.1718, Z:7.5672. 

The docking procedure was performed using the instructed command prompts. The docking poses 

were ranked according to their docking scores. Since the docking result revealed two different 

binding sites, the conformation with the lowest binding affinity that used the same binding site as 

control (NP44-S7N mutant peptide) was selected as best docking pose in order to compare between 

sample and control for critical evaluation. Then, molecular visualization of the best docking poses 

was performed using UCSF Chimera 1.13. Only FAFETGLAY formed an intermolecular 

hydrogen bond. For prediction of B-cell epitopes, nsp3 protein sequence was put in BCPREDS 

and BepiPred 2.0. These tools generated a repertoire of probable B-cell epitope candidates which 

were screened using VaxiJen 2.0. After that, the number of epitopes candidates was reduced to 

178. Then overlapping B-cell and T-cell epitopes were identified. Out of 178 B-cell epitopes, only 

eight had the sequence similarity with the selected T-cell epitopes. IFVDWRSYNYAVSS, 

FVDWRSYNYAVS, FVDWRSYNYAVSSAFW and FVDWRSYNYAVSSAFWLF had the 

sequence similarity with FVDWRSYNY whereas LKFKEVCKTTTGIPEYNF, 

LKFKEVCKTTTGIPEY, FKEVCKTTTGIPEYNFIIYD and VCKTTTGIPEYN had the 

sequence similarity with KTTTGIPEY. Conservancy analysis of these B-cell epitopes using IEDB 

conservancy analysis tool revealed that all of them had the maximum identity (100%) for 

conservancy hit. Afterward, these epitopes were checked for the presence of beta-turn, surface 
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accessibility, flexibility, antigenicity and hydrophilicity using several IEDB B-cell tools. Results 

of IEDB B-cell tools showed that among eight B-cell epitopes, LKFKEVCKTTTGIPEYNF had 

the presence of beta-turn, surface accessibility, flexibility, high antigenicity and hydrophilicity. On 

the contrary, epitope FVDWRSYNYAVSSAFWLF and LKFKEVCKTTTGIPEY had the 

presence of beta turns and they were found antigenic, flexible, hydrophilic but performed a bit 

poorly in Emini Surface Accessibility Prediction tool. All epitopes were found as non-toxic in 

ToxinPred. However, allergenicity prediction results were not conclusive for 

LKFKEVCKTTTGIPEYNF as it was found as a probable allergen in AllergenFP v1.0 but 

AllerTOP v2.0 identified LKFKEVCKTTTGIPEYNF as non-allergen. 

FVDWRSYNYAVSSAFWLF and LKFKEVCKTTTGIPEY were found as probable non-allergen 

in both AllergenFP v1.0 and AllerTOP v2.0.  

In the present study, 18 flavonoids were selected as potential nsp3 inhibitor candidates to be used 

as ligands in molecular docking. MERS-CoV macro domain within nsp3 protein was selected as 

the macromolecule. 3D structures of ligands were retrieved from PubChem in SDF format whereas 

the three-dimensional crystal structure of the macro domain within nsp3 protein was retrieved from 

RCSB Protein Data Bank (PDB ID:5DUS) in PDB format. After the minimizing process, PyRx 

was used for molecular docking. The protein was placed in a grid box measuring 37.3660 Å × 

43.4316 Å × 43.1478 Å along the x, y and z axis, respectively, where the position of the center 

was X:8.9843, Y:17.6095, Z:68.5928 and then the docking procedure was performed using the 

instructed command prompt. The docking poses were ranked according to their docking scores 

and then conformation with the lowest binding affinity was selected as the best docking pose. The 

best docking conformation of ADP-ribose showed a binding affinity of -8.7 kcal/mol. Only 12 

flavonoids had binding affinities greater than -8.7 kcal/mol. Among them, apiin and naringin had 

the best binding affinity of -10.1 kcal/mol. Afterward, the Ki value was measured for each 

compound. The present study revealed that apiin, naringin, luteoloside, hesperidin and fisetin had 

significantly lower Ki values (less than 0.08 μM), with apiin and naringin having the lowest Ki 

value (0.0390649 μM). Finally, the molecular visualization of the docked complexes was 

performed revealed that both apiin and quercetin had five intermolecular hydrogen bonds (same 

as ADP-ribose) while naringin, luteoloside, fisetin, and pinostrobin had three intermolecular 

hydrogen bonds each. Others had less than three intermolecular hydrogen bonds each. However, 

kaempferol did not form any visible hydrogen bond at all. 
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3.2 Sequence retrieval 

The protein sequence of MERS-CoV nsp3 protein was retrieved from NCBI database in fasta 

format. 

 

Figure 3.1: Protein sequence retrieval from NCBI database 

Here the target sequence was MERS-CoV nsp3 protein: 

>YP_009047215.1 nsp3 protein [Human betacoronavirus 2c EMC/2012] 

APVKKVAFGGDQVHEVAAVRSVTVEYNIHAVLDTLLASSSLRTFVVDKSLSIEEFADVV
KEQVSDLLVKLLRGMPIPDFDLDDFIDAPCYCFNAEGDASWSSTMIFSLHPVECDEECSE
VEASDLEEGESECISETSTEQVDVSHETSDDEWAAAVDEAFPLDEAEDVTESVQEEAQP
VEVPVEDIAQVVIADTLQETPVVPDTVEVPPQVVKLPSAPQTIQPEVKEVAPVYEADTEQ
TQNVTVKPKRLRKKRNVDPLSNFEHKVITECVTIVLGDAIQVAKCYGESVLVNAANTHL
KHGGGIAGAINAASKGAVQKESDEYILAKGPLQVGDSVLLQGHSLAKNILHVVGPDAR
AKQDVSLLSKCYKAMNAYPLVVTPLVSAGIFGVKPAVSFDYLIREAKTRVLVVVNSQD
VYKSLTIVDIPQSLTFSYDGLRGAIRKAKDYGFTVFVCTDNSANTKVLRNKGVDYTKKF
LTVDGVQYYCYTSKDTLDDILQQANKSVGIISMPLGYVSHGLDLMQAGSVVRRVNVPY
VCLLANKEQEAILMSEDVKLNPSEDFIKHVRTNGGYNSWHLVEGELLVQDLRLNKLLH
WSDQTICYKDSVFYVVKNSTAFPFETLSACRAYLDSRTTQQLTIEVLVTVDGVNFRTVV
LNNKNTYRSQLGCVFFNGADISDTIPDEKQNGHSLYLADNLTADETKALKELYGPVDPT
FLHRFYSLKAAVHGWKMVVCDKVRSLKLSDNNCYLNAVIMTLDLLKDIKFVIPALQHA
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FMKHKGGDSTDFIALIMAYGNCTFGAPDDASRLLHTVLAKAELCCSARMVWREWCNV
CGIKDVVLQGLKACCYVGVQTVEDLRARMTYVCQCGGERHRQLVEHTTPWLLLSGTP
NEKLVTTSTAPDFVAFNVFQGIETAVGHYVHARLKGGLILKFDSGTVSKTSDWKCKVTD
VLFPGQKYSSDCNVVRYSLDGNFRTEVDPDLSAFYVKDGKYFTSEPPVTYSPATILAGS
VYTNSCLVSSDGQPGGDAISLSFNNLLGFDSSKPVTKKYTYSFLPKEDGDVLLAEFDTYD
PIYKNGAMYKGKPILWVNKASYDTNLNKFNRASLRQIFDVAPIELENKFTPLSVESTPVE
PPTVDVVALQQEMTIVKCKGLNKPFVKDNVSFVADDSGTPVVEYLSKEDLHTLYVDPK
YQVIVLKDNVLSSMLRLHTVESGDINVVAASGSLTRKVKLLFRASFYFKEFATRTFTATT
AVGSCIKSVVRHLGVTKGILTGCFSFAKMLFMLPLAYFSDSKLGTTEVKVSALKTAGVV
TGNVVKQCCTAAVDLSMDKLRRVDWKSTLRLLLMLCTTMVLLSSVYHLYVFNQVLSS
DVMFEDAQGLKKFYKEVRAYLGISSACDGLASAYRANSFDVPTFCANRSAMCNWCLIS
QDSITHYPALKMVQTHLSHYVLNIDWLWFAFETGLAYMLYTSAFNWLLLAGTLHYFFA
QTSIFVDWRSYNYAVSSAFWLFTHIPMAGLVRMYNLLACLWLLRKFYQHVINGCKDTA
CLLCYKRNRLTRVEASTVVCGGKRTFYITANGGISFCRRHNWNCVDCDTAGVGNTFICE
EVANDLTTALRRPINATDRSHYYVDSVTVKETVVQFNYRRDGQPFYERFPLCAFTNLDK
LKFKEVCKTTTGIPEYNFIIYDSSDRGQESLARSACVYYSQVLCKSILLVDSSLVTSVGDS
SEIATKMFDSFVNSFVSLYNVTRDKLEKLISTARDGVRRGDNFHSVLTTFIDAARGPAGV
ESDVETNEIVDSVQYAHKHDIQITNESYNNYVPSYVKPDSVSTSDLGSLIDCNAASVNQI
VLRNSNGACIWNAAAYMKLSDALKRQIRIACRKCNLAFRLTTSKLRANDNILSVRFTAN
KIVGG 

 

3.3 VaxiJen result for nsp3 Protein: Primary result of antigenicity 

When nsp3 protein sequence was run in VaxiJen 2.0, antigenicity was found 0.4794, which is 

above the threshold value of ≥0.4. This indicates that nsp3 protein has good antigenic property.  

 

Figure 3.2: Analysis of nsp3 protein of MERS-CoV using VaxiJen 2.0 showing that the 

sequence is probably antigenic 
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3.4 Prediction of T-Cell epitopes 

The sequence of nsp3 protein was put in T-Cell epitope predicter tools to identify probable T-cell 

epitopes in a target sequence. Selection of T-cell epitope candidates was done using NetCTL 1.2 

Server. 

3.4.1 Prediction of CD8+ T-cell epitopes using NetCTL 1.2 Server 

The NetCTL 1.2 web server was used for the prediction of CD8+ T-cell epitopes, and for this 

purpose, the combined score for the epitope selection was considered. After putting the target 

sequence in the NetCTL 1.2 server, 30 epitopes in total were found which achieved the selected 

threshold value of 1.25. 

 

Figure 3.3: Prediction of CD8+ T-cell epitopes using NetCTL 1.2 Server 

 

3.4.2 T-cell Epitope candidate screening using VaxiJen 2.0 and IEDB Immunogenicity Tool 

After using the NetCTL 1.2 server and obtaining 30 T-cell epitope candidates, the predicted T-cell 

epitopes were further evaluated by the VaxiJen 2.0 server. 
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Table 3.1: Analysis of predicted T-cell epitope candidates using VaxiJen 2.0 

Position Epitope NetCTL 1.2 Score VaxiJen 2.0 Score 

1471 FVDWRSYNY 2.9331 1.6645 

1167 HTLYVDPKY 1.486 1.2941 

1598 NATDRSHYY 1.5461 0.9564 

1786 ITNESYNNY 2.7582 0.7731 

1455 LLLAGTLHY 1.2733 0.7587 

1437 FAFETGLAY 1.5751 0.7437 

1599 ATDRSHYYV 1.6338 0.7165 

1263 MLFMLPLAY 1.4846 0.6369 

1650 KTTTGIPEY 1.718 0.4986 

773 STDFIALIM 2.2885 0.4864 

1440 ETGLAYMLY 2.6007 0.4838 

1335 LSSVYHLYV 1.6543 0.4116 

1420 MVQTHLSHY 1.6504 0.3976 

899 GIETAVGHY 2.0627 0.2926 

451 CTDNSANTK 1.8502 0.2589 

1334 LLSSVYHLY 2.9089 0.2519 

1448 YTSAFNWLL 2.8965 0.2423 

979 FTSEPPVTY 2.7477 0.2059 

1376 ACDGLASAY 1.5806 0.1838 

314 AVQKESDEY 1.2724 0.1702 

1162 SKEDLHTLY 1.5553 0.1463 

692 ETKALKELY 1.5673 0.0669 

1672 SLARSACVY 1.297 -0.0173 

1152 DSGTPVVEY 1.2588 -0.0222 

990 ATILAGSVY 1.4887 -0.0235 

473 LTVDGVQYY 2.0985 -0.0371 

1407 ISQDSITHY 2.1697 -0.196 

946 SSDCNVVRY 3.5229 -0.2274 

318 ESDEYILAK 1.4117 -0.2766 

1714 FVNSFVSLY 2.7059 -0.4734 
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Among 30 T-cell epitope candidates, only 12 epitope candidates achieved a score over the desired 

threshold value 0.4. 

Table 3.2: Predicted T-cell epitope candidates having threshold value over 0.4 in VaxiJen 2.0 

Position Epitope NetCTL 1.2 Score VaxiJen 2.0 Score 
1471 FVDWRSYNY 2.9331 1.6645 
1167 HTLYVDPKY 1.486 1.2941 
1598 NATDRSHYY 1.5461 0.9564 
1786 ITNESYNNY 2.7582 0.7731 
1455 LLLAGTLHY 1.2733 0.7587 
1437 FAFETGLAY 1.5751 0.7437 
1599 ATDRSHYYV 1.6338 0.7165 
1263 MLFMLPLAY 1.4846 0.6369 
1650 KTTTGIPEY 1.718 0.4986 
773 STDFIALIM 2.2885 0.4864 

1440 ETGLAYMLY 2.6007 0.4838 
1335 LSSVYHLYV 1.6543 0.4116 

 

These 12 T-cell epitopes were further evaluated by the IEDB T-cell class I pMHC immunogenicity 

predictor. 

 

Figure 3.4: Analysis of selected epitope candidates using IEDB T-cell class I pMHC 

immunogenicity predictor 
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Table 3.3: Analysis of predicted T-cell epitope candidates using IEDB T-cell class I pMHC 

immunogenicity predictor  

Position Epitope NetCTL 1.2 Score VaxiJen 2.0 Score Immunogenicity score 
773 STDFIALIM 2.2885 0.4864 0.35983 

1650 KTTTGIPEY 1.718 0.4986 0.25908 
1437 FAFETGLAY 1.5751 0.7437 0.22195 
1471 FVDWRSYNY 2.9331 1.6645 0.11786 
1455 LLLAGTLHY 1.2733 0.7587 0.11485 
1335 LSSVYHLYV 1.6543 0.4116 0.00317 
1598 NATDRSHYY 1.5461 0.9564 -0.04527 
1786 ITNESYNNY 2.7582 0.7731 -0.07517 
1599 ATDRSHYYV 1.6338 0.7165 -0.07665 
1167 HTLYVDPKY 1.486 1.2941 -0.0816 
1440 ETGLAYMLY 2.6007 0.4838 -0.12022 
1263 MLFMLPLAY 1.4846 0.6369 -0.14644 

 

Among these 12 epitope candidates, only 6 epitopes had positive immunogenicity score. 

Table 3.4: Predicted T-cell epitope candidates having a positive score in IEDB T-cell class I 

pMHC immunogenicity predictor 

Position Epitope NetCTL 2.0 Score VaxiJen 2.0 Score Immunogenicity score 

773 STDFIALIM 2.2885 0.4864 0.35983 

1650 KTTTGIPEY 1.718 0.4986 0.25908 

1437 FAFETGLAY 1.5751 0.7437 0.22195 

1471 FVDWRSYNY 2.9331 1.6645 0.11786 
1455 LLLAGTLHY 1.2733 0.7587 0.11485 

1335 LSSVYHLYV 1.6543 0.4116 0.00317 
 

Therefore, these 6 epitope candidates were selected for further evaluation. 

3.4.3 Prediction of peptide-MHC class I binding using Proteasomal cleavage/TAP 

transport/MHC class I combined predictor 

For MHC-I processing, the analysis tool of the IEDB generates an overall score for each epitope's 

intrinsic potential of being a T-cell epitope-based on proteasomal processing, TAP transport, and 
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MHC-I-binding efficiency. Humans were selected as MHC source species, and the IEDB 

Recommended method was selected for the prediction of a distinct set of MHC HLA alleles for 

the humans. This tool gives an output result for HLA-binding affinity of the epitopes in the 

IC50 nM unit. A lower IC50 value indicates higher binding affinity of the epitopes with the MHC 

class I molecule. As a rough guideline, peptides with IC50 values <50 nM are considered high 

affinity, <500 nM intermediate affinity and <5000 nM low affinity. Most known epitopes have 

high or intermediate affinity. Some epitopes have low affinity, but no known T-cell epitope has an 

IC50 value greater than 5000. So, in this study, IC50 values less than 200 nM (IC50 < 200nM) 

were chosen for ensuring higher affinity. 

Table 3.5: Prediction of peptide-MHC class I binding of selected T-cell epitope candidates 

using Proteasomal cleavage/TAP transport/MHC class I combined predictor  

Epitope Interacting MHC-I alleles with high affinity (ic50<200nM) Total 
Number of 
Interacting 

MHC-I 
alleles 

STDFIALIM HLA-C*05:01,HLA-A*01:01,HLA-C*15:02,HLA-C*16:01 4 

LSSVYHLYV HLA-C*15:02,HLA-A*02:06,HLA-C*12:03,HLA-A*68:02 4 

FAFETGLAY HLA-B*35:01,HLA-C*03:02,HLA-B*15:25,HLA-
C*12:03,HLA-B*15:02,HLA-C*16:01,HLA-C*12:02,HLA-
A*29:02,HLA-B*15:01,HLA-C*03:03,HLA-C*14:02,HLA-
C*02:02,HLA-C*02:09,HLA-B*53:01,HLA-B*46:01,HLA-
C*08:01,HLA-B*18:01,HLA-A*26:01,HLA-A*30:02,HLA-

A*68:01 

20 

LLLAGTLHY HLA-A*29:02,HLA-B*15:25,HLA-B*15:01,HLA-
B*15:02,HLA-A*03:01,HLA-A*30:02,HLA-C*03:02,HLA-

B*35:01 

8 

FVDWRSYNY HLA-A*01:01,HLA-A*29:02,HLA-B*35:01,HLA-C*16:01 4 

KTTTGIPEY HLA-A*30:02,HLA-B*58:01 2 

 

3.4.4 Prediction of peptide-MHC class I binding using NetMHC 4.0 Server 

For prediction of peptide-MHC class I binding using NetMHC 4.0 Server, only 9-mer peptide 

length was selected as most HLA molecules have a strong preference for binding 9mers. Default 

value 2.0 was used as a threshold for weak binders while 0.5 was used as a threshold for strong 

binders. 
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Table 3.6: Prediction of peptide-MHC class I binding (%Rank<2.0) of selected T-cell epitope 

candidates using NetMHC 4.0 Server 

Epitope Interacting MHC-I alleles with high affinity (%Rank<2.0) Total 
Number of 
Interacting 

MHC-I 
alleles 

STDFIALIM HLA-A*01:01,HLA-A*26:03,HLA-A*32:01,HLA-
A*69:01,HLA-A*80:01,HLA-B*15:17,HLA-B*39:01,HLA-

C*05:01,HLA-C*08:02,HLA-C*15:02 

10 

LSSVYHLYV HLA-A*02:05,HLA-A*01:01,HLA-A*68:23,HLA-
A*69:01,HLA-B*15:17,HLA-B*58:01,HLA-C*05:01,HLA-

C*15:02 

8 

FAFETGLAY HLA-A*01:01,HLA-A*25:01,HLA-A*26:01,HLA-
A*26:02,HLA-A*26:03,HLA-A*29:02,HLA-A*30:02,HLA-
A*32:07,HLA-A*66:01,HLA-A*68:01,HLA-A*68:23,HLA-
A*80:01,HLA-B*08:02,HLA-B*14:02,HLA-B*15:01,HLA-
B*15:02,HLA-B*15:03,HLA-B*18:01,HLA-B*27:20,HLA-
B*35:01,HLA-B*40:13,HLA-B*46:01,HLA-B*51:01,HLA-
B*53:01,HLA-B*58:01,HLA-B*83:01,HLA-C*03:03,HLA-
C*05:01,HLA-C*06:02,HLA-C*07:01,HLA-C*07:02,HLA-
C*08:02,HLA-C*12:03,HLA-C*14:02,HLA-C*15:02,HLA-

A*32:15,HLA-B*15:17 

37 

LLLAGTLHY HLA-A*01:01,HLA-A*03:01,HLA-A*29:02,HLA-
A*30:02,HLA-A*66:01,HLA-A*68:23,HLA-B*08:02,HLA-
B*15:02,HLA-B*15:03,HLA-B*15:17,HLA-B*35:01,HLA-

B*58:01,HLA-A*32:15,HLA-A*80:01,HLA-B*15:01 

15 

FVDWRSYNY HLA-A*01:01,HLA-A*26:02,HLA-A*26:03,HLA-
A*29:02,HLA-A*30:02,HLA-A*32:15,HLA-A*66:01,HLA-
A*68:23,HLA-A*80:01,HLA-B*08:02,HLA-B*08:03,HLA-
B*15:02,HLA-B*35:01,HLA-B*53:01,HLA-B*83:01,HLA-
C*04:01,HLA-C*05:01,HLA-C*06:02,HLA-C*07:01,HLA-

C*07:02,HLA-C*08:02,HLA-C*12:03 

22 

KTTTGIPEY HLA-A*01:01,HLA-A*25:01,HLA-A*26:02,HLA-
A*29:02,HLA-A*30:01,HLA-A*30:02,HLA-A*68:23,HLA-
A*80:01,HLA-B*15:03,HLA-B*15:17,HLA-B*46:01,HLA-

B*58:01,HLA-B*58:02,HLA-C*14:02 

14 
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3.4.5 Prediction of peptide-MHC class II binding using IEDB Peptide binding to MHC class 

II molecules predictor 

For the prediction of MHC-II alleles and their respective peptide or CD4+ T-cell epitope, identified 

MHC-I-binding alleles of 6 epitopes were considered. For peptide-MHC class II binding analysis, 

IEDB Peptide binding to MHC class II molecules predictor was used. In this study, IC50 values 

less than 3000 nM (IC50 < 3000nM) were chosen. 

Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 

binding to MHC class II molecules predictor  

Core peptide Allele Position Peptide ic50 
value 

FAFETGLAY HLA-DRB1*07:01 1433-1447 DWLWFAFETGLAYML 73 
HLA-DRB5*01:01 1434-1448 WLWFAFETGLAYMLY 123 
HLA-DRB5*01:01 1433-1447 DWLWFAFETGLAYML 125 
HLA-DRB1*01:01 1432-1446 IDWLWFAFETGLAYM 200 
HLA-DRB1*12:01 1433-1447 DWLWFAFETGLAYML 304 
HLA-DRB4*01:01 1437-1451 FAFETGLAYMLYTSA 330 
HLA-DRB5*01:01 1432-1446 IDWLWFAFETGLAYM 344 
HLA-DRB3*01:01 1435-1449 LWFAFETGLAYMLYT 552 
HLA-DRB3*01:01 1434-1448 WLWFAFETGLAYMLY 563 
HLA-DRB3*01:01 1433-1447 DWLWFAFETGLAYML 572 
HLA-DRB3*01:01 1432-1446 IDWLWFAFETGLAYM 757 
HLA-DRB1*11:01 1433-1447 DWLWFAFETGLAYML 825 
HLA-DRB1*11:01 1432-1446 IDWLWFAFETGLAYM 1290 
HLA-DRB1*12:01 1432-1446 IDWLWFAFETGLAYM 1592 
HLA-DRB1*04:04 1435-1449 LWFAFETGLAYMLYT 1739 
HLA-DRB1*03:01 1434-1448 WLWFAFETGLAYMLY 2982 

HLA-
DPA1*01:03/DPB1*02

:01 

1434-1448 WLWFAFETGLAYMLY 70 

HLA-
DPA1*01:03/DPB1*02

:01 

1433-1447 DWLWFAFETGLAYML 71 

HLA-
DPA1*01:03/DPB1*02

:01 

1435-1449 LWFAFETGLAYMLYT 106 

HLA-
DQA1*05:01/DQB1*0

3:01 

1433-1447 DWLWFAFETGLAYML 170 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

FAFETGLAY HLA-
DPA1*01:03/DPB1*02

:01 

1437-1451 FAFETGLAYMLYTSA 229 

HLA-
DPA1*01/DPB1*04:01 

1433-1447 DWLWFAFETGLAYML 242 

HLA-
DPA1*01/DPB1*04:01 

1434-1448 WLWFAFETGLAYMLY 242 

HLA-
DPA1*02:01/DPB1*01

:01 

1435-1449 LWFAFETGLAYMLYT 257 

HLA-
DPA1*01/DPB1*04:01 

1435-1449 LWFAFETGLAYMLYT 282 

HLA-
DPA1*01:03/DPB1*02

:01 

1436-1450 WFAFETGLAYMLYTS 302 

HLA-
DPA1*03:01/DPB1*04

:02 

1433-1447 DWLWFAFETGLAYML 303 

HLA-
DPA1*03:01/DPB1*04

:02 

1434-1448 WLWFAFETGLAYMLY 307 

HLA-
DPA1*03:01/DPB1*04

:02 

1435-1449 LWFAFETGLAYMLYT 383 

HLA-
DQA1*05:01/DQB1*0

3:01 

1432-1446 IDWLWFAFETGLAYM 470 

HLA-
DPA1*01/DPB1*04:01 

1437-1451 FAFETGLAYMLYTSA 665 

HLA-
DPA1*01/DPB1*04:01 

1436-1450 WFAFETGLAYMLYTS 711 

HLA-
DQA1*03:01/DQB1*0

3:02 

1432-1446 IDWLWFAFETGLAYM 1426 

HLA-
DQA1*05:01/DQB1*0

2:01 

1435-1449 LWFAFETGLAYMLYT 1446 

HLA-
DQA1*03:01/DQB1*0

3:02 

1434-1448 WLWFAFETGLAYMLY 1608 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

FAFETGLAY HLA-
DQA1*03:01/DQB1*0

3:02 

1433-1447 DWLWFAFETGLAYML 1617 

HLA-
DQA1*03:01/DQB1*0

3:02 

1435-1449 LWFAFETGLAYMLYT 1773 

FVDWRSYNY HLA-DRB1*07:01 1471-1485 FVDWRSYNYAVSSAF 19 
HLA-DRB1*15:01 1468-1482 TSIFVDWRSYNYAVS 321 
HLA-DRB1*15:01 1469-1483 SIFVDWRSYNYAVSS 356 
HLA-DRB1*15:01 1467-1481 QTSIFVDWRSYNYAV 400 
HLA-DRB1*15:01 1466-1480 AQTSIFVDWRSYNYA 460 
HLA-DRB3*01:01 1471-1485 FVDWRSYNYAVSSAF 481 
HLA-DRB1*01:01 1468-1482 TSIFVDWRSYNYAVS 599 
HLA-DRB1*04:01 1468-1482 TSIFVDWRSYNYAVS 709 
HLA-DRB1*01:01 1467-1481 QTSIFVDWRSYNYAV 970 
HLA-DRB1*07:01 1467-1481 QTSIFVDWRSYNYAV 1015 
HLA-DRB1*01:01 1466-1480 AQTSIFVDWRSYNYA 1292 
HLA-DRB1*12:01 1466-1480 AQTSIFVDWRSYNYA 1309 
HLA-DRB1*12:01 1468-1482 TSIFVDWRSYNYAVS 1327 
HLA-DRB1*12:01 1467-1481 QTSIFVDWRSYNYAV 1390 
HLA-DRB1*12:01 1469-1483 SIFVDWRSYNYAVSS 1450 
HLA-DRB1*12:01 1471-1485 FVDWRSYNYAVSSAF 1507 
HLA-DRB1*04:01 1466-1480 AQTSIFVDWRSYNYA 1900 
HLA-DRB1*04:01 1467-1481 QTSIFVDWRSYNYAV 1974 
HLA-DRB1*04:04 1468-1482 TSIFVDWRSYNYAVS 1975 
HLA-DRB1*04:05 1468-1482 TSIFVDWRSYNYAVS 2132 
HLA-DRB1*12:01 1470-1484 IFVDWRSYNYAVSSA 2309 
HLA-DRB1*07:01 1466-1480 AQTSIFVDWRSYNYA 2366 
HLA-DRB5*01:01 1468-1482 TSIFVDWRSYNYAVS 2958 

HLA-
DQA1*01:01/DQB1*0

5:01 

1468-1482 TSIFVDWRSYNYAVS 1569 

HLA-
DQA1*01:01/DQB1*0

5:01 

1466-1480 AQTSIFVDWRSYNYA 1637 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

FVDWRSYNY HLA-
DQA1*01:01/DQB1*0

5:01 

1469-1483 SIFVDWRSYNYAVSS 1700 

HLA-
DQA1*01:01/DQB1*0

5:01 

1467-1481 QTSIFVDWRSYNYAV 2102 

HLA-
DQA1*01:01/DQB1*0

5:01 

1470-1484 IFVDWRSYNYAVSSA 2643 

HLA-
DQA1*01:01/DQB1*0

5:01 

1471-1485 FVDWRSYNYAVSSAF 2692 

KTTTGIPEY HLA-
DQA1*04:01/DQB1*0

4:02 

1650-1664 KTTTGIPEYNFIIYD 1577 

HLA-
DQA1*05:01/DQB1*0

2:01 

1648-1662 VCKTTTGIPEYNFII 2486 

HLA-
DQA1*05:01/DQB1*0

2:01 

1647-1661 EVCKTTTGIPEYNFI 2547 

HLA-
DQA1*05:01/DQB1*0

2:01 

1646-1660 KEVCKTTTGIPEYNF 2990 

LLLAGTLHY HLA-DRB1*04:04 1455-1469 LLLAGTLHYFFAQTS 51 
HLA-DRB1*01:01 1455-1469 LLLAGTLHYFFAQTS 87 
HLA-DRB1*12:01 1450-1464 SAFNWLLLAGTLHYF 137 
HLA-DRB1*12:01 1451-1465 AFNWLLLAGTLHYFF 147 
HLA-DRB1*12:01 1452-1466 FNWLLLAGTLHYFFA 151 
HLA-DRB1*12:01 1453-1467 NWLLLAGTLHYFFAQ 177 
HLA-DRB4*01:01 1455-1469 LLLAGTLHYFFAQTS 203 
HLA-DRB1*04:01 1450-1464 SAFNWLLLAGTLHYF 224 
HLA-DRB1*15:01 1450-1464 SAFNWLLLAGTLHYF 235 
HLA-DRB1*15:01 1452-1466 FNWLLLAGTLHYFFA 261 
HLA-DRB1*04:01 1451-1465 AFNWLLLAGTLHYFF 275 
HLA-DRB1*04:01 1452-1466 FNWLLLAGTLHYFFA 275 
HLA-DRB1*07:01 1453-1467 NWLLLAGTLHYFFAQ 275 
HLA-DRB1*12:01 1455-1469 LLLAGTLHYFFAQTS 342 
HLA-DRB1*04:01 1455-1469 LLLAGTLHYFFAQTS 356 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

LLLAGTLHY HLA-DRB1*15:01 1453-1467 NWLLLAGTLHYFFAQ 373 
HLA-DRB1*03:01 1452-1466 FNWLLLAGTLHYFFA 382 
HLA-DRB1*03:01 1451-1465 AFNWLLLAGTLHYFF 383 
HLA-DRB1*03:01 1453-1467 NWLLLAGTLHYFFAQ 391 
HLA-DRB1*03:01 1450-1464 SAFNWLLLAGTLHYF 394 
HLA-DRB1*04:01 1453-1467 NWLLLAGTLHYFFAQ 421 
HLA-DRB5*01:01 1453-1467 NWLLLAGTLHYFFAQ 444 
HLA-DRB1*09:01 1455-1469 LLLAGTLHYFFAQTS 775 
HLA-DRB1*04:01 1454-1468 WLLLAGTLHYFFAQT 800 
HLA-DRB1*13:02 1453-1467 NWLLLAGTLHYFFAQ 845 
HLA-DRB1*13:02 1452-1466 FNWLLLAGTLHYFFA 852 
HLA-DRB1*13:02 1451-1465 AFNWLLLAGTLHYFF 854 
HLA-DRB1*13:02 1450-1464 SAFNWLLLAGTLHYF 862 
HLA-DRB3*01:01 1450-1464 SAFNWLLLAGTLHYF 912 
HLA-DRB1*03:01 1455-1469 LLLAGTLHYFFAQTS 1135 
HLA-DRB1*03:01 1454-1468 WLLLAGTLHYFFAQT 1154 
HLA-DRB1*09:01 1453-1467 NWLLLAGTLHYFFAQ 1587 
HLA-DRB1*13:02 1454-1468 WLLLAGTLHYFFAQT 2153 
HLA-DRB1*13:02 1455-1469 LLLAGTLHYFFAQTS 2431 

HLA-
DPA1*03:01/DPB1*04

:02 

1451-1465 AFNWLLLAGTLHYFF 558 

HLA-
DPA1*03:01/DPB1*04

:02 

1452-1466 FNWLLLAGTLHYFFA 576 

HLA-
DPA1*03:01/DPB1*04

:02 

1453-1467 NWLLLAGTLHYFFAQ 678 

HLA-
DPA1*02:01/DPB1*01

:01 

1452-1466 FNWLLLAGTLHYFFA 697 

HLA-
DPA1*02:01/DPB1*01

:01 

1453-1467 NWLLLAGTLHYFFAQ 697 

HLA-
DPA1*02:01/DPB1*01

:01 

1451-1465 AFNWLLLAGTLHYFF 703 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

LLLAGTLHY HLA-
DPA1*02:01/DPB1*01

:01 

1450-1464 SAFNWLLLAGTLHYF 783 

HLA-
DPA1*03:01/DPB1*04

:02 

1455-1469 LLLAGTLHYFFAQTS 1033 

HLA-
DPA1*03:01/DPB1*04

:02 

1454-1468 WLLLAGTLHYFFAQT 1187 

LSSVYHLYV HLA-DRB1*07:01 1330-1344 TTMVLLSSVYHLYVF 47 
HLA-DRB1*07:01 1331-1345 TMVLLSSVYHLYVFN 48 
HLA-DRB1*07:01 1332-1346 MVLLSSVYHLYVFNQ 61 
HLA-DRB1*07:01 1333-1347 VLLSSVYHLYVFNQV 65 
HLA-DRB1*15:01 1331-1345 TMVLLSSVYHLYVFN 113 
HLA-DRB1*07:01 1334-1348 LLSSVYHLYVFNQVL 137 
HLA-DRB1*01:01 1333-1347 VLLSSVYHLYVFNQV 138 
HLA-DRB1*07:01 1335-1349 LSSVYHLYVFNQVLS 145 
HLA-DRB1*15:01 1332-1346 MVLLSSVYHLYVFNQ 148 
HLA-DRB1*09:01 1333-1347 VLLSSVYHLYVFNQV 150 
HLA-DRB1*09:01 1330-1344 TTMVLLSSVYHLYVF 162 
HLA-DRB1*09:01 1331-1345 TMVLLSSVYHLYVFN 168 
HLA-DRB1*11:01 1330-1344 TTMVLLSSVYHLYVF 175 
HLA-DRB1*09:01 1332-1346 MVLLSSVYHLYVFNQ 175 
HLA-DRB1*04:05 1333-1347 VLLSSVYHLYVFNQV 197 
HLA-DRB1*15:01 1333-1347 VLLSSVYHLYVFNQV 208 
HLA-DRB1*04:05 1332-1346 MVLLSSVYHLYVFNQ 217 
HLA-DRB1*04:05 1330-1344 TTMVLLSSVYHLYVF 239 
HLA-DRB1*11:01 1331-1345 TMVLLSSVYHLYVFN 252 
HLA-DRB1*11:01 1332-1346 MVLLSSVYHLYVFNQ 252 
HLA-DRB1*04:05 1331-1345 TMVLLSSVYHLYVFN 289 
HLA-DRB1*11:01 1333-1347 VLLSSVYHLYVFNQV 298 
HLA-DRB1*09:01 1335-1349 LSSVYHLYVFNQVLS 322 
HLA-DRB1*09:01 1334-1348 LLSSVYHLYVFNQVL 329 
HLA-DRB1*15:01 1334-1348 LLSSVYHLYVFNQVL 342 
HLA-DRB4*01:01 1330-1344 TTMVLLSSVYHLYVF 361 
HLA-DRB4*01:01 1333-1347 VLLSSVYHLYVFNQV 387 
HLA-DRB4*01:01 1331-1345 TMVLLSSVYHLYVFN 412 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

LSSVYHLYV HLA-DRB1*11:01 1335-1349 LSSVYHLYVFNQVLS 524 
HLA-DRB5*01:01 1331-1345 TMVLLSSVYHLYVFN 538 
HLA-DRB5*01:01 1332-1346 MVLLSSVYHLYVFNQ 546 
HLA-DRB4*01:01 1332-1346 MVLLSSVYHLYVFNQ 571 
HLA-DRB1*04:04 1333-1347 VLLSSVYHLYVFNQV 628 
HLA-DRB1*11:01 1334-1348 LLSSVYHLYVFNQVL 677 
HLA-DRB5*01:01 1333-1347 VLLSSVYHLYVFNQV 899 
HLA-DRB5*01:01 1335-1349 LSSVYHLYVFNQVLS 1304 
HLA-DRB5*01:01 1334-1348 LLSSVYHLYVFNQVL 1305 
HLA-DRB1*08:02 1330-1344 TTMVLLSSVYHLYVF 1482 
HLA-DRB1*08:02 1331-1345 TMVLLSSVYHLYVFN 1820 
HLA-DRB1*08:02 1332-1346 MVLLSSVYHLYVFNQ 1926 
HLA-DRB1*08:02 1333-1347 VLLSSVYHLYVFNQV 2142 

STDFIALIM HLA-DRB1*01:01 770-784 GGDSTDFIALIMAYG 56 

HLA-DRB5*01:01 770-784 GGDSTDFIALIMAYG 312 

HLA-DRB1*09:01 770-784 GGDSTDFIALIMAYG 373 

HLA-DRB1*04:01 770-784 GGDSTDFIALIMAYG 780 

HLA-DRB1*08:02 770-784 GGDSTDFIALIMAYG 862 

HLA-
DQA1*05:01/DQB1*0

3:01 

769-783 KGGDSTDFIALIMAY 726 

HLA-
DQA1*05:01/DQB1*0

3:01 

768-782 HKGGDSTDFIALIMA 1373 

HLA-
DQA1*03:01/DQB1*0

3:02 

768-782 HKGGDSTDFIALIMA 1685 

HLA-
DQA1*05:01/DQB1*0

2:01 

769-783 KGGDSTDFIALIMAY 1867 

HLA-
DQA1*01:01/DQB1*0

5:01 

769-783 KGGDSTDFIALIMAY 2342 

HLA-
DQA1*01:01/DQB1*0

5:01 

768-782 HKGGDSTDFIALIMA 2365 
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Table 3.7: Prediction of peptide-MHC class II binding (ic50<3000) using IEDB Peptide 
binding to MHC class II molecules predictor 

Core peptide Allele Position Peptide ic50 
value 

STDFIALIM HLA-
DQA1*01:01/DQB1*0

5:01 

770-784 GGDSTDFIALIMAYG 2569 

HLA-
DQA1*01:01/DQB1*0

5:01 

771-785 GDSTDFIALIMAYGN 2882 

 

3.4.6 Population Coverage Analysis 

MHC HLA allele distribution differs among diverse geographic regions and ethnic groups around 

the world. Therefore, population coverage must be taken into consideration during the design of 

an effective vaccine. In this study, identified MHC-I-binding alleles of 6 epitopes were considered 

to analyze population coverage. For population coverage, the IEDB Population coverage tool was 

used. MHC-I binding alleles with high binding affinities that had been found using both the IEDB 

tool and the NetMHC 2.0 server were selected. 

 

Figure 3.5: Population coverage of the epitopes and their respective HLA alleles showing the 

number of epitope hits against cumulative percent of population coverage 

These epitopes and their HLA-alleles cover 98.55% of the world population combined. 
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Figure 3.6: Population coverage of the epitopes and their respective HLA alleles 

The highest population coverage was found in the South Africa region (99.66%) while the lowest 

population coverage was found in Central America (9.07%). The cumulative population coverage 

in Southwest Asia was 96.40%. 

3.4.7 Conservancy and Toxicity Prediction 

Conservancy of epitopes was checked using the IEDB conservancy analysis tool. All predicted 

epitope candidates had the maximum identity (100%) for conservancy hit. 

 

Figure 3.7: Epitope conservancy analysis showing all selected T-cell epitopes had 100% 

conservancy 
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A qualified vaccine should induce a specific immune response that targets only the virus rather 

than the host tissue. To ensure that cellular immunity induced by the selected epitopes would not 

damage host tissue, toxicity prediction was carried out using ToxinPred. All six of the selected 

epitopes were found as non-toxic. 

3.4.8 Allergenicity Prediction 

Allergenicity prediction was performed using AllergenFP v1.0 and AllerTOP v2.0. 

Table 3.8: Allergenicity prediction using AllergenFP v1.0 and AllerTOP v2.0 

Epitope 
VaxiJen 
2.0 Score 

Immunogenicity Toxicity 
AllergenFP 

v1.0 
AllerTOP 

v2.0 

STDFIALIM 0.4864 0.35983 Non-Toxin 
PROBABLE 
ALLERGEN 

PROBABLE 
NON-

ALLERGEN 

LSSVYHLYV 0.4116 0.00317 Non-Toxin 
PROBABLE 
ALLERGEN 

PROBABLE 
NON-

ALLERGEN 

FAFETGLAY 0.7437 0.22195 Non-Toxin 
PROBABLE 
ALLERGEN 

PROBABLE 
ALLERGEN 

LLLAGTLHY 0.7587 0.11485 Non-Toxin 
PROBABLE 
ALLERGEN 

PROBABLE 
ALLERGEN 

FVDWRSYNY 1.6645 0.11786 Non-Toxin 
PROBABLE 
ALLERGEN 

PROBABLE 
ALLERGEN 

KTTTGIPEY 0.4986 0.25908 Non-Toxin 
PROBABLE 

NON-
ALLERGEN 

PROBABLE 
NON-

ALLERGEN 

 

3.4.9 Docking result and Analysis 

HLA-A∗01:01 was selected as macromolecule for docking purpose since it was found common in 

all six selected epitope candidates, and the 3D structure of HLA-A∗01:01 allele was readily 

available in the PDB database. The crystal structure of the HLA-A∗01:01 protein molecule (PDB 

ID:4nqx) was retrieved from the RCSB Protein Data Bank in PDB format. Since this predicted 

crystal structure of HLA-A∗01:01 allele was in a complex form with Beta-2-microglobulin and 

NP44-S7N mutant peptide (CTELKLNDY), UCSF Chimera 1.13 was used to remove undesired 
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ligands and molecules. The 3D structures of selected epitope candidates were predicted using PEP-

FOLD 2.0 server. Besides these T-cell epitope candidates, NP44-S7N mutant peptide 

(CTELKLNDY) was also selected for docking as ligand so that it can be used as control later. 

Then, ligands and macromolecule were prepared for docking using the same software. After the 

minimizing process, PyRx was used for molecular docking.  HLA-A∗01:01 protein was placed in 

a grid box measuring 52.8351 Å × 68.2709 Å × 61.7293 Å along the x, y and z axis, respectively, 

where the position of the center was X:-63.5001, Y:-17.1718, Z:7.5672. The docking procedure 

was performed using the instructed command prompts. The docking poses were ranked according 

to their docking scores. However, the docking result revealed two different binding sites.  

 

Figure 3.8: PyRx docking result revealed two different binding sites: (A) binding site of 

NP44-S7N mutant peptide (B) alternative binding site 

Therefore, instead of choosing the conformation with lowest binding affinity as best docking pose, 

the conformation with the lowest binding affinity that used the same binding site as control (NP44-

S7N mutant peptide) was selected as best docking pose in order to compare between sample and 

control for critical evaluation. 

Table 3.9: Binding affinity of best docking pose against HLA-A∗01:01 allele 

Name Binding Affinity (kcal/mol) 

NP44-S7N mutant peptide -8.7 
LSSVYHLYV -8 
FVDWRSYNY -7.7 
LLLAGTLHY -7.7 
FAFETGLAY -7.5 
KTTTGIPEY -7.5 
STDFIALIM -6 
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Then, molecular visualization of the best docking poses was performed using UCSF Chimera 1.13. 

Only FAFETGLAY formed visible intermolecular hydrogen bond similar to the control ligand 

(NP44-S7N mutant peptide). 

 

Figure 3.9: (A) Intermolecular bonding interaction between FAFETGLAY and  HLA-

A∗01:01 allele with a binding affinity of –7.5 kcal/mol (B) Intermolecular bonding interaction 

between NP44-S7N mutant peptide and  HLA-A∗01:01 allele with a binding affinity of –8.7 

kcal/mol 

 

3.5 Prediction of B-Cell epitopes 

After the antigenicity of nsp3 protein was confirmed, the sequence was put in B-cell epitope 

predicter tools to identify probable B-cell epitopes in a sequence. Selection of B-cell epitopes was 

done using BCPREDS and BepiPred 2.0. 

3.5.1 BCPREDS 

BCPREDS has 2 different modes for epitope prediction: fixed length epitope prediction and 

flexible length epitope prediction. For this case, the fixed length epitope prediction method was 
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used.  Epitopes of 12 to 20 amino acid in length were desired for fixed length epitope prediction 

for selection. A specificity level of 75% was selected for all cases. 

Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position  Epitope Epitope length Score 
588 HWSDQTICYKDS 12 0.71 
221 IQPEVKEVAPVY 12 0.94 
925 VSKTSDWKCKVT 12 0.85 

1471 FVDWRSYNYAVS 12 0.64 
1169 LYVDPKYQVIVL 12 0.37 
884 TTSTAPDFVAFN 12 0.7 
436 GAIRKAKDYGFT 12 0.92 
729 VRSLKLSDNNCY 12 0.3 
667 DISDTIPDEKQN 12 0.76 

1843 SDALKRQIRIAC 12 0.51 
115 EECSEVEASDLE 12 0.54 
348 HVVGPDARAKQD 12 0.99 
648 LNNKNTYRSQLG 12 0.97 

1299 KQCCTAAVDLSM 12 0.66 
1677 ACVYYSQVLCKS 12 0.46 
1192 HTVESGDINVVA 12 0.46 
392 VSFDYLIREAKT 12 0.61 
246 PKRLRKKRNVDP 12 0.71 
522 VVRRVNVPYVCL 12 1 

1856 KCNLAFRLTTSK 12 0.75 
134 SETSTEQVDVSH 12 0.98 
904 VGHYVHARLKGG 12 0.85 

1278 GTTEVKVSALKT 12 0.94 
92 FNAEGDASWSST 12 0.84 

1110 VESTPVEPPTVD 12 1 
1250 TKGILTGCFSFA 12 0.73 
168 VTESVQEEAQPV 12 1 
535 ANKEQEAILMSE 12 0.37 
295 THLKHGGGIAGA 12 1 

1567 NCVDCDTAGVGN 12 0.92 
194 TLQETPVVPDTV 12 0.93 
324 LAKGPLQVGDSV 12 0.31 

1546 GKRTFYITANGG 12 0.42 
1601 DRSHYYVDSVTV 12 0.4 
372 AYPLVVTPLVSA 12 0.78 
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Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position Epitope Epitope length Score 
481 YCYTSKDTLDDI 12 0.79 
405 VLVVVNSQDVYK 12 1 
627 TQQLTIEVLVTV 12 0.95 

1697 VTSVGDSSEIAT 12 0.57 
1648 VCKTTTGIPEYN 12 1 

7 AFGGDQVHEVAA 12 0.42 
73 GMPIPDFDLDDF 12 0.78 

1793 NYVPSYVKPDSV 12 0.94 
422 DIPQSLTFSYDG 12 0.82 

1124 ALQQEMTIVKCK 12 0.75 
807 LCCSARMVWREW 12 0.64 
449 FVCTDNSANTKV 12 0.99 
764 AFMKHKGGDSTD 12 0.56 

1139 KPFVKDNVSFVA 12 0.72 
1755 DAARGPAGVESD 12 0.98 
1768 ETNEIVDSVQYA 12 0.94 
559 HVRTNGGYNSWH 12 0.67 
264 KVITECVTIVLG 12 0.38 

1005 SSDGQPGGDAIS 12 1 
1622 RRDGQPFYERFP 12 0.86 
208 PPQVVKLPSAPQ 12 0.86 

1226 ATRTFTATTAVG 12 0.84 
950 NVVRYSLDGNFR 12 0.83 
853 VCQCGGERHRQL 12 0.95 

1661 IIYDSSDRGQES 12 0.63 
1409 QDSITHYPALKM 12 0.31 
689 TADETKALKELY 12 0.78 

1876 SVRFTANKIVGG 12 0.47 
786 CTFGAPDDASRL 12 1 

1737 RDGVRRGDNFHS 12 0.66 
1058 IYKNGAMYKGKP 12 0.88 
974 KDGKYFTSEPPV 12 0.95 

1073 VNKASYDTNLNK 12 0.91 
1531 RNRLTRVEASTV 12 0.47 
1025 FDSSKPVTKKYT 12 0.33 
1388 SFDVPTFCANRS 12 0.3 
1722 YNVTRDKLEKLI 12 0.84 
925 VSKTSDWKCKVTDV 14 0.75 
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Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position Epitope Epitope length Score 
587 LHWSDQTICYKDSV 14 0.79 

1565 NWNCVDCDTAGVGN 14 0.81 
647 VLNNKNTYRSQLGC 14 0.88 

1470 IFVDWRSYNYAVSS 14 0.78 
1614 ETVVQFNYRRDGQP 14 0.9 
883 VTTSTAPDFVAFNV 14 0.9 

1277 LGTTEVKVSALKTA 14 0.74 
520 GSVVRRVNVPYVCL 14 0.98 
222 QPEVKEVAPVYEAD 14 0.98 
366 CYKAMNAYPLVVTP 14 0.79 

1192 HTVESGDINVVAAS 14 0.91 
90 YCFNAEGDASWSST 14 0.84 

105 IFSLHPVECDEECS 14 0.93 
1644 KFKEVCKTTTGIPE 14 0.98 
348 HVVGPDARAKQDVS 14 0.98 
423 IPQSLTFSYDGLRG 14 0.86 

1250 TKGILTGCFSFAKM 14 0.75 
901 ETAVGHYVHARLKG 14 0.89 
126 EEGESECISETSTE 14 0.81 
199 PVVPDTVEVPPQVV 14 0.99 
286 ESVLVNAANTHLKH 14 0.81 
243 TVKPKRLRKKRNVD 14 0.97 

1111 ESTPVEPPTVDVVA 14 1 
9 GGDQVHEVAAVRSV 14 0.81 

1768 ETNEIVDSVQYAHK 14 0.85 
172 VQEEAQPVEVPVED 14 1 
695 ALKELYGPVDPTFL 14 0.86 

1411 SITHYPALKMVQTH 14 0.8 
1825 LRNSNGACIWNAAA 14 0.72 
305 GAINAASKGAVQKE 14 0.9 

1787 TNESYNNYVPSYVK 14 0.79 
669 SDTIPDEKQNGHSL 14 0.8 

1590 TTALRRPINATDRS 14 0.72 
617 ACRAYLDSRTTQQL 14 0.71 
851 TYVCQCGGERHRQL 14 0.86 

1296 NVVKQCCTAAVDLS 14 0.92 
764 AFMKHKGGDSTDFI 14 0.94 

1004 VSSDGQPGGDAISL 14 1 
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Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position Epitope Epitope length Score 
399 REAKTRVLVVVNSQ 14 0.99 
784 GNCTFGAPDDASRL 14 0.98 

1035 YTYSFLPKEDGDVL 14 0.9 
1750 LTTFIDAARGPAGV 14 0.99 
720 GWKMVVCDKVRSLK 14 0.8 

1735 TARDGVRRGDNFHS 14 0.83 
1137 LNKPFVKDNVSFVA 14 0.76 
974 KDGKYFTSEPPVTY 14 0.96 
949 CNVVRYSLDGNFRT 14 0.9 
556 FIKHVRTNGGYNSW 14 0.8 

1530 KRNRLTRVEASTVV 14 0.88 
448 VFVCTDNSANTKVL 14 0.93 

1071 LWVNKASYDTNLNK 14 0.88 
1223 KEFATRTFTATTAV 14 0.94 
1563 RHNWNCVDCDTAGVGN 16 0.93 
646 VVLNNKNTYRSQLGCV 16 0.94 
921 DSGTVSKTSDWKCKVT 16 0.91 

1643 LKFKEVCKTTTGIPEY 16 1 
119 EVEASDLEEGESECIS 16 1 

1471 FVDWRSYNYAVSSAFW 16 0.94 
1612 VKETVVQFNYRRDGQP 16 0.98 
663 FNGADISDTIPDEKQN 16 0.99 
848 ARMTYVCQCGGERHRQ 16 0.93 

1106 TPLSVESTPVEPPTVD 16 1 
519 AGSVVRRVNVPYVCLL 16 1 
88 PCYCFNAEGDASWSST 16 0.98 

222 QPEVKEVAPVYEADTE 16 1 
877 TPNEKLVTTSTAPDFV 16 0.96 

1192 HTVESGDINVVAASGS 16 0.92 
288 VLVNAANTHLKHGGGI 16 0.98 
142 DVSHETSDDEWAAAVD 16 0.95 
245 KPKRLRKKRNVDPLSN 16 0.92 

1790 SYNNYVPSYVKPDSVS 16 0.99 
169 TESVQEEAQPVEVPVE 16 1 

1695 SLVTSVGDSSEIATKM 16 0.91 
399 REAKTRVLVVVNSQDV 16 1 
205 VEVPPQVVKLPSAPQT 16 1 
999 TNSCLVSSDGQPGGDA 16 1 
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Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position Epitope Epitope length Score 
1750 LTTFIDAARGPAGVES 16 0.99 
1055 YDPIYKNGAMYKGKPI 16 0.96 
948 DCNVVRYSLDGNFRTE 16 0.95 
782 AYGNCTFGAPDDASRL 16 1 
974 KDGKYFTSEPPVTYSP 16 1 

1150 ADDSGTPVVEYLSKED 16 0.98 
762 QHAFMKHKGGDSTDFI 16 0.97 
42 RTFVVDKSLSIEEFAD 16 0.94 

555 DFIKHVRTNGGYNSWH 16 0.96 
1221 YFKEFATRTFTATTAV 16 0.97 
447 TVFVCTDNSANTKVLR 16 0.98 

1561 CRRHNWNCVDCDTAGVGN 18 0.81 
921 DSGTVSKTSDWKCKVTDV 18 0.8 

1643 LKFKEVCKTTTGIPEYNF 18 0.96 
524 RRVNVPYVCLLANKEQEA 18 0.56 

1610 VTVKETVVQFNYRRDGQP 18 0.86 
106 FSLHPVECDEECSEVEAS 18 0.94 

1471 FVDWRSYNYAVSSAFWLF 18 0.62 
1108 LSVESTPVEPPTVDVVAL 18 0.99 
1272 FSDSKLGTTEVKVSALKT 18 0.72 
1066 KGKPILWVNKASYDTNLN 18 0.77 
218 PQTIQPEVKEVAPVYEAD 18 1 
243 TVKPKRLRKKRNVDPLSN 18 0.91 
875 SGTPNEKLVTTSTAPDFV 18 0.82 
663 FNGADISDTIPDEKQNGH 18 0.65 
591 DQTICYKDSVFYVVKNST 18 0.58 

5 KVAFGGDQVHEVAAVRSV 18 0.85 
1004 VSSDGQPGGDAISLSFNN 18 1 

85 IDAPCYCFNAEGDASWSS 18 0.79 
898 QGIETAVGHYVHARLKGG 18 0.6 
365 KCYKAMNAYPLVVTPLVS 18 0.62 
344 KNILHVVGPDARAKQDVS 18 0.91 

1536 RVEASTVVCGGKRTFYIT 18 0.57 
693 TKALKELYGPVDPTFLHR 18 0.61 
197 ETPVVPDTVEVPPQVVKL 18 0.98 
168 VTESVQEEAQPVEVPVED 18 1 
809 CSARMVWREWCNVCGIKD 18 0.64 

1292 VVTGNVVKQCCTAAVDLS 18 0.88 
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Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position Epitope Epitope length Score 
1787 TNESYNNYVPSYVKPDSV 18 0.84 
443 DYGFTVFVCTDNSANTKV 18 0.83 
298 KHGGGIAGAINAASKGAV 18 0.98 
854 CQCGGERHRQLVEHTTPW 18 0.84 

1220 FYFKEFATRTFTATTAVG 18 0.96 
780 IMAYGNCTFGAPDDASRL 18 0.96 
974 KDGKYFTSEPPVTYSPAT 18 0.94 
399 REAKTRVLVVVNSQDVYK 18 0.9 

1025 FDSSKPVTKKYTYSFLPK 18 0.79 
1756 AARGPAGVESDVETNEIV 18 0.98 
1383 AYRANSFDVPTFCANRSA 18 0.73 
1139 KPFVKDNVSFVADDSGTP 18 0.75 
279 QVAKCYGESVLVNAANTH 18 0.58 
551 NPSEDFIKHVRTNGGYNS 18 0.83 

1558 ISFCRRHNWNCVDCDTAGVG 20 0.81 
1104 KFTPLSVESTPVEPPTVDVV 20 0.98 
919 KFDSGTVSKTSDWKCKVTDV 20 0.92 
241 NVTVKPKRLRKKRNVDPLSN 20 0.99 
522 VVRRVNVPYVCLLANKEQEA 20 0.86 
405 VLVVVNSQDVYKSLTIVDIP 20 0.79 
112 ECDEECSEVEASDLEEGESE 20 1 
215 PSAPQTIQPEVKEVAPVYEA 20 1 

1612 VKETVVQFNYRRDGQPFYER 20 0.94 
663 FNGADISDTIPDEKQNGHSL 20 0.75 

8 FGGDQVHEVAAVRSVTVEYN 20 0.8 
86 DAPCYCFNAEGDASWSSTMI 20 0.93 

194 TLQETPVVPDTVEVPPQVVK 20 1 
139 EQVDVSHETSDDEWAAAVDE 20 0.9 
951 VVRYSLDGNFRTEVDPDLSA 20 0.83 

1645 FKEVCKTTTGIPEYNFIIYD 20 1 
439 RKAKDYGFTVFVCTDNSANT 20 0.82 

1788 NESYNNYVPSYVKPDSVSTS 20 0.99 
691 DETKALKELYGPVDPTFLHR 20 0.77 
166 EDVTESVQEEAQPVEVPVED 20 1 
473 LTVDGVQYYCYTSKDTLDDI 20 0.77 
812 RMVWREWCNVCGIKDVVLQG 20 0.79 
341 SLAKNILHVVGPDARAKQDV 20 0.79 
304 AGAINAASKGAVQKESDEYI 20 0.95 
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Table 3.10: Predicted B-cell epitopes using BCPREDS 

Position Epitope Epitope length Score 
1027 SSKPVTKKYTYSFLPKEDGD 20 0.83 
1053 DTYDPIYKNGAMYKGKPILW 20 0.88 
1142 VKDNVSFVADDSGTPVVEYL 20 0.92 
974 KDGKYFTSEPPVTYSPATIL 20 1 

1756 AARGPAGVESDVETNEIVDS 20 0.97 
995 GSVYTNSCLVSSDGQPGGDA 20 1 
780 IMAYGNCTFGAPDDASRLLH 20 0.99 

1221 YFKEFATRTFTATTAVGSCI 20 0.9 
 

3.5.2 BepiPred 2.0 

Besides predicting epitopes, BepiPred 2.0 also predicts properties of the proteins like structure 

(Helix/ Coil/ Sheet), surface accessibility (Exposed/Buried) taking each residue of amino acid into 

account. Different threshold values can be set to identify the desired epitopes. This threshold value 

is a correlation between specificity and sensitivity. The more the value of specificity, the less the 

number of epitopes. Here, four different threshold values were taken for getting maximum 

numbers of epitope:0.5,0.55,0.6 and 0.65. 

Table 3.11: Predicted B-cell epitopes using BepiPred 2.0 

Position Epitope Threshold 
296 HLKHGG 0.5 
1559 SFCRRHNW  0.5 
585 KLLHWSDQTICYKD 0.5 
408 VVNSQD 0.5 
1741 RRGDNFHS  0.5 
607 STAFPFE 0.5 
1786 ITNESYN  0.5 
423 IPQSLTFSY 0.5 
1274 DSKLGTTEVKVSALKT  0.5 
621 YLDSRTTQQ  0.5 
1594 RRPINATDRSH  0.5 
1571 CDTAGV  0.5 
1666 SDRGQES  0.5 
1867 KLRANDNI  0.5 
567 NSWHLVEGELLVQDLR 0.5 



 

56 | P a g e  
 

Table 3.11: Predicted B-cell epitopes using BepiPred 2.0 

Position Epitope Threshold 
844 EDLRARMTYVCQCGGE  0.5 
512 HGLDLMQAGSVVRRVNV 0.5 
918 LKFDSGTVSKTSD  0.5 
537 KEQEAILMSEDVKLNPSED 0.5 
1798 YVKPDSV  0.5 
879 NEKLVTTSTA  0.5 
668 ISDTIPDEKQNGHSL  0.5 
1425 LSHYVLNID  0.5 
1006 SDGQPGGDA  0.5 
8 FGGDQVHEV 0.5 
1038 SFLPKEDGD  0.5 
488 TLDDILQQANKSV 0.5 
787 TFGAPDD  0.5 
1380 LASAYRANSFDVPTFCA  0.5 
650 NKNTYRSQ  0.5 
1024 GFDSSKPVT  0.5 
1755 DAARGPAGVESDVETN  0.5 
1076 ASYDTNLNKFNRASL  0.5 
1049 LAEFDTYDPIYKNGAMY  0.5 
1220 FYFKEFATRTFTA  0.5 
685 ADNLTADETKALKELYGPVD  0.5 
321 EYILAKGPLQ 0.5 
820 NVCGIKD  0.5 
717 AVHGWKMV  0.5 
1410 DSITHYP  0.5 
277 AIQVAKC 0.5 
1149 VADDSGTP  0.5 
1723 NVTRDKLEK  0.5 
1110 VESTPV 0.55 
546 EDVKLNPSE 0.55 
1276 KLGTTE 0.55 
671 TIPDEKQNG 0.55 
1757 ARGPAGVES 0.55 
1007 DGQPGGD 0.55 
84 FIDAPCYCFNAEGDASWS 0.55 
1384 YRANSFDVPT 0.55 
880 EKLVTTS 0.55 
490 DDILQQANK 0.55 
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Table 3.11: Predicted B-cell epitopes using BepiPred 2.0 

Position Epitope Threshold 
1354 FEDAQGLKK 0.55 
1055 YDPIYKNGA 0.55 
1078 YDTNLNKFNRA 0.55 
1222 FKEFATRTFT 0.55 
170 ESVQEEAQP 0.6 
202 PDTVEVPPQVVKLPS 0.6 
451 CTDNSANTKVLRNK 0.6 
1080 TNLNKF 0.6 
238 QTQNVTVKPKRLRKKRN  0.65 

 

3.5.3 Screening epitope candidates using VaxiJen 2.0 

All predicted B-cell epitopes were further evaluated by the VaxiJen 2.0 server. Among them, 178 

epitope candidates achieved a score over the desired threshold value 0.4. 

Table 3.12: Predicted B-cell epitope candidates having threshold value over 0.4 in VaxiJen 

2.0 

Position Epitope Prediction Method    VaxiJen 2.0 Score 

296 HLKHGG BepiPred 2.0 1.838 
1559 SFCRRHNW  BepiPred 2.0 1.6656 
1558 ISFCRRHNWNCVDCDTAGVG BCPREDS 1.5742 
925 VSKTSDWKCKVTDV BCPREDS 1.5713 
585 KLLHWSDQTICYKD BepiPred 2.0 1.4921 
587 LHWSDQTICYKDSV BCPREDS 1.4876 
1561 CRRHNWNCVDCDTAGVGN BCPREDS 1.4624 
588 HWSDQTICYKDS BCPREDS 1.4528 
1563 RHNWNCVDCDTAGVGN BCPREDS 1.4061 
221 IQPEVKEVAPVY BCPREDS 1.3759 
1110 VESTPV BepiPred 2.0 1.3722 
925 VSKTSDWKCKVT BCPREDS 1.3515 
921 DSGTVSKTSDWKCKVTDV BCPREDS 1.3464 
1471 FVDWRSYNYAVS BCPREDS 1.3355 
646 VVLNNKNTYRSQLGCV BCPREDS 1.3326 
1565 NWNCVDCDTAGVGN BCPREDS 1.291 
408 VVNSQD BepiPred 2.0 1.2248 
1643 LKFKEVCKTTTGIPEYNF BCPREDS 1.2112 
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Table 3.12: Predicted B-cell epitope candidates having threshold value over 0.4 in VaxiJen 

2.0 

Position Epitope Prediction Method VaxiJen 2.0 Score 
1741 RRGDNFHS  BepiPred 2.0 1.2108 
1104 KFTPLSVESTPVEPPTVDVV BCPREDS 1.1992 
1169 LYVDPKYQVIVL BCPREDS 1.1904 
921 DSGTVSKTSDWKCKVT BCPREDS 1.1775 
919 KFDSGTVSKTSDWKCKVTDV BCPREDS 1.1712 
647 VLNNKNTYRSQLGC BCPREDS 1.1649 
1643 LKFKEVCKTTTGIPEY BCPREDS 1.1169 
607 STAFPFE BepiPred 2.0 1.1136 
884 TTSTAPDFVAFN BCPREDS 1.1112 
119 EVEASDLEEGESECIS BCPREDS 1.1092 
1470 IFVDWRSYNYAVSS BCPREDS 1.109 
524 RRVNVPYVCLLANKEQEA BCPREDS 1.1034 
1610 VTVKETVVQFNYRRDGQP BCPREDS 1.0785 
546 EDVKLNPSE BepiPred 2.0 1.077 
1786 ITNESYN  BepiPred 2.0 1.0758 
436 GAIRKAKDYGFT BCPREDS 1.0706 
1614 ETVVQFNYRRDGQP BCPREDS 1.061 
423 IPQSLTFSY BepiPred 2.0 1.0307 
241 NVTVKPKRLRKKRNVDPLSN BCPREDS 0.9976 
883 VTTSTAPDFVAFNV BCPREDS 0.9924 
1274 DSKLGTTEVKVSALKT  BepiPred 2.0 0.99 
729 VRSLKLSDNNCY BCPREDS 0.9883 
1471 FVDWRSYNYAVSSAFW BCPREDS 0.9881 
667 DISDTIPDEKQN BCPREDS 0.9616 
1277 LGTTEVKVSALKTA BCPREDS 0.9596 
106 FSLHPVECDEECSEVEAS BCPREDS 0.9582 
1612 VKETVVQFNYRRDGQP BCPREDS 0.9519 
522 VVRRVNVPYVCLLANKEQEA BCPREDS 0.9459 
621 YLDSRTTQQ  BepiPred 2.0 0.9339 
1276 KLGTTE BepiPred 2.0 0.923 
1594 RRPINATDRSH  BepiPred 2.0 0.9174 
520 GSVVRRVNVPYVCL BCPREDS 0.9166 
222 QPEVKEVAPVYEAD BCPREDS 0.906 
663 FNGADISDTIPDEKQN BCPREDS 0.9016 
1471 FVDWRSYNYAVSSAFWLF BCPREDS 0.8959 
1843 SDALKRQIRIAC BCPREDS 0.8891 
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Table 3.12: Predicted B-cell epitope candidates having threshold value over 0.4 in VaxiJen 

2.0 

Position Epitope Prediction Method VaxiJen 2.0 Score 
115 EECSEVEASDLE BCPREDS 0.888 
848 ARMTYVCQCGGERHRQ BCPREDS 0.8753 
1108 LSVESTPVEPPTVDVVAL BCPREDS 0.8741 
348 HVVGPDARAKQD BCPREDS 0.8727 
1272 FSDSKLGTTEVKVSALKT BCPREDS 0.8707 
1106 TPLSVESTPVEPPTVD BCPREDS 0.8689 
1066 KGKPILWVNKASYDTNLN BCPREDS 0.8639 
519 AGSVVRRVNVPYVCLL BCPREDS 0.8564 
1571 CDTAGV  BepiPred 2.0 0.8537 
648 LNNKNTYRSQLG BCPREDS 0.8514 
1666 SDRGQES  BepiPred 2.0 0.847 
366 CYKAMNAYPLVVTP BCPREDS 0.8462 
1867 KLRANDNI  BepiPred 2.0 0.8428 
218 PQTIQPEVKEVAPVYEAD BCPREDS 0.8382 
1192 HTVESGDINVVAAS BCPREDS 0.8362 
1299 KQCCTAAVDLSM BCPREDS 0.8312 
1677 ACVYYSQVLCKS BCPREDS 0.8299 
1192 HTVESGDINVVA BCPREDS 0.8284 
90 YCFNAEGDASWSST BCPREDS 0.8172 
392 VSFDYLIREAKT BCPREDS 0.8137 
246 PKRLRKKRNVDP BCPREDS 0.8105 
405 VLVVVNSQDVYKSLTIVDIP BCPREDS 0.8101 
105 IFSLHPVECDEECS BCPREDS 0.8016 
522 VVRRVNVPYVCL BCPREDS 0.7994 
112 ECDEECSEVEASDLEEGESE BCPREDS 0.7964 
243 TVKPKRLRKKRNVDPLSN BCPREDS 0.796 
567 NSWHLVEGELLVQDLR BepiPred 2.0 0.7843 
1644 KFKEVCKTTTGIPE BCPREDS 0.777 
88 PCYCFNAEGDASWSST BCPREDS 0.77 
844 EDLRARMTYVCQCGGE  BepiPred 2.0 0.7675 
1856 KCNLAFRLTTSK BCPREDS 0.7654 
512 HGLDLMQAGSVVRRVNV BepiPred 2.0 0.7651 
134 SETSTEQVDVSH BCPREDS 0.7563 
222 QPEVKEVAPVYEADTE BCPREDS 0.754 
875 SGTPNEKLVTTSTAPDFV BCPREDS 0.7486 
215 PSAPQTIQPEVKEVAPVYEA BCPREDS 0.7458 
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Table 3.12: Predicted B-cell epitope candidates having threshold value over 0.4 in VaxiJen 

2.0 

Position Epitope Prediction Method VaxiJen 2.0 Score 
1612 VKETVVQFNYRRDGQPFYER BCPREDS 0.7425 
904 VGHYVHARLKGG BCPREDS 0.7377 
238 QTQNVTVKPKRLRKKRN  BepiPred 2.0 0.736 
348 HVVGPDARAKQDVS BCPREDS 0.7308 
1278 GTTEVKVSALKT BCPREDS 0.7263 
663 FNGADISDTIPDEKQNGH BCPREDS 0.7247 
918 LKFDSGTVSKTSD  BepiPred 2.0 0.72 
92 FNAEGDASWSST BCPREDS 0.7199 
1110 VESTPVEPPTVD BCPREDS 0.7039 
1250 TKGILTGCFSFA BCPREDS 0.7 
168 VTESVQEEAQPV BCPREDS 0.6972 
423 IPQSLTFSYDGLRG BCPREDS 0.6899 
537 KEQEAILMSEDVKLNPSED BepiPred 2.0 0.6898 
591 DQTICYKDSVFYVVKNST BCPREDS 0.6884 
535 ANKEQEAILMSE BCPREDS 0.682 
5 KVAFGGDQVHEVAAVRSV BCPREDS 0.6727 
295 THLKHGGGIAGA BCPREDS 0.6614 
663 FNGADISDTIPDEKQNGHSL BCPREDS 0.6564 
1567 NCVDCDTAGVGN BCPREDS 0.6545 
194 TLQETPVVPDTV BCPREDS 0.6533 
877 TPNEKLVTTSTAPDFV BCPREDS 0.6473 
1250 TKGILTGCFSFAKM BCPREDS 0.6444 
170 ESVQEEAQP BepiPred 2.0 0.6418 
901 ETAVGHYVHARLKG BCPREDS 0.6417 
1192 HTVESGDINVVAASGS BCPREDS 0.639 
288 VLVNAANTHLKHGGGI BCPREDS 0.6242 
324 LAKGPLQVGDSV BCPREDS 0.6192 
8 FGGDQVHEVAAVRSVTVEYN BCPREDS 0.6171 
126 EEGESECISETSTE BCPREDS 0.6161 
199 PVVPDTVEVPPQVV BCPREDS 0.6149 
286 ESVLVNAANTHLKH BCPREDS 0.6118 
86 DAPCYCFNAEGDASWSSTMI BCPREDS 0.6039 
194 TLQETPVVPDTVEVPPQVVK BCPREDS 0.5994 
139 EQVDVSHETSDDEWAAAVDE BCPREDS 0.5916 
1004 VSSDGQPGGDAISLSFNN BCPREDS 0.5888 
1546 GKRTFYITANGG BCPREDS 0.5882 
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Table 3.12: Predicted B-cell epitope candidates having threshold value over 0.4 in VaxiJen 

2.0 

Position Epitope Prediction Method VaxiJen 2.0 Score 
243 TVKPKRLRKKRNVD BCPREDS 0.57 
1111 ESTPVEPPTVDVVA BCPREDS 0.5691 
142 DVSHETSDDEWAAAVD BCPREDS 0.5579 
1601 DRSHYYVDSVTV BCPREDS 0.5574 
9 GGDQVHEVAAVRSV BCPREDS 0.5553 
671 TIPDEKQNG BepiPred 2.0 0.5505 
1768 ETNEIVDSVQYAHK BCPREDS 0.5443 
85 IDAPCYCFNAEGDASWSS BCPREDS 0.5441 
172 VQEEAQPVEVPVED BCPREDS 0.5366 
951 VVRYSLDGNFRTEVDPDLSA BCPREDS 0.5359 
372 AYPLVVTPLVSA BCPREDS 0.5353 
898 QGIETAVGHYVHARLKGG BCPREDS 0.5334 
245 KPKRLRKKRNVDPLSN BCPREDS 0.531 
1757 ARGPAGVES BepiPred 2.0 0.5293 
365 KCYKAMNAYPLVVTPLVS BCPREDS 0.5235 
344 KNILHVVGPDARAKQDVS BCPREDS 0.5204 
1790 SYNNYVPSYVKPDSVS BCPREDS 0.5201 
21 TGLAYMLYTSAFNWL BepiPred 2.0 0.5128 
695 ALKELYGPVDPTFL BCPREDS 0.5113 
1411 SITHYPALKMVQTH BCPREDS 0.5101 
1645 FKEVCKTTTGIPEYNFIIYD BCPREDS 0.5087 
1798 YVKPDSV  BepiPred 2.0 0.5082 
481 YCYTSKDTLDDI BCPREDS 0.5009 
1536 RVEASTVVCGGKRTFYIT BCPREDS 0.4996 
439 RKAKDYGFTVFVCTDNSANT BCPREDS 0.4994 
169 TESVQEEAQPVEVPVE BCPREDS 0.496 
1007 DGQPGGD BepiPred 2.0 0.4876 
693 TKALKELYGPVDPTFLHR BCPREDS 0.4858 
197 ETPVVPDTVEVPPQVVKL BCPREDS 0.484 
84 FIDAPCYCFNAEGDASWS BepiPred 2.0 0.4802 
1825 LRNSNGACIWNAAA BCPREDS 0.4769 
168 VTESVQEEAQPVEVPVED BCPREDS 0.4708 
879 NEKLVTTSTA  BepiPred 2.0 0.4699 
405 VLVVVNSQDVYK BCPREDS 0.462 
809 CSARMVWREWCNVCGIKD BCPREDS 0.4616 
1788 NESYNNYVPSYVKPDSVSTS BCPREDS 0.4599 
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Table 3.12: Predicted B-cell epitope candidates having threshold value over 0.4 in VaxiJen 

2.0 

Position Epitope Prediction Method VaxiJen 2.0 Score 
627 TQQLTIEVLVTV BCPREDS 0.4468 
1292 VVTGNVVKQCCTAAVDLS BCPREDS 0.4454 
1695 SLVTSVGDSSEIATKM BCPREDS 0.4445 
668 ISDTIPDEKQNGHSL  BepiPred 2.0 0.4383 
1697 VTSVGDSSEIAT BCPREDS 0.4374 
691 DETKALKELYGPVDPTFLHR BCPREDS 0.4355 
166 EDVTESVQEEAQPVEVPVED BCPREDS 0.433 
1648 VCKTTTGIPEYN BCPREDS 0.4272 
1425 LSHYVLNID  BepiPred 2.0 0.4267 
305 GAINAASKGAVQKE BCPREDS 0.4204 
7 AFGGDQVHEVAA BCPREDS 0.4189 
73 GMPIPDFDLDDF BCPREDS 0.4168 
1787 TNESYNNYVPSYVK BCPREDS 0.4162 
1793 NYVPSYVKPDSV BCPREDS 0.4127 
399 REAKTRVLVVVNSQDV BCPREDS 0.407 
1787 TNESYNNYVPSYVKPDSV BCPREDS 0.4008 

 

3.5.4 Overlapping Sequence Identification of B-cell epitopes and T-cell Epitopes 

Eight B-cell epitopes shared common sequences with two of the selected T-cell epitopes. 

Table 3.13: B-cell and T-cell Epitopes having overlapping Sequence 

B-cell epitopes T-cell epitopes 
Position Epitope Position Epitope 

1470 IFVDWRSYNYAVSS 

1471 FVDWRSYNY 
1471 FVDWRSYNYAVS 
1471 FVDWRSYNYAVSSAFW 
1471 FVDWRSYNYAVSSAFWLF 
1643 LKFKEVCKTTTGIPEYNF 

1650 KTTTGIPEY 
1643 LKFKEVCKTTTGIPEY 
1645 FKEVCKTTTGIPEYNFIIYD 
1648 VCKTTTGIPEYN 

 

These eight B-cell epitopes were selected for further evaluation. 
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3.5.5 Conservancy Analysis 

Conservancy of epitopes was checked using the IEDB conservancy analysis tool. All predicted 

epitope candidates had the maximum identity (100%) for conservancy hit. 

 

Figure 3.10: Epitope conservancy analysis showing all selected B-cell epitopes had 100% 

conservancy 

3.5.6 Checking Epitopes as Ideal Vaccine Candidates  

For being an ideal vaccine, an epitope should have properties like: 

 Presence of beta-turn 

 Hydrophobicity 

 Surface accessibility 

 Flexibility 

 Antigenicity etc.   

These properties of the selected 8 candidate epitopes were examined by IEDB B-cell tools. 

3.5.6.1 Analysis of IFVDWRSYNYAVSS 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. The yellow peak indicates the residues that are above the threshold. 

5 out of 8 peptide fragments were above the threshold. 
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Figure 3.11: Result of Chou & Fasman Beta Turn Prediction of IFVDWRSYNYAVSS 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 3 out of 9 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 4 out of 7 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 5 out of 8 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 5 out of 8 peptide fragments were above the threshold. 
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3.5.6.2 Analysis of FVDWRSYNYAVS 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 4 out of 6 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 3 out of 7 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 2 out of 5 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 3 out of 6 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 4 out of 6 peptide fragments were above the threshold. 

3.5.6.3 Analysis of FVDWRSYNYAVSSAFW 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 5 out of 10 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 4 out of 11 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 5 out of 9 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 6 out of 10 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 6 out of 10 peptide fragments were above the threshold. 

3.5.6.4 Analysis of FVDWRSYNYAVSSAFWLF 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 7 out of 12 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 4 out of 13 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 6 out of 11 peptide fragments were above the threshold. 
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 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 8 out of 12 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 7 out of 12 peptide fragments were above the threshold. 

3.5.6.5 Analysis of LKFKEVCKTTTGIPEYNF 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 7 out of 12 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 7 out of 13 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 6 out of 11 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 6 out of 12 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 7 out of 12 peptide fragments were above the threshold. 

3.5.6.6 Analysis of LKFKEVCKTTTGIPEY 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 5 out of 10 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 5 out of 11 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 5 out of 9 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 6 out of 10 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 6 out of 10 peptide fragments were above the threshold. 
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3.5.6.7 Analysis of FKEVCKTTTGIPEYNFIIYD 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 7 out of 14 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 7 out of 15 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 7 out of 13 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 8 out of 14 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 9 out of 14 peptide fragments were above the threshold. 

3.5.6.8 Analysis of VCKTTTGIPEYN 

 The selected epitope was checked for the presence of beta-turn by Chou & Fasman Beta 

Turn Prediction tool. 2 out of 6 peptide fragments were above the threshold. 

 The selected epitope was checked for surface accessibility by Emini Surface Accessibility 

Prediction tool. 4 out of 7 peptide fragments were above the threshold. 

 The selected epitope was checked for flexibility by Karplus and Schulz Flexibility 

Prediction tool. 3 out of 5 peptide fragments were above the threshold. 

 The selected epitope was checked for antigenicity by Kolaskar & Tongaonkar Antigenicity 

Prediction tool. 3 out of 6 peptide fragments were above the threshold. 

 The selected epitope was checked for hydrophilicity by Parker Hydrophilicity Prediction 

tool. 3 out of 6 peptide fragments were above the threshold. 

 

3.5.7 Toxicity and Allergenicity Analysis 

Toxicity prediction was carried out using ToxinPred. All eight of the selected epitopes were found 

as non-toxic. Afterward, allergenicity prediction was performed using AllergenFP v1.0 and 

AllerTOP v2.0. 
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Table 3.14: Toxicity and allergenicity prediction of selected B-cell epitopes 

Epitope Toxicity AllergenFP v1.0 AllerTOP v2.0 
IFVDWRSYNYAVSS Non-Toxin PROBABLE NON-

ALLERGEN 
PROBABLE 
ALLERGEN 

FVDWRSYNYAVS Non-Toxin PROBABLE NON-
ALLERGEN 

PROBABLE NON-
ALLERGEN 

FVDWRSYNYAVSSAFW Non-Toxin PROBABLE 
ALLERGEN 

PROBABLE 
ALLERGEN 

FVDWRSYNYAVSSAFWLF Non-Toxin PROBABLE NON-
ALLERGEN 

PROBABLE NON-
ALLERGEN 

LKFKEVCKTTTGIPEYNF Non-Toxin PROBABLE 
ALLERGEN 

PROBABLE NON-
ALLERGEN 

LKFKEVCKTTTGIPEY Non-Toxin PROBABLE NON-
ALLERGEN 

PROBABLE NON-
ALLERGEN 

FKEVCKTTTGIPEYNFIIYD Non-Toxin PROBABLE 
ALLERGEN 

PROBABLE NON-
ALLERGEN 

VCKTTTGIPEYN Non-Toxin PROBABLE 
ALLERGEN 

PROBABLE 
ALLERGEN 

 

3.6 Assessing Potential Anti-Viral Activity of Selected Flavonoids against MERS-CoV 

3.6.1 Ligand Selection 

After browsing several articles in PubMed Central, 18 flavonoids which may have potential 

antiviral activities were selected as ligands along with ADP-ribose. 

Table 3.15: Selected flavonoids and their Pubchem ID 

Name Pubchem ID 

Apigenin 5280443 

Apiin 5280746 

Baicalein 5281605 

Daidzein 5281708 

Fisetin 5281614 

Genistein 5280961 

Glabranin 124049 
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Table 3.15: Selected flavonoids and their Pubchem ID 

Name Pubchem ID 

Hesperetin 72281 

Hesperidin 10621 

Kaempferol 5280863 

Luteolin 5280445 

Luteoloside 5280637 

Naringin 442428 

Pinostrobin 73201 

Quercetin 5280343 

Ribavirin 37542 

Rutin 5280805 

Silymarin 7073228 

 

3.6.2 Macromolecule selection 

MERS-CoV macro domain within nsp3 protein was selected as macromolecule/receptor. 

 

Figure 3.12: MERS-CoV nsp3 macro domain profile in NCBI 
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3.6.3 Macromolecule and Ligand preparation 

Ligand structure retrieval 

3D structures of ligands were retrieved from PubChem in SDF format. 

 

Figure 3.13: 3D structure of selected flavonoids retrieval from PubChem 

Macromolecule 3D structure retrieval 

The three-dimensional crystal structure of the macro domain within nsp3 protein was retrieved 

from RCSB Protein Data Bank (PDB ID:5DUS) in PDB format. 

 

Figure 3.14: Macromolecule 3D structure retrieval from RCSB PDB 



 

71 | P a g e  
 

However, 3 ligands (ADP-ribose, Sulfate Ion and Glycerol) were already attached to the receptor 

in this crystal structure. Therefore, UCSF Chimera 1.13 was used to remove the undesired ligands. 

 

(A)  Crystal structure of MERS-CoV nsp3 macro domain complex with ADP-ribose, Sulfate 

Ion and Glycerol attached as ligands. 

 

(B)  ADP-ribose, Sulfate Ion and Glycerol were selected and removed 

Figure 3.15: Undesired ligand removal using UCSF Chimera 1.13 

In addition to that, the protein was cleaned by removing the water molecules. 

Energy minimization 

Energy minimization of target macromolecule was done using UCSF Chimera 1.13. 
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Table 3.16: Macromolecule Minimization parameter 

Macromolecule Minimization parameter 
Force Field Method (Standard residues) AMBER ff14SB 
Force Field Method (other residues) AM1-BCC 
Steepest descent steps 100 
Steepest descent step size 0.02 
Conjugate gradient steps 10 
Conjugate gradient step size 0.02 
Update interval 10 
Added hydrogen method steric, also consider H-bonds 

Protonation states for Histidine 
 

Ligand minimization was done by PyRx prior to docking. 

3.6.4 Molecular Docking using PyRx 

After the minimizing process, the protein was placed in a grid box measuring 37.3660 Å × 43.4316 

Å × 43.1478 Å along the x, y and z axis, respectively, where the position of the center was 

X:8.9843, Y:17.6095, Z:68.5928.  

 

Figure 3.16: Grid box adjustment process before initiating the docking process in PyRx 

ADP-ribose was first re-docked into the ADP-ribose binding site of nsp3 and the resulting 

interactions were compared with those found by docking 18 flavonoids into the similar active site 

using the same grid box. The docking procedure was performed using the instructed command 



 

73 | P a g e  
 

prompts. The docking results included the binding energy value given in kcal/mol, mode, RMSD 

upper bound (rmsd/ub) and RMSD lower bound (rmsd/lb). 

 

Figure 3.17: Docking result showing binding affinity of compounds against MERS-CoV nsp3 

macro domain 

Table 3.17: Binding affinity of re-docked ADP-ribose against MERS-CoV nsp3 macro 

domain 

Ligand 
Binding Affinity 

(kcal/mol) 
rmsd/ub rmsd/lb 

ADP-ribose_uff_E=1308.83 -8.7 0 0 

ADP-ribose_uff_E=1308.83 -8.6 4.443 2.804 

ADP-ribose_uff_E=1308.83 -8 2.68 1.681 

ADP-ribose_uff_E=1308.83 -7.9 4.732 2.899 

ADP-ribose_uff_E=1308.83 -7.8 4.761 3.141 

ADP-ribose_uff_E=1308.83 -7.6 4.112 2.914 

ADP-ribose_uff_E=1308.83 -7.6 9.316 4.944 

ADP-ribose_uff_E=1308.83 -7.5 5.626 3.775 

ADP-ribose_uff_E=1308.83 -7.4 6.227 4.271 
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Table 3.18: Binding affinity of flavonoid compounds against MERS-CoV nsp3 macro domain 

Ligand Binding Affinity (kcal/mol) rmsd/ub rmsd/lb 

Hesperidin_uff_E=589.56 -9.9 0 0 

Hesperidin_uff_E=589.56 -9.1 2.861 1.836 

Hesperidin_uff_E=589.56 -8.7 8.869 3.076 

Hesperidin_uff_E=589.56 -8.6 2.899 1.898 

Hesperidin_uff_E=589.56 -8.4 11.581 4.006 

Hesperidin_uff_E=589.56 -8.2 2.498 1.643 

Hesperidin_uff_E=589.56 -8.1 4.926 1.846 

Hesperidin_uff_E=589.56 -8 4.324 2.16 

Hesperidin_uff_E=589.56 -7.9 6.45 3.712 

Glabranin_uff_E=305.75 -8.5 0 0 

Glabranin_uff_E=305.75 -7.9 1.619 1.065 

Glabranin_uff_E=305.75 -7.7 4.299 2.063 

Glabranin_uff_E=305.75 -7.6 7.711 4.529 

Glabranin_uff_E=305.75 -7.4 6.277 3.733 

Glabranin_uff_E=305.75 -7 4.895 1.367 

Glabranin_uff_E=305.75 -6.9 4.866 2.022 

Glabranin_uff_E=305.75 -6.9 5.727 1.903 

Glabranin_uff_E=305.75 -6.9 5.646 2.827 

Ribavirin_uff_E=483.77 -6.6 0 0 

Ribavirin_uff_E=483.77 -6.5 7.758 5.44 

Ribavirin_uff_E=483.77 -6.4 2.456 1.21 

Ribavirin_uff_E=483.77 -6.3 4.714 3.13 

Ribavirin_uff_E=483.77 -6.3 5.757 2.822 

Ribavirin_uff_E=483.77 -6.2 2.607 1.725 

Ribavirin_uff_E=483.77 -6.1 6.149 3.619 

Ribavirin_uff_E=483.77 -6 4.958 3.001 

Ribavirin_uff_E=483.77 -5.9 3.337 2.071 

Naringin_uff_E=615.92 -10.1 0 0 

Naringin_uff_E=615.92 -9.6 3.833 2.29 

Naringin_uff_E=615.92 -9.2 4.104 2.064 

Naringin_uff_E=615.92 -8.6 5.312 3.227 

Naringin_uff_E=615.92 -8.4 9.015 2.271 

Naringin_uff_E=615.92 -7.8 9.028 2.261 

Naringin_uff_E=615.92 -7.7 7.771 4.255 
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Table 3.18: Binding affinity of flavonoid compounds against MERS-CoV nsp3 macro domain 

Ligand Binding Affinity (kcal/mol) rmsd/ub rmsd/lb 

Naringin_uff_E=615.92 -7.7 14.831 6.965 

Naringin_uff_E=615.92 -7.5 16.169 7.064 

Quercetin_uff_E=380.43 -9.1 0 0 

Quercetin_uff_E=380.43 -8.8 1.79 1.296 

Quercetin_uff_E=380.43 -8.8 7.138 2.24 

Quercetin_uff_E=380.43 -8.3 7.097 2.064 

Quercetin_uff_E=380.43 -8.3 2.912 2.389 

Quercetin_uff_E=380.43 -8 4.136 2.357 

Quercetin_uff_E=380.43 -7.9 7.433 1.935 

Quercetin_uff_E=380.43 -7.6 7.105 3.407 

Quercetin_uff_E=380.43 -7.6 6.847 4.75 

Apigenin_uff_E=233.26 -8.7 0 0 

Apigenin_uff_E=233.26 -8.4 6.929 2.334 

Apigenin_uff_E=233.26 -8.3 4.831 2.692 

Apigenin_uff_E=233.26 -8 6.697 2.518 

Apigenin_uff_E=233.26 -7.8 4.572 2.91 

Apigenin_uff_E=233.26 -7.8 3.263 1.66 

Apigenin_uff_E=233.26 -7.8 5.959 3.871 

Apigenin_uff_E=233.26 -7.6 7.229 3.287 

Apigenin_uff_E=233.26 -7.6 6.277 3.665 

Luteolin_uff_E=242.10 -8.6 0 0 

Luteolin_uff_E=242.10 -8.6 7.382 1.54 

Luteolin_uff_E=242.10 -8.5 4.122 2.385 

Luteolin_uff_E=242.10 -8.5 7.384 2.712 

Luteolin_uff_E=242.10 -8.3 4.546 2.475 

Luteolin_uff_E=242.10 -8.2 2.934 1.322 

Luteolin_uff_E=242.10 -7.8 6.991 2.746 

Luteolin_uff_E=242.10 -7.3 6.296 4.072 

Luteolin_uff_E=242.10 -7.1 6.259 3.624 

Luteoloside_uff_E=456.82 -10 0 0 

Luteoloside_uff_E=456.82 -9.7 1.186 0.689 

Luteoloside_uff_E=456.82 -8.8 2.077 1.342 

Luteoloside_uff_E=456.82 -8.7 9.23 1.944 

Luteoloside_uff_E=456.82 -8.6 9.281 2.437 
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Table 3.18: Binding affinity of flavonoid compounds against MERS-CoV nsp3 macro domain 

Ligand Binding Affinity (kcal/mol) rmsd/ub rmsd/lb 

Luteoloside_uff_E=456.82 -8 6.387 3.086 

Luteoloside_uff_E=456.82 -8 6.81 3.259 

Luteoloside_uff_E=456.82 -7.8 9.696 4.098 

Luteoloside_uff_E=456.82 -7.7 6.458 4.184 

Apiin_uff_E=670.93 -10.1 0 0 

Apiin_uff_E=670.93 -9.6 2.765 1.667 

Apiin_uff_E=670.93 -9 9.35 2.583 

Apiin_uff_E=670.93 -8.7 4.059 1.946 

Apiin_uff_E=670.93 -8.3 4.224 2.374 

Apiin_uff_E=670.93 -8.2 3.636 2.706 

Apiin_uff_E=670.93 -8.1 5.089 3.38 

Apiin_uff_E=670.93 -7.8 9.245 2.749 

Apiin_uff_E=670.93 -7.7 4.579 2.415 

Rutin_uff_E=751.59 -8.8 0 0 

Rutin_uff_E=751.59 -8.8 2.97 2.026 

Rutin_uff_E=751.59 -8.8 1.816 1.102 

Rutin_uff_E=751.59 -8.6 7.549 2.573 

Rutin_uff_E=751.59 -8.5 5.075 1.402 

Rutin_uff_E=751.59 -8.2 5.034 2.04 

Rutin_uff_E=751.59 -8.1 2.635 1.557 

Rutin_uff_E=751.59 -7.9 6.656 2.227 

Rutin_uff_E=751.59 -7.9 5.805 1.929 

Kaempferol_uff_E=362.50 -8.7 0 0 

Kaempferol_uff_E=362.50 -8.5 6.608 2.282 

Kaempferol_uff_E=362.50 -8 6.545 4.425 

Kaempferol_uff_E=362.50 -7.9 5.205 3.395 

Kaempferol_uff_E=362.50 -7.8 4.249 1.978 

Kaempferol_uff_E=362.50 -7.7 6.273 1.466 

Kaempferol_uff_E=362.50 -7.3 3.204 1.905 

Kaempferol_uff_E=362.50 -6.7 9.035 6.09 

Kaempferol_uff_E=362.50 -6.5 10.655 7.654 

Genistein_uff_E=356.74 -8.3 0 0 

Genistein_uff_E=356.74 -7.9 7.193 1.426 

Genistein_uff_E=356.74 -7.8 6.928 1.816 
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Table 3.18: Binding affinity of flavonoid compounds against MERS-CoV nsp3 macro domain 

Ligand Binding Affinity (kcal/mol) rmsd/ub rmsd/lb 

Genistein_uff_E=356.74 -7 7.046 4.524 

Genistein_uff_E=356.74 -6.8 7.126 4.525 

Genistein_uff_E=356.74 -6.4 23.429 21.444 

Genistein_uff_E=356.74 -6.1 1.657 1.516 

Genistein_uff_E=356.74 -6 23.497 21.463 

Genistein_uff_E=356.74 -6 8.929 5.966 

Baicalein_uff_E=241.95 -9 0 0 

Baicalein_uff_E=241.95 -8.4 3.828 1.853 

Baicalein_uff_E=241.95 -8.3 6.474 2.295 

Baicalein_uff_E=241.95 -8.3 2.559 1.275 

Baicalein_uff_E=241.95 -8 2.114 1.817 

Baicalein_uff_E=241.95 -8 6.725 2.391 

Baicalein_uff_E=241.95 -8 6.067 4.252 

Baicalein_uff_E=241.95 -7.8 6.443 2.878 

Baicalein_uff_E=241.95 -7.2 4.616 2.698 

Fisetin_uff_E=344.72 -9.7 0 0 

Fisetin_uff_E=344.72 -9.6 1.648 1.096 

Fisetin_uff_E=344.72 -9 2.535 1.594 

Fisetin_uff_E=344.72 -8.7 7.275 2.501 

Fisetin_uff_E=344.72 -8.5 2.524 1.568 

Fisetin_uff_E=344.72 -7.9 7.453 2.891 

Fisetin_uff_E=344.72 -7.9 7.501 4.048 

Fisetin_uff_E=344.72 -7.8 7.172 4.397 

Fisetin_uff_E=344.72 -7.7 7.421 2.909 

Daidzein_uff_E=321.26 -8.3 0 0 

Daidzein_uff_E=321.26 -8.3 7.629 1.927 

Daidzein_uff_E=321.26 -8.1 3.618 2.147 

Daidzein_uff_E=321.26 -8.1 2.455 1.268 

Daidzein_uff_E=321.26 -7.8 6.985 1.579 

Daidzein_uff_E=321.26 -7.8 6.663 1.254 

Daidzein_uff_E=321.26 -7.7 8.027 2.672 

Daidzein_uff_E=321.26 -7.3 6.855 2.677 

Daidzein_uff_E=321.26 -7 6.203 4.82 

Silymarin_uff_E=489.69 -8.5 0 0 
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Table 3.18: Binding affinity of flavonoid compounds against MERS-CoV nsp3 macro domain 

Ligand Binding Affinity (kcal/mol) rmsd/ub rmsd/lb 

Silymarin_uff_E=489.69 -8.4 9.247 6.256 

Silymarin_uff_E=489.69 -8.2 9.587 6.077 

Silymarin_uff_E=489.69 -8 5.857 4.179 

Silymarin_uff_E=489.69 -7.9 9.875 2.706 

Silymarin_uff_E=489.69 -7.8 9.553 5.91 

Silymarin_uff_E=489.69 -7.7 8.958 5.392 

Silymarin_uff_E=489.69 -7.7 9.753 5.839 

Silymarin_uff_E=489.69 -7.5 5.139 3.637 

Hesperetin_uff_E=283.48 -8.9 0 0 

Hesperetin_uff_E=283.48 -8.7 2.424 1.758 

Hesperetin_uff_E=283.48 -8.2 7.13 1.887 

Hesperetin_uff_E=283.48 -7.9 7.852 1.677 

Hesperetin_uff_E=283.48 -7.6 7.284 4.59 

Hesperetin_uff_E=283.48 -7.6 7.336 2.799 

Hesperetin_uff_E=283.48 -7.5 2.93 2.096 

Hesperetin_uff_E=283.48 -7.3 4.345 3.192 

Hesperetin_uff_E=283.48 -7 5.783 3.871 

Pinostrobin_uff_E=229.88 -8.8 0 0 

Pinostrobin_uff_E=229.88 -8.5 7.275 2.8 

Pinostrobin_uff_E=229.88 -8.4 6.237 1.51 

Pinostrobin_uff_E=229.88 -8.3 7.561 5.798 

Pinostrobin_uff_E=229.88 -8.1 6.833 2.649 

Pinostrobin_uff_E=229.88 -7.6 7.611 3.55 

Pinostrobin_uff_E=229.88 -7.4 6.733 2.973 

Pinostrobin_uff_E=229.88 -6.9 6.4 3.879 

Pinostrobin_uff_E=229.88 -6.6 4.485 3.139 
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The docking poses were ranked according to their docking scores. The conformation with the 

lowest binding affinity was selected as the best docking pose for further analysis.  

Table 3.19: Binding affinity of best docking pose against MERS-CoV nsp3 macro domain  

Name Pubchem ID Binding Affinity (kcal/mol) 

Apiin 5280746 -10.1 

Naringin 442428 -10.1 

Luteoloside 5280637 -10 

Hesperidin 10621 -9.9 

Fisetin 5281614 -9.7 

Quercetin 5280343 -9.1 

Baicalein 5281605 -9 

Hesperetin 72281 -8.9 

Pinostrobin 73201 -8.8 

Rutin 5280805 -8.8 

Apigenin 5280443 -8.7 

Kaempferol 5280863 -8.7 

ADP-ribose 30243 -8.7 

Luteolin 5280445 -8.6 

Glabranin 124049 -8.5 

Silymarin 7073228 -8.5 

Daidzein 5281708 -8.3 

Genistein 5280961 -8.3 

Ribavirin 37542 -6.6 

 

The best docking conformation of ADP-ribose showed a binding affinity of −8.7 kcal/mol 

(highlighted in grey in table 3.19). Only 12 flavonoids had a binding affinity greater than −8.7 

kcal/mol. 

 

3.6.5 Measuring Ki Value 

Ki was calculated by the equation: Ki = exp [(ΔG*1000)/(R*T)], where ΔG is docking energy 

(binding affinity), R (gas constant) is 1.9859 cal K−1 mol−1 and T (temperature) is 298.15 K. 
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Table 3.20: Ki value calculation for each flavonoid compound 

Name Pubchem ID Binding Affinity (kcal/mol) Ki value (μM) 

Apiin 5280746 -10.1 0.0390649 
Naringin 442428 -10.1 0.0390649 

Luteoloside 5280637 -10 0.0462525 
Hesperidin 10621 -9.9 0.0547626 

Fisetin 5281614 -9.7 0.0767681 
Quercetin 5280343 -9.1 0.211482 
Baicalein 5281605 -9 0.250393 

Hesperetin 72281 -8.9 0.296463 
Pinostrobin 73201 -8.8 0.351009 

Rutin 5280805 -8.8 0.351009 
Apigenin 5280443 -8.7 0.415592 

Kaempferol 5280863 -8.7 0.415592 
Luteolin 5280445 -8.6 0.492058 

Glabranin 124049 -8.5 0.582592 
Silymarin 7073228 -8.5 0.582592 
Daidzein 5281708 -8.3 0.816699 
Genistein 5280961 -8.3 0.816699 
Ribavirin 37542 -6.6 14.4208 

 

3.6.6 Docking Visualization Analysis using UCSF Chimera 1.13 

The molecular visualization of the docked complexes was performed using UCSF Chimera 1.13. 

Table 3.21: Intermolecular H bond between each compound with the nsp3 macro domain  

Name Pubchem 
ID 

Binding 
Affinity 

(kcal/mol) 

H-Bond Interacting residue  
Distance 

(Å) 

Apiin 5280746 -10.1 #0 ALA 21.A H-#1 UNK 1.N O 1.896Å 1.896 
#0 ALA 21.A H-#1 UNK 1.N O 2.512Å 2.512 

#0 GLY 128.A H-#1 UNK 1.N O 2.077Å 2.077 
#0 GLY 44.A H-#1 UNK 1.N O 2.154Å 2.154 
#1 UNK 1.N H-#0 LYS 42.A O 2.631Å 2.631 

Naringin 442428 -10.1 #0 ALA 21.A H-#1 UNK 1.N O 1.808Å 1.808 
#0 GLY 128.A H-#1 UNK 1.N O 2.105Å 2.105 
#0 GLY 44.A H-#1 UNK 1.N O 2.521Å 2.521 
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Table 3.21: Intermolecular H bond between each compound with the nsp3 macro domain  

Name Pubchem 
ID 

Binding 
Affinity 

(kcal/mol) 

H-Bond Interacting residue  
Distance 

(Å) 
Luteoloside 5280637 -10 #0 GLY 128.A H-#1 UNK 1.N O 2.188Å 2.188 

#0 GLY 44.A H-#1 UNK 1.N O 2.031Å 2.031 
#1 UNK 1.N H-#0 VAL 152.A O 2.811Å 2.811 

Hesperidin 10621 -9.9 #0 ALA 21.A H-#1 UNK 1.N O 2.104Å 2.104 
#1 UNK 1.N H-#0 GLY 44.A O 2.245Å 2.245 

Fisetin 5281614 -9.7 #0 LEU 124.A H-#1 UNK 1.N O 2.356Å 2.356 
#0 PHE 130.A H-#1 UNK 1.N O 2.284Å 2.284 
#1 UNK 1.N H-#0 GLY 44.A O 2.563Å 2.563 

Quercetin 5280343 -9.1 #0 GLY 128.A H-#1 UNK 1.N O 2.131Å 2.131 
#0 ILE 47.A H-#1 UNK 1.N O 2.368Å 2.368 

#0 LEU 124.A H-#1 UNK 1.N O 2.147Å 2.147 
#1 UNK 1.N H-#0 GLY 44.A O 2.353Å 2.353 
#1 UNK 1.N H-#0 LEU 124.A O 2.268Å 2.268 

Baicalein 5281605 -9 #1 UNK 1.N H-#0 VAL 152.A O 2.403Å 2.403 
Hesperetin 72281 -8.9 #0 GLY 128.A H-#1 UNK 1.N O 2.211Å 2.211 

#0 ILE 47.A H-#1 UNK 1.N O 2.083Å 2.083 
Pinostrobin 73201 -8.8 #0 GLY 128.A H-#1 UNK 1.N O 2.200Å 2.2 

#0 ILE 47.A H-#1 UNK 1.N O 2.081Å 2.081 
#0 PHE 130.A H-#1 UNK 1.N O 2.385Å 2.385 

Rutin 5280805 -8.8 #0 GLY 128.A H-#1 UNK 1.N O 2.256Å 2.256 
#0 ILE 47.A H-#1 UNK 1.N O 1.995Å 1.995 

Apigenin 5280443 -8.7 #0 GLY 128.A H-#1 UNK 1.N O 2.523Å 2.523 
#0 GLY 44.A H-#1 UNK 1.N O 2.377Å 2.377 

Kaempferol 5280863 -8.7 no hydrogen bond invalid 
ADP-ribose 30243 -8.7 #0 ILE 129.A H-#1 UNK 1.N O 1.862Å 1.862 

#0 ILE 47.A H-#1 UNK 1.N O 2.001Å 2.001 
#0 PHE 130.A H-#1 UNK 1.N O 2.212Å 2.212 
#1 UNK 1.N H-#0 ALA 36.A O 2.275Å 2.275 

#1 UNK 1.N HN-#0 VAL 152.A O 2.486Å 2.486 
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Figure 3.18: Intermolecular bonding interaction between ADP-ribose and the nsp3 residue 

 

Figure 3.19: Intermolecular bonding interaction between Apiin (PubChem ID-5280746) and 

nsp3 residue with a binding affinity of – 10.1 kcal/mol, which is the best compared to other 

ligands except for Naringin 
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Figure 3.20: Intermolecular bonding interaction between Naringin (PubChem ID-442428) 

and nsp3 residue with a binding affinity of – 10.1 kcal/mol, which is the best compared to 

other ligands except for Apiin 

 

 

Figure 3.21: Intermolecular bonding interaction between Luteoloside (PubChem ID-

5280637) and nsp3 residue  
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Figure 3.22: Intermolecular bonding interaction between Hesperidin (PubChem ID-10621) 

and nsp3 residue  

 

Figure 3.23: Intermolecular bonding interaction between Fisetin (PubChem ID-5281614) 

and nsp3 residue  
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Figure 3.24: Intermolecular bonding interaction between Quercetin (PubChem ID-5280343) 

and nsp3 residue  

 

Figure 3.25: Intermolecular bonding interaction between Baicalein (PubChem ID-5281605) 

and nsp3 residue  
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Figure 3.26: Intermolecular bonding interaction between Hesperetin (PubChem ID-72281) 

and nsp3 residue  

 

Figure 3.27: Intermolecular bonding interaction between Pinostrobin (PubChem ID-73201) 

and nsp3 residue  
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Figure 3.28: Intermolecular bonding interaction between Rutin (PubChem ID-5280805) and 

nsp3 residue  

 

Figure 3.29: Intermolecular bonding interaction between Apigenin (PubChem ID-5280443) 

and nsp3 residue  
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Figure 3.30: No visible intermolecular bonding interaction between Kaempferol (PubChem 

ID-5280863) and the nsp3 residue 

 

 

 

 

 



 

89 | P a g e  
 

Discussion 
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MERS-CoV is an emerging virus originated in the Middle East where this virus crossed the 

interspecies barrier and infected humans. MERS-CoV is an enveloped, positive-sense, single-

stranded RNA viruses with a genome size of about 30-kb. Out of 16 non-structural proteins 

encoded by MERS-CoV, nsp3 is the largest protein. nsp3 has a macro domain embedded in which 

can bind to ADP-ribose. More importantly, nsp3 is an essential component of the 

replication/transcription complex. Therefore, the discovery of an nsp3 inhibitor can be a major 

leap towards developing a vaccine/therapeutic agent that can interfere with MERS-CoV 

replication. 

In the present study, the aim was to find vaccines/therapeutic agents against MERS-CoV using 

immunoinformatics since there is no approved MERS-CoV-specific vaccine/therapeutic agent 

available for treatment (Fehr et al., 2016). The main purposes of using immunoinformatics are: 

 Saving time required to develop vaccines/therapeutic agents 

 Reducing the cost needed for laboratory analysis and vaccine development 

For this study, only open-source immunoinformatics software and tools were used.  

This study was divided into two sections. The first section was focused on designing an epitope-

based vaccine whereas the second section was focused on identifying effective flavonoids in order 

to use them as nsp3 inhibiting therapeutic agents against MERS-CoV. 

To design an epitope-based vaccine, T-cell or B-cell epitopes are screened using several software 

and tools. In the present study, nsp3 protein sequence was extracted from the NCBI database and 

was checked for antigenicity using VaxiJen 2.0. The result of VaxiJen 2.0 indicates that nsp3 

protein is antigenic with a value of 0.4794 which is over the threshold for virus model (0.4). 

Finding conserved regions using multiple sequence alignment was avoided since MERS-CoV 

genomes share more than 99% sequence identity indicating low mutation rate and low variance 

among the genomes (Chafekar et al., 2018).  

For prediction of T-cell epitopes, the sequence of nsp3 protein was put in the NetCTL 1.2 server 

to identify probable T-cell epitopes in the target sequence. Thirty T-cell epitopes were selected 

which achieved threshold value of 1.25 (Table 3.1). In the NetCTL 1.2 server, achieving a score 

of 1.25 means having a specificity value of 0.993 and a sensitivity value of 0.54 (Larsen et al., 

2007). Antigenicity of selected epitopes was then evaluated using VaxiJen 2.0 followed by IEDB 
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T-cell class I pMHC immunogenicity predictor. Only six T-cell epitopes had achieved the 

threshold value of 0.4 in VaxiJen 2.0 and positive immunogenicity score in IEDB T-cell class I 

pMHC immunogenicity predictor (Table 3.4). In a similar in-silico study on Oropouche Virus, the 

minimum requirement for screening epitope was a score of 0.0 instead of the threshold value of 

0.4 in VaxiJen 2.0 (Adhikari et al., 2018). In the present study, however, the minimum requirement 

for screening T-cell epitope candidates was a score of 0.4 which is the threshold value for any 

virus model to ensure a better quality of epitope candidates while sacrificing quantity. Then 

prediction of peptide-MHC class I binding was performed using both Proteasomal cleavage/TAP 

transport/MHC class I combined predictor and NetMHC 4.0 server. For prediction of peptide-

MHC class I binding, only 9-mer peptide length was selected as most HLA molecules have a 

strong preference for binding 9-mer peptides. Proteasomal cleavage/TAP transport/MHC class I 

combined predictor gives an output result for HLA-binding affinity of the epitopes in the IC50 nM 

unit. A lower IC50 value indicates higher binding affinity of the epitopes with the MHC class I 

molecule. According to the website, peptides with IC50 values <50 nM are considered high 

affinity, <500 nM intermediate affinity and <5000 nM low affinity. Most known epitopes have 

high or intermediate affinity, but no known T-cell epitope has an IC50 value greater than 5000. 

Therefore, IC50 values less than 200 nM (IC50 < 200nM) were chosen for ensuring higher affinity 

similar to the in-silico study on Oropouche Virus. On the other hand, percentile rank<2.0 was used 

as the threshold in NetMHC 4.0 server. According to the website, the peptide will be identified as 

a strong binder if the percentile rank is below the specified threshold for the strong binders, by 

default 0.5%. The peptide will be identified as a weak binder if the percentile rank is above the 

threshold of the strong binders but below the specified threshold for the weak binders, by default 

2%. Therefore, percentile rank<2.0 was used as the threshold to include both strong and weak 

binders. The selected T-cell epitopes were found to be recognized by the significant MHC class-I 

molecule such as HLA-A, HLA-B, and HLA-C. In Proteasomal cleavage/TAP transport/MHC 

class I combined predictor tool, FAFETGLAY showed the highest affinity and was recognized by 

20 MHC-I alleles (HLA-B*35:01,HLA-C*03:02,HLA-B*15:25,HLA-C*12:03,HLA-

B*15:02,HLA-C*16:01,HLA-C*12:02,HLA-A*29:02,HLA-B*15:01,HLA-C*03:03,HLA-

C*14:02,HLA-C*02:02,HLA-C*02:09,HLA-B*53:01,HLA-B*46:01,HLA-C*08:01,HLA-

B*18:01,HLA-A*26:01,HLA-A*30:02,HLA-A*68:01). FAFETGLAY showed the highest 

affinity in NetMHC 4.0 server as well and was recognized by 37 MHC-I alleles (HLA-
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A*01:01,HLA-A*25:01,HLA-A*26:01,HLA-A*26:02,HLA-A*26:03,HLA-A*29:02,HLA-

A*30:02,HLA-A*32:07,HLA-A*66:01,HLA-A*68:01,HLA-A*68:23,HLA-A*80:01,HLA-

B*08:02,HLA-B*14:02,HLA-B*15:01,HLA-B*15:02,HLA-B*15:03,HLA-B*18:01,HLA-

B*27:20,HLA-B*35:01,HLA-B*40:13,HLA-B*46:01,HLA-B*51:01,HLA-B*53:01,HLA-

B*58:01,HLA-B*83:01,HLA-C*03:03,HLA-C*05:01,HLA-C*06:02,HLA-C*07:01,HLA-

C*07:02,HLA-C*08:02,HLA-C*12:03,HLA-C*14:02,HLA-C*15:02,HLA-A*32:15,HLA-

B*15:17). In addition, FAFETGLAY was recognized by 44 MHC-I alleles combined (HLA-

A*01:01,HLA-A*25:01,HLA-A*26:01,HLA-A*26:02,HLA-A*26:03,HLA-A*29:02,HLA-

A*30:02,HLA-A*32:07,HLA-A*66:01,HLA-A*68:01,HLA-A*68:23,HLA-A*80:01,HLA-

B*08:02,HLA-B*14:02,HLA-B*15:01,HLA-B*15:02,HLA-B*15:03,HLA-B*15:25,HLA-

B*18:01,HLA-B*27:20,HLA-B*35:01,HLA-B*40:13,HLA-B*46:01,HLA-B*51:01,HLA-

B*53:01,HLA-B*58:01,HLA-B*83:01,HLA-C*02:02,HLA-C*02:09,HLA-C*03:02,HLA-

C*03:03,HLA-C*05:01,HLA-C*06:02,HLA-C*07:01,HLA-C*07:02,HLA-C*08:01,HLA-

C*08:02,HLA-C*12:02,HLA-C*12:03,HLA-C*14:02,HLA-C*15:02,HLA-C*16:01,HLA-

A*32:15,HLA-B*15:17). Next, FVDWRSYNY had the second highest affinity and was 

recognized by 23 MHC-I alleles combined (HLA-A*01:01,HLA-A*26:02,HLA-A*26:03,HLA-

A*29:02,HLA-A*30:02,HLA-A*32:15,HLA-A*66:01,HLA-A*68:23,HLA-A*80:01,HLA-

B*08:02,HLA-B*08:03,HLA-B*15:02,HLA-B*35:01,HLA-B*53:01,HLA-B*83:01,HLA-

C*04:01,HLA-C*05:01,HLA-C*06:02,HLA-C*07:01,HLA-C*07:02,HLA-C*08:02,HLA-

C*12:03,HLA-C*16:01). Then, LLLAGTLHY was recognized by 17 MHC-I alleles combined 

(HLA-A*01:01,HLA-A*03:01,HLA-A*29:02,HLA-A*30:02,HLA-A*66:01,HLA-

A*68:23,HLA-B*08:02,HLA-B*15:01,HLA-B*15:02,HLA-B*15:03,HLA-B*15:17,HLA-

B*15:25,HLA-B*35:01,HLA-B*58:01,HLA-C*03:02,HLA-A*32:15,HLA-A*80:01). Next, 

KTTTGIPEY was recognized by 14 MHC-I alleles combined (HLA-A*01:01,HLA-

A*25:01,HLA-A*26:02,HLA-A*29:02,HLA-A*30:01,HLA-A*30:02,HLA-A*68:23,HLA-

A*80:01,HLA-B*15:03,HLA-B*15:17,HLA-B*46:01,HLA-B*58:01,HLA-B*58:02,HLA-

C*14:02). Finally, both LSSVYHLYV and STDFIALIM showed the least affinity as 

LSSVYHLYV was recognized by 11 MHC-I alleles combined (HLA-A*01:01,HLA-

A*02:05,HLA-A*02:06,HLA-A*68:02,HLA-A*68:23,HLA-A*69:01,HLA-B*15:17,HLA-

B*58:01,HLA-C*05:01,HLA-C*12:03,HLA-C*15:02), along with STDFIALIM (HLA-

A*01:01,HLA-A*26:03,HLA-A*32:01,HLA-A*69:01,HLA-A*80:01 ,HLA-B*15:17,HLA-
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B*39:01,HLA-C*05:01,HLA-C*08:02,HLA-C*15:02,HLA-C*16:01). HLA-A*01:01 is the only 

MHC-I allele that had an affinity with all of the selected T-cell epitopes. Afterward, the selected 

epitopes were used for the prediction of MHC-II alleles and their respective peptide or CD4+ T-

cell epitope using IEDB Peptide binding to MHC class II molecules predictor while selecting IC50 

< 3000nM as threshold since CD4+ T-cell epitopes play an important role in eliciting protective 

immune responses during peptide-based vaccination (Oyarzún et al., 2013). FAFETGLAY was 

recognized by 37 MHC-II alleles. As MHC HLA allele distribution differs among diverse 

geographic regions and ethnic groups around the world, population coverage must be taken into 

consideration during the design of an effective vaccine. In this study, identified MHC-I-binding 

alleles with high binding affinity of six epitopes were considered to analyze population coverage 

using the IEDB Population Coverage Analysis tool. The IEDB Population Coverage Analysis tool 

revealed that these epitopes and their HLA-alleles cover 98.55% of the world population 

cumulatively (Figure 3.5). The highest population coverage was found in the South Africa region 

(99.66%) while the lowest population coverage was found in Central America (9.07%). MERS 

was first found in the Middle East, and several outbreaks have been recorded in this region. 

Therefore, the population coverage prediction in the Middle East is essential for vaccine design. 

In the IEDB Population Coverage Analysis tool, Middle East is listed as Southwest Asia. The 

cumulative population coverage in Southwest Asia was 96.40%. In addition to that, the cumulative 

population coverage in East Asia where the Republic of Korea was located was 96.86%. These 

results indicate that these epitopes are promising vaccine candidates. Then those six epitopes were 

checked for conservancy using IEDB conservancy analysis tool. Conservancy analysis revealed 

that all of them are 100% conserved as they had the maximum identity (100%) for conservancy 

hit. In addition, to ensure that the epitope vaccines will not harm host cells, the toxicity of the 

epitope candidates was predicted using ToxinPred. All six of the selected epitopes were non-toxic. 

Finally, allergenicity was anticipated using AllergenFP v1.0 and AllerTOP v2.0 as many vaccines 

stimulate an allergenic reaction in the human body which can create several problems and may 

even hinder vaccine development (Oany et al., 2014). STDFIALIM, LSSVYHLYV, 

FAFETGLAY, LLLAGTLHY, FVDWRSYNY were found as probable allergens in AllergenFP 

v1.0 while KTTTGIPEY was found non-allergenic. On the contrary, STDFIALM and 

LSSVYHLYV were found non-allergenic in AllerTOP v2.0. KTTTGIPEY was found non-

allergenic in both AllergenFP v1.0 and AllerTOP v2.0. The 3D structures of selected epitope 
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candidates were predicted using PEP-FOLD 2.0 server. NP44-S7N mutant peptide 

(CTELKLNDY) was also selected as control ligand. HLA-A∗01:01 was selected as the 

macromolecule. After the minimizing process, HLA-A∗01:01 protein was placed in a grid box 

measuring 52.8351 Å × 68.2709 Å × 61.7293 Å along the x, y and z axis, respectively, where the 

position of the center was X:-63.5001, Y:-17.1718, Z:7.5672. The docking procedure was 

performed using the instructed command prompts. The docking poses were ranked according to 

their docking scores. However, the docking result revealed two different binding sites. Therefore, 

instead of choosing the conformation with lowest binding affinity as best docking pose, the 

conformation with the lowest binding affinity that used the same binding site as control (NP44-

S7N mutant peptide) was selected as best docking pose in order to compare between sample and 

control for critical evaluation. NP44-S7N mutant peptide had a binding affinity of -8.7kcal/mol. 

Among these six epitopes, the binding affinity of LSSVYHLYV was the best of all (-8.0kcal/mol). 

However, Only FAFETGLAY formed visible intermolecular hydrogen bond similar to the control 

ligand (NP44-S7N mutant peptide). FAFETGLAY had a binding affinity of -7.5 kcal/mol which 

was relatively high, and the distance of hydrogen bond was 2.089 Å which was quite similar to 

control ligand (2.095 Å). 

For prediction of B-cell epitopes, nsp3 protein sequence was put in B-cell epitope predicter tools 

such as BCPREDS and BepiPred 2.0. These tools generated a repertoire of probable B-cell epitope 

candidates. These epitopes were screened using VaxiJen 2.0. After that, the number of epitopes 

candidates was reduced to 178. Then overlapping B-cell and T-cell epitopes were identified similar 

to a study focused on emerging Rift Valley fever virus (Adhikari et al., 2017). Out of 178 B-cell 

epitopes, only eight had the sequence similarity with the selected T-cell epitopes (Table 3.12). 

IFVDWRSYNYAVSS, FVDWRSYNYAVS, FVDWRSYNYAVSSAFW and 

FVDWRSYNYAVSSAFWLF had the sequence similarity with FVDWRSYNY whereas 

LKFKEVCKTTTGIPEYNF, LKFKEVCKTTTGIPEY, FKEVCKTTTGIPEYNFIIYD and 

VCKTTTGIPEYN had the sequence similarity with KTTTGIPEY. These eight B-cell epitopes 

were selected for further evaluation. Conservancy analysis of these B-cell epitopes using IEDB 

conservancy analysis tool revealed that all of them had the maximum identity (100%) for 

conservancy hit. Afterward, these epitopes were checked for the presence of beta-turn, surface 

accessibility, flexibility, antigenicity and hydrophilicity using several IEDB B-cell tools. Results 

of IEDB B-cell tools showed that among eight B-cell epitopes, LKFKEVCKTTTGIPEYNF was 
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the most promising B-cell epitope as it had the presence of beta-turn, surface accessibility, 

flexibility, high antigenicity and hydrophilicity. LKFKEVCKTTTGIPEYNF was checked for the 

presence of beta-turn by Chou & Fasman Beta Turn Prediction tool, and it was revealed that 7 out 

of 12 peptide fragments were above the threshold. In Emini Surface Accessibility Prediction tool, 

7 out of 13 peptide fragments were above the threshold and found to be surface accessible. 6 out 

of 11 peptide fragments were found flexible in Karplus and Schulz Flexibility Prediction tool. 

Kolaskar & Tongaonkar Antigenicity Prediction tool indicated that 6 out of 12 peptide fragments 

were antigenic. Lastly, hydrophilicity was checked by Parker Hydrophilicity Prediction tool, and 

it was revealed that 7 out of 12 peptide fragments were above the threshold. 

LKFKEVCKTTTGIPEYNF, along with other epitopes, was found as non-toxic in ToxinPred. 

However, allergenicity prediction results were not conclusive as LKFKEVCKTTTGIPEYNF was 

found as a probable allergen in AllergenFP v1.0 but AllerTOP v2.0 identified 

LKFKEVCKTTTGIPEYNF as non-allergen. The analysis of antigenicity, conservancy, surface 

accessibility, flexibility, hydrophilicity, toxicity and allergenicity of B-cell epitopes revealed that 

the epitope FVDWRSYNYAVSSAFWLF and LKFKEVCKTTTGIPEY could be the most 

potential B-cell epitope candidate for peptide-based vaccine design among the selected eight B-

cell epitopes because these epitopes are antigenic, 100% conserved, flexible, hydrophilic non-toxic 

and non-allergenic to the human. In addition to that, they performed well in Chou & Fasman Beta 

Turn Prediction tool. These epitopes, however, performed a bit poorly in the Emini Surface 

Accessibility Prediction tool. FVDWRSYNYAVSSAFWLF had only 4 out of 13 peptide 

fragments above the threshold in the Emini Surface Accessibility Prediction tool. Similarly, 

LKFKEVCKTTTGIPEY had 5 out of 11 peptide fragments above the threshold in the Emini 

Surface Accessibility Prediction tool. 

Molecular docking is a study of how two or more molecular structures fit together and interact. 

Molecular docking, especially protein-ligand docking, has become a very popular bioinformatics-

based drug designing tool in the medical industry and within academic communities for predicting 

preferred binding orientations or poses of a ligand to a macromolecule. In the present study, 

molecular docking was used to check whether flavonoids could be used as a therapeutic agent 

against MERS-CoV or not. In this study, 18 flavonoids were selected as potential nsp3 inhibitor 

candidates (Table 3.15). Each of these flavonoids was used as ligand separately in molecular 

docking. As for macromolecule, MERS-CoV macro domain within nsp3 protein was selected 
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which is known to be an efficient ADP-ribose binding module (Cho et al., 2016). First, 3D 

structures of ligands were retrieved from PubChem in SDF format which was PyRx compatible. 

Then, the three-dimensional crystal structure of the macro domain within nsp3 protein was 

retrieved from RCSB Protein Data Bank (PDB ID:5DUS) in PDB format. Undesired ligands such 

as ADP-ribose, Sulfate Ion and Glycerol were removed, and then minimization process was done 

using Dock Prep tool in UCSF Chimera 1.13. This process removed water molecules as well. 

Ligand minimization was done by PyRx prior to docking. After the minimizing process, PyRx was 

used for molecular docking. PyRx was chosen for molecular docking instead of AutoDock Vina 

due to its perceived simplicity. The protein was placed in a grid box measuring 37.3660 Å × 

43.4316 Å × 43.1478 Å along the x, y and z axis, respectively, where the position of the center 

was X:8.9843, Y:17.6095, Z:68.5928. ADP-ribose was first re-docked into the ADP-ribose 

binding site of nsp3, and the resulting interactions were later compared with those found by 

docking 18 flavonoids into the similar active site using the same grid box. This type of comparative 

study is more reliable than binding affinity alone. The docking results included the binding energy 

value given in kcal/mol, mode, RMSD upper bound (rmsd/ub) and RMSD lower bound (rmsd/lb). 

The docking poses were ranked according to their docking scores. The conformation with the 

lowest binding affinity was selected as the best docking pose (Table 3.19). The best docking 

conformation of ADP-ribose showed a binding affinity of -8.7 kcal/mol. Only 12 flavonoids 

(Apiin, Naringin, Luteoloside, Hesperidin, Fisetin, Quercetin, Baicalein, Hesperetin, Pinostrobin, 

Rutin, Apigenin and Kaempferol) had binding affinity greater than -8.7 kcal/mol. Among them, 

apiin and naringin had the best binding affinity of -10.1 kcal/mol. Afterward, the Ki value was 

measured for each compound (Table 3.20). According to a similar study on potential anti-

chikungunya activity of baicalin, naringenin and quercetagetin, drugs with a Ki value <1 mM are 

normally considered to be effective (Seyedi et al., 2016). The present study revealed that apiin, 

naringin, luteoloside, hesperidin and fisetin had significantly lower Ki values (less than 0.08 μM), 

with apiin and naringin having the lowest Ki value (0.0390649 μM). Finally, the molecular 

visualization of the docked complexes was performed using UCSF Chimera 1.13 and the 

intermolecular H bonds between each compound with MERS-CoV nsp3 macro domain were listed 

along with their respective distances (Table 3.21). According to the previously mentioned study, 

a review by Szatylowicz classified the energy borders setting for strong, moderate and weak H-

bonds where 1.2–1.5 is considered strong, >1.5–2.2 is considered moderate and >2.2 is considered 
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weak (Seyedi et al., 2016). In the present study, three intermolecular hydrogen bonds between 

apiin and nsp3 fell under the moderate bond class while two other intermolecular hydrogen bonds 

were considered as weak. Similarly, two intermolecular hydrogen bonds between naringin and 

nsp3 fell under the moderate bond class while one intermolecular hydrogen bond was considered 

as weak. Other than apiin, no flavonoid had more than two hydrogen bonds categorized as 

moderate bond. On the other hand, kaempferol did not form any visible hydrogen bond at all 

(Figure 3.30). 

The key findings of the present study were: 

 STDFIALIM, LSSVYHLYV, FAFETGLAY, LLLAGTLHY, FVDWRSYNY, 

KTTTGIPEY are 100% conserved, non-toxic and their HLA-alleles cover 98.55% of the 

world population cumulatively. FAFETGLAY was recognized by 44 MHC-I alleles 

(cumulatively) and 37 MHC-II alleles. In addition, FAFETGLAY is the only epitope 

candidate that formed a visible intermolecular hydrogen bond with MHC HLA-A∗01:01 

allele in the molecular docking simulation study. However, both AllergenFP v1.0 and 

AllerTOP v2.0 suggested that FAFETGLAY was a probable allergen. On the other hand, 

KTTTGIPEY was recognized by 14 MHC-I alleles cumulatively and was found non-

allergenic in both AllergenFP v1.0 and AllerTOP v2.0. However, molecular docking 

simulation revealed that KTTGIPEY did not form any hydrogen bond with MHC HLA-

A∗01:01 allele. Since FAFETGLAY performed the best in the molecular docking 

simulation study, more studies are required to confirm whether FAFETGLAY really 

induces allergenic reactions or not. 

 FVDWRSYNYAVSSAFWLF and LKFKEVCKTTTGIPEY could be the most potential 

B-cell epitope candidates for peptide-based vaccine design among the selected eight B-cell 

epitopes. However, LKFKEVCKTTTGIPEYNF would be the best B-cell epitope 

candidate if any conclusive evidence ensuring that LKFKEVCKTTTGIPEYNF will not 

induce any allergenic reaction is found in future as LKFKEVCKTTTGIPEYNF performed 

better than FVDWRSYNYAVSSAFWLF and LKFKEVCKTTTGIPEY in IEDB B-cell 

tools. 
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 Apiin and naringin exhibited the most potent antiviral activity against MERS-CoV nsp3 

with a binding affinity of -10.1 kcal/mol and can be considered good candidates for further 

evaluation as potential antiviral agents against MERS-CoV. 

 

These epitope candidates can be used to develop a multi-epitope vaccine against MERS-CoV. In 

addition to that, apiin and naringin can be used in the combination therapy along with other 

antiviral agents which may further increase the efficacy of the multi-epitope vaccine. However, 

more studies are required to develop an effective vaccine/therapeutic agent against MERS-CoV. 

Using commercial-grade bioinformatics tools may increase the quality of the study greatly.  

Furthermore, other factors such as the route of delivery, use of compatible adjuvants etc. should 

be considered while designing vaccine/therapeutic agent. Finally, since in silico results often 

deviate from the original outcome,  in vitro experiment should be conducted to check whether a 

designed anti-viral agent is really effective or not. 
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