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Abstract

Machine Learning is boosting up the advancement in the field of Artificial Intelli-
gence these days. However, almost every machine learning algorithm contains an
optimization problem to solve. Inspired by quantum mechanics, quantum comput-
ing is quite a promising approach to solve high complexity optimization problems
significantly faster and more efficient than classical computers. In this paper, we
have worked on a very fundamental supervised learning problem. First, we discuss
an approach to map the classical feature points on a quantum computer. Then we
propose a Quantum Support Vector Machine(QSVM) model that runs on near term
superconducting quantum processors. We show that using quantum optimization
it is possible to train a discriminative SVM model that is capable of recognising
patterns.

Keywords: Quantum Computing, Machine Learning, Quantum Machine
Learning, Support Vector Machine

iii



Acknowledgement

Firstly, I thank the almighty Allah for enabling me to complete this thesis work.
Secondly, I thank my thesis supervisor Prof. Dr. Mahbub Majumdar from the
deepest part of my heart. It was a great opportunity for me to work under his
guideline. He just not only guided me but also motivated me throughout the time
while working on this thesis. Everything I have learned from him through courses
like Discrete Math and Machine learning helped me a lot while working on this
research work. This could not have been possible without that knowledge. In
addition to that, I would like to thank all of my family, friends and well-wishers for
supporting me and being there whenever I needed. Finally, I would like to thank
BRAC University for providing necessary facilities and working environment and
giving me the opportunity to finish the thesis and complete my Bachelor’s degree.

iv



Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background analysis 6
2.1 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Cbit and Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Measuring a Qubit . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Two Qubit Operations . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Multi Qubit System . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Quantum Devices . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Pattern recognition problem in Machine Learning . . . . . . . 16
2.2.2 VC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Shattering Points with Oriented Hyperplanes in Rn . . . . . . 17
2.2.4 The VC Dimension and the Number of Parameters . . . . . . 17
2.2.5 Minimizing The Bound by Minimizing h . . . . . . . . . . . . 18
2.2.6 Linear Support Vector Machines . . . . . . . . . . . . . . . . . 18

v



3 Literature Review 21

4 Methodology and Implementation 24
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Standard Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Principal component analysis (PCA) . . . . . . . . . . . . . . 25
4.2.4 Scaling the features range . . . . . . . . . . . . . . . . . . . . 26

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Quantum Support Vector Machine(QSVM) . . . . . . . . . . . 28
4.3.2 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Second Order Expansion . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 Feature Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Result Analysis 32
5.1 Result analysis of Simulation on Classical Computer . . . . . . . . . . 32
5.2 Result analysis of IBM quantum computer . . . . . . . . . . . . . . . 34
5.3 Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 38
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 40

vi



List of Figures

1.1 Work flow plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Circuit design of AND logical gate . . . . . . . . . . . . . . . . . . . 6
2.2 Circuit design of OR logical gate . . . . . . . . . . . . . . . . . . . . 6
2.3 The Bloch sphere representing a qubit . . . . . . . . . . . . . . . . . 7
2.4 Hadamard gate representation in Bloch sphere . . . . . . . . . . . . . 9
2.5 Hadamard gate matrix and block diagram . . . . . . . . . . . . . . . 9
2.6 CNOT gate matrix and block diagram . . . . . . . . . . . . . . . . . 10
2.7 Pauli gate representation in Bloch sphere . . . . . . . . . . . . . . . . 10
2.8 Pauli gate block diagram . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 T-Gate block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10 Toffoli Gate block diagram . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11 The 14 Qubit IBM Quantum computer(IBM Q 14 Melbourne) qubit

mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.12 Three points(in R2) shattered by line . . . . . . . . . . . . . . . . . . 17
2.13 Linear separating hyperplanes for the separable case. . . . . . . . . . 19

4.1 MNIST dataset samples . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . 25
4.3 PCA dim reduced Digits dataset . . . . . . . . . . . . . . . . . . . . . 26
4.4 Dataset after pre-processing with 4 feature points and 2 digits . . . . 27
4.5 The feature map representation on Bloch sphere for a single qubit . . 28
4.6 Features mapping with qubits . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Parameters and Configuration of QSVM . . . . . . . . . . . . . . . . 31

5.1 Confusion matrix of classical 4 feature point experiment . . . . . . . 33
5.2 QSVM Kernel matrix on Classical computer . . . . . . . . . . . . . . 34
5.3 Confusion matrix of classical 4 feature point experiment in Quantum

computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Kernel matrix on quantum computer . . . . . . . . . . . . . . . . . . 36

vii



List of Tables

2.1 Average measurements on IBM Q 14 Melbourne . . . . . . . . . . . . 14

3.1 Quantum speedup in machine learning algorithms . . . . . . . . . . . 22

5.1 QSVM accuracy on quantum and classical device . . . . . . . . . . . 36

viii



Chapter 1

Introduction

1.1 Motivation

Quantum Computing has the potential to change our perception of computation
that we have now. It is because of its weird nature of computing approach. It
has been shown that quantum computers can solve many complex problems more
efficiently than classical computers. It is possible to solve some hard to solve the
computational problem with quantum computers. Shor’s algorithm which is to solve
prime factorization is a good example of that. The possible speedup is significant
for the journey of computation, as we are heading towards the end of Moor’s law. It
is becoming harder to embed more transistor in small space. Thus it is becoming so
hard to improve the single core speed and it became a challenge to find an alternative
computational option.

In contrast, Machine Learning which is a kind of Artificial Intelligence is
changing our world dramatically. The application of machine learning has been
improving our life significantly. But training a machine learning model is a compu-
tationally expensive task due to iterative high algorithmic complexity. Currently,
the popular hardware choice for training machine learning model includes GPU,
TPU, ASIC etc. These solutions are comparatively faster than training with CPU.
But the common fact that all of these shares is that these are all classical computing
method. They all follow the same traditional computational theory. They just as
differ architecture wise.

Thus, our approach is to merge these two concepts together. Here we show
that the possibility of training a machine learning model using near-term quantum
computers.

1.2 Problem statement

Machine learning algorithms are heavily dependent on a huge amount of data. The
machine learning models learn from the data by finding a generalized pattern among
the data points. Thus we need to fit a good number of data points for the better
model. However, all the data presently we have are represented for classical com-
putational. On the other hand, the quantum computer requires a different type of
mapping for the data. Another challenge is to work with the image dataset, as it
requires more feature points(pixel points) while training.
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1.3 Objective

In this thesis our main objectives are:

• Map the classical image data on Quantum computer.

• Train a discriminative Quantum Support Vector Machine model to solve the
classification problem.

• Train with more feature points on a quantum computer.

• Analyze the learnability of the discriminative model.

1.4 Methodology

We demonstrate an approach to implement classical feature point data in a quan-
tum computer. Then we describe a quantum computing architecture to develop a
machine learning model. We experimentally run the Quantum Support Vector Ma-
chine(QSVM) algorithm in both quantum and classical device. In this experiment,
the MNIST handwritten data set was used. Finally, we run our experiment in both
simulation and quantum device and compare the results.

1.5 Outline

This thesis report has been organized as following:

• Chapter 1: A general introduction of our work. It also includes a brief
overview of the whole work.

• Chapter 2: This chapter contains the background analysis of the problem.
The chapter is very important for understanding the work shown in the rest
of this paper. Here we discussed the basic and important topics of quantum
computing and machine learning.

• Chapter 3: Here we have analyzed the previous work done in this field.

• Chapter 4: Firstly we discuss the QSVM algorithm. Then we discuss the
workflow and the implementation.

• Chapter 5: The analysis of the experiment has been discussed here. Also
provides the necessary justification for the experiment.

• Chapter 6: Contains the conclusion of the report. It includes the future plan
of the references used in this entire report.
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1.6 Workflow

The workflow plan that we followed while working on this thesis is given below:

Research and planning

At this primary stage we divided the task into two parts:

1. Literature Review

Quantum computing is an active research field. The literature review includes
doing research about previous works done on this field. Online libraries, jour-
nals and institutional research papers are a great source of doing research
about this field.

2. Recent Research works

Quantum computing technology is changing over time. Coping up with current
technologies, advancements is a very important part of this project.

Figure 1.1: Work flow plan
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Preparation

At this preparation stage, we mainly focused on skill development in this field. Three
important fields are :

1. Quantum programming language

Due to recent advancement in this field, a lot of high-level languages has been
developed. With these languages, we can design quantum circuits with quan-
tum logic. Topmost quantum language includes Q# (q sharp) and Quantum
Computation Language (QCL). Apart from these, python is also supported in
a few quantum frameworks

2. Quantum frameworks

Quantum frameworks allow us to run on real open source quantum computers
or simulate our models in our local computer. There are so many popular
frameworks. But most popular among them are IBM Qiskit, Rigette pyQuil
or Microsoft Quantum development kit. These frameworks are built on top of
current popular high-level languages. For instance, Python.

3. Quantum information theory

Quantum computing is an active research field. The contents and methodolo-
gies are very complex and critical. To work on this field, we need to spend
some time to sharpen our knowledge. There are several online open courses
from MITx.

Implementation

1. Data collection

To train a machine learning model we need to collect data. Data can be
collected from various open sources and repositories. For example UCI, Kaggle
etc. In our case, we have to collect MNIST dataset[7].

2. Data Pre-processing

Depending on the data-set we may need to pre-process the data before we fit
into our model. This process includes scaling, labelling, removing anomaly
and null points. Additionally, data should be split into two parts for training
and testing purpose.

3. Designing the model

After getting all the parameters from the data-set, we have to have designed
a QSVM model. Here main challenges are designing the architecture in a
quantum computing environment, finding a feature map and choosing the
best parameters to get the best result.

Run or simulate the experiment

Due to rising hype of quantum computing we have these following options to run
our quantum experiment.
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1. Run in a real quantum computer

There are three companies who have a quantum computer right now. They
are IBM, D-Wave and Rigetti. The IBM quantum computer named IBM Q
has 4-5 topological qubits. On the other hand, D-wave leap has 2000 qubits
quantum computer. On the other hand, Rigetti has introduced the concept
of Quantum Processing Unit(QPU) which is basically silicon-based annealing.
Therefore, the theory behind these machines is different. That means the
result may vary based on the machine. For our experiment, we will try to run
our experiment on all of these devices.

2. Simulation in classical machines

Based on topological qubit method we can simulate a quantum operation on a
regular computer. The no of qubits depends on the ram size. For example, a
machine with 8GB of RAM can simulate 29 qubits. A single qubit requires the
exponential amount of RAM However, the result may vary slightly than a real
quantum device due to the noise issue. A real quantum computer generates
noise during the output where simulation may not produce any noise.

Result analysis

1. Validate the result

After getting the result we have to validate its feasibility and accuracy. General
machine learning analysis has been done on our model. Depending on the
learnability and stability we have to finalize our result.

2. Compare with hypothesis

After getting our result we have to compare with our hypothesis whether
we can optimize and speed up our classical algorithms. If it optimizes than
classical machines then our hypothesis will be proved.

1.7 Timeline

We have scheduled the timeline of our project for better productivity. We were
managed to do it on time as well. The timeline is shown in Figure 1.2

Figure 1.2: Thesis timeline
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Chapter 2

Background analysis

2.1 Quantum computing

This section contains a basic introduction to the Quantum computing concepts and
relevant subjects which is important to understand the work presented in this report.

2.1.1 Cbit and Qubit

The term Cbit refers to ”Classical bit” used as the information unit in a classical
computer or a two-state digital machine. A classical computer follows the binary
format which is represented by strings of One and Zero. For example, the number
243 can be written as 11110011 in binary format and all sort of data can be encoded
in this format according to the digital logic. Basically, these One and Zero are
different individual states which construct a state machine. The state machine is
the core concept of a classical computer’s architecture. In general, at the circuit
level, this can be achieved using a transistor. In a transistor, a higher voltage
represents 1 state and lower voltage as 0 state. All the digital logic gates ex: AND
and OR gates (Figure 2.1 2.2) can be designed in this way.

Figure 2.1: Circuit design of AND
logical gate

Figure 2.2: Circuit design of OR
logical gate

In contrast, the basic unit of quantum information theory is called Qubit
which stands for a Quantum bit. Unlike a classical bit, the qubit works a little bit
weirdly. Qubit is defined by the probability of being in a state. Thus, a qubit has
states like One, Zero and a third state called Superposition. All of these states
can be represented as the unit vector in 2D complex vector space C2 . The notation
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used for a qubit is called Dirac notation. The Zero state can be written as |0〉 and
One state can be written as |1〉. We consider them basis vectors in a 2D vector
space denoted as C2. As 2D vector we represent |1〉 and |0〉 as

|0〉 =

(
1
0

)

|1〉 =

(
0
1

)
We can use the Bloch sphere in figure 2.3 to explain state of an Qubit. Here

the south pole represents |1〉 state and the north pole represents |0〉. Apart form

Figure 2.3: The Bloch sphere representing a qubit[8]
.

that a qubit can be in other states like other ray’s of the sphere. Therefore, the any
other state can be defined as

|ψ〉 = α0.|0〉+ α1.|1〉 (2.1)

Here α0 and α1 are some complex number at point (θ, φ). We define α0 and α1 as

α0 = cos
θ

2

α1 = eiφ sin
θ

2

We will come back to this equation in the next section. For now, this is the basic
concept of representing a qubit in geometrical format.
To simplify this concept we can relate this to the example of coin flipping. In Cbit
a coin has just two states represented by Heads and Tails. In terms of Qubit, along
with the Heads and Tails we have the flipping state as the superposition state. Thus
a question arises that if the coin the flipping state is not a certain state since it has
both possibility to be at the both of the states. so how can we turn this uncertain
state to a defined state.
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2.1.2 Measuring a Qubit

So far we know a qubit can exist in a continuum state between |0〉 and |1〉 which
is probabilistic. But we can turn it to a certain state by measuring its state which
turns to either 0 or 1 state as a result. So let’s see how this measurement works.
First, let us assume that a qubit is in a certain state where it has 50% of the chance
of being measured as 0 state and 50% chance of being measured in 1 state. It can
also be denoted as |+〉 and can be written as

1√
2
|0〉+

1√
2
|1〉 (2.2)

But here it is important to understand how we think of a qubit in a physical system.
We can realize a qubit as the spin of the electron where we can use it’s spin to
determine the state. We can also realize as ground and excited state for determining
the state of a qubit. But whatever the case is we have to measure a qubit to
determine it’s state. From the last section, we can rewrite the equation 2.1 as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (2.3)

Here, θ, ϕ and γ are real numbers. Now referring back to 2.3, there can be infinite
amount of point we can get on the sphere. Thus paradoxically there can be infinity
amount of information we can store in an qubit. But this statement gets eliminated
if we consider the a qubit can be in only |0〉 or |1〉 state if measured. Intuitively, we
can say that measurement can change a qubit state. For instance, if a qubit can be
in |+〉 state but will change to either |0〉 or |1〉 when measured.

If a qubit is described as

(
α0

α1

)
where α0 and α1 are complex numbers.

Then we can find out each of the classical probability by using Born rule

p(x) = |αx|2 (2.4)

It refers the probability of occurring event. x Now according to basic proba-
bility rule we can write

|α0|2 + |α1|2 = 1 (2.5)

Thus we can write the combination of basis vector to illustrate the superpo-
sition state. For multiple qubits, we can write

α00.|00〉+ α01.|01〉+ α10.|10〉+ α11.|11〉 =


α00

α01

α10

α11

 (2.6)

2.1.3 Quantum gates

To represent Quantum gates we use matrices to show the changes on a qubit. In all
the kinds of operations the normalized equation 2.5 must hold for all states. Thus
it produces unitary vectors when we perform an action on a qubit. Due to unitary
matrices, all the transformations are reversible. Thus all the quantum gates are
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reversible. Which means the circuit should be able to run in reverse. Here if a given
matrix is U then the conjugate transpose is denoted as U†.

UU† = U†U = 1 (2.7)

Hadamard gate

One of the most useful gate in quantum computing is called Hadamard gate. The
Hadamard gate performs a rotation π about the X-axis and π/2 about the Y-axis in
the Bloch sphere. This transformation takes X to Z and Z to X. The gate is among
other things used to put the target qubit into a superposition state, having an equal
chance of being measured as 0 or 1.

Figure 2.4: Hadamard gate representation in Bloch sphere [18]

H =
1√
2

(
1 1
1 −1

)
(2.8)

Figure 2.5: Hadamard gate matrix and block diagram

Controlled gate

Controlled gate is basically two qubits operation. The state of the first gate depends
on the second gate. This can be used in other gates as well. We denote a controlled
gate by adding a c is to the gate’s name. For instance: cNOT for controlled not
(cNOT gate). A cNOT gate is equal to a cX-gate. In the diagram below |q0〉
should be the control qubit and |q1〉 the target qubit. |q1〉 will change if the |q0〉 is

9



1. The cNOT matrix can be described by

cNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.9)

Figure 2.6: CNOT gate matrix and block diagram

Pauli gates

There are three types of Pauli gates, the X-, Y - and Z-gate. The gate rotates the
qubit around the named axis in the Bloch sphere by π Figure 2.7. The X-gate is
called bit-flip and the Z-gate phase-flip. The Y -gate is both a phase- and bit-flip
and satisfies Y = iXZ [6].

Figure 2.7: Pauli gate representation in Bloch sphere [18]

We represent Pauli gates as this following matrix and block diagram:

10



Figure 2.8: Pauli gate block diagram [18]

T-gate

The T-gate is used for phase shifting the Pauli Z-gate. T 4 = Z , meaning that
performing a T-gate four times will yield the same result as applying a Z-gate once.
The T-gate corresponds to a rotation of π

4
around the Z-axis in the Bloch sphere.

Shown in figure 2.9.

Figure 2.9: T-Gate

Toffoli gate

A double controlled not gate is called a Toffoli gate. The Toffoli, ccNOT, and ccX
gates are equivalent. In the diagram |q2〉 is the target qubit.

Figure 2.10: Toffoli Gate
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Measurement gate

The measurement gate is actually not a quantum gate since it sets a value based on
the observation. It is also a non-reversible operation. Because it sets the quantum
states equivalent to the base vector that represents the measured state.

2.1.4 Two Qubit Operations

Representing Two Qubits

In quantum computing single qubit computation is a bit different than two or multi
qubit operations. The core difference is two qubit states are 4 dimensional instead
of two dimensional. This happens due to the two or multi qubit computation is
formed by the tensor product on one qubit state. For example let’s assume we have

00 ≡
[

1
0

]
⊗
[

1
0

]
=


1
0
0
0

 , 01 ≡
[

1
0

]
⊗
[

0
1

]
=


0
1
0
0



10 ≡
[

0
1

]
⊗
[

1
0

]
=


0
0
1
0

 , 11 ≡
[

0
1

]
⊗
[

0
1

]
=


0
0
0
1


Therefore we can easily guess that the n qubit is represented by a unit vector of
dimension 2n using this construction.

α00

α01

α10

α11


where

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1

Thus form above derivation we can generalize the two qubit operation as follow-
ing:

Let’s define our first qubit as

[
α
β

]
and second qubit as

[
γ
δ

]
Then the two qubit state is:

[
α
β

]
⊗
[
γ
δ

]
=

 α

[
γ
δ

]
β

[
γ
δ

]
 =


αγ
αδ
βγ
βδ

 (2.10)

here the operation ⊗ is called the tensor product (or Kronecker product) of vectors.

12



In terms of single-qubit, unitary transformation is valid. A unitary transfor-
mation on n qubits is a matrix U of size 2nx2n. For instance a common example of
CNOT of two qubit gate is given below:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.11)

Now if we generalize this operation by assuming, the gates[
ab
cd

]
[
ef
gh

] (2.12)

to the first and second qubits, respectively, this is equivalent to applying the two-
qubit unitary given by their tensor product:

[
a b
c d

]
⊗
[
e f
g h

]
=


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

 (2.13)

2.1.5 Multi Qubit System

The multi qubit operation is quite similar to the two qubit operation. Here we
also from tensor product of smaller states. For instance, for encoding a bit string
1011001 in computer we do the following way:

1011001 ≡
[

0
1

]
⊗
[

1
0

]
⊗
[

0
1

]
⊗
[

0
1

]
⊗
[

1
0

]
⊗
[

1
0

]
⊗
[

0
1

]
(2.14)

The quantum gates works also in the same way. For instance, if we want to
apply X gate to the 1st qubit and then apply CNOT get in between 2nd and 3rd
qubits, then we will end up with this following transformation:

(X ⊗ CNOT12 ⊗ 1⊗ 1⊗ 1)

[
0
1

]
⊗
[

1
0

]
⊗
[

0
1

]
⊗
[

0
1

]
⊗
[

1
0

]
⊗
[

1
0

]
⊗
[

0
1

]
= 0011001

(2.15)
trhtsgrs490-=52In multi-qubit systems, due to the memory issue it often

allocates and de-allocates qubits which serve as temporary memory for the quantum
computer. These kind of qubit is called an ancilla. By default we assume the qubit
state is initialized to e0 upon allocation. We further assume that it is returned
again to e0 before de-allocation. This assumption is important because if an ancilla
qubit becomes entangled with another qubit register when it becomes de-allocated
then the process of de-allocation will damage the ancilla. For this reason, we always
assume that such qubits are reverted to their initial state before being released.
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2.1.6 Quantum Devices

• IBM Q 14 Melbourne: The IBM Q 14 Melbourne is a 14 qubit quantum
computer developed by IBM. The architecture and the design is shown in fig.
2.11 [23]. We have used this device for our experiment.

Figure 2.11: The 14 Qubit IBM Quantum computer(IBM Q 14 Melbourne) qubit
mapping.

Table 2.1: Average measurements on IBM Q 14 Melbourne

Frequency (GHz) 5.10
T1 (µ s) 33.30
T2 (µ s) 37.90
Gate error (10-3) 3.01
Readout error (10-2) 3.49

• IBM Q QASM Simulator: As we already know that the benefit of quantum
operation is the exponential speedup. Therefore it is possible to simulate the
quantum operation in a classical device with a large amount of memory space.
Although the result may vary due to the noise issue in the real quantum
device. IBM has developed this IBM Q QASM simulator[23] that can simulate
32qubits operation. This simulator can take the algorithms and run them on
IBM Q systems through the IBM Q Experience or the IBM Q Network without
any code changes.

Qiskit

Qiskit[22] is an open-source quantum computing framework developed by IBM. It
provides access to the quantum simulator and the quantum devices developed by
IBM. This framework is based on the Python programming language.
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The QISKit interface provides a built-in mapper for mapping a qubit in the
code to a hardware qubit. Because of this, the qubits can be arbitrarily named in
the QISKit code. The mapper works provided that the requested implementation
can be made to fit the coupling map.

In our experiment, we have used another Qiskit library called Qiskit Aqua[21].
It provides a collection of all the cross-domain algorithms based on near term quan-
tum devices.
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2.2 Machine Learning

In this section, we have discussed the statistical analysis of Support Vector Machine
and it’s learnability. We start with the overview of VC Dimension and structural risk
minimization. Then describe the basic ideas behind the Support Vector Machine
(SVM) like how it learns using optimization.

2.2.1 Pattern recognition problem in Machine Learning

Let’s assume that for l number of observations where each observation contains a
pair of vector xi ∈ Rn, i = 1, . . . , l and the given true label or the expected value
are given by our source. In the recognition problem xi might be a vector of pixel
values e.g. n=784 for 28x28 pixel image and yi can be the label e.g: 1.
Now it is expected that there exists some unknown probability distribution P (x, y)
form which data are drawn. In this case we consider IID(Independently drawn
and Identically Distributed). Our trusted source will assign yi according to a fixed
distribution, conditional on xi. But here we will be assuming a fixed y given by x.

Now our the job of our machine learning model is to learn mapping yi given
xi, xi 7→ yi. Let’s assume that our machine learning model came up with a function
X 7−→ f(x, α) where α is our predicted label. However is two possible outcomes,
either 7→ yi = α or 7→ yi 6= α. Which led us to expect some sort of error. Thus we
define the test error of our machine as:

R(α) =

∫
1

2
|y − f(x, α)|dP (x, y) (2.16)

R(α) is called expected risk or the actual risk. It represents true mean error
when density p(x, y exists, dP (x, y) can be written p(x, y)dxdy.

Then we introduce another term called Empirical risk Remp(α). Which is the
mean error rate on the training set for a fixed and finite number of observations.

Remp(α) =
1

2l

l∑
i=1

|yi − f (xi, α)| (2.17)

Previously we defined the quantity 1
2
|yi − f (xi, α)| as loss. For binary clas-

sification it can only take the values 0 and 1. Assuming some η (where 0 ≤ η ≤ 1
), for losses taking these values with probability (1 − η) probability the following
bound holds[3]:

R(α) ≤ Remp(α) +

√(
h(log(2l/h) + 1)− log(η/4)

l

)
(2.18)

Here h is called the Vapnik Chervonenkis(VC) dimension which is a measure
of the notion of capacity mentioned above. The right hand side of the equation
2.18 is called ”risk bound”. The lest part of the right hand side is called ”VC
Confidence”.
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2.2.2 VC Dimension

In general, VC dimension is a property of a set of functions {f(α)} which can be
defined by various classes of function f . Let’s consider a function that correspond
to the binary pattern recognition problem f(x, α) ∈ {−1, 1}∀x, α. If we have n
points then we can label them 2n possible way. Now for each labelling, a member of
the set {f(α)} can be found which correctly assigns those labels then we say that
set of the point is shattered by that set of function. The maximum number of the
training points that can be shattered by {f(α)} is called the VC dimension for the
set function {f(α)}. If for a function the VC dimension is h, then there exist at
least one set of h points that can be shattered.

2.2.3 Shattering Points with Oriented Hyperplanes in Rn

Let’s assume that for a feature space R2, and the set of functions {f(α)} defined
by a oriented straight line. Points of one side of the given line are labeled as class
1 and other points are as class -1. The orientation represents by the arrow in the
figure 2.12 shows the points shattered by the line. Therefore it is possible to shatter
three points. But not possible to find four points.

Figure 2.12: Three points(inR2) shattered by line [3].

2.2.4 The VC Dimension and the Number of Parameters

Intuitively, we may think that having higher parameters would result in higher VC
dimension and few parameters will result very low VC dimension. But this intuition
is proven wrong by E. Levin and J.S. Denker (Vapnik, 1995). It’s been stated that
: A learning machine with just one parameter, but with infinite VC dimension (a
family of classifiers is said to have infinite VC dimension if it can shatter l points,
no matter how large l). The defination of step function θ(x), x ∈ R : {θ(x) = ∀x >
0; θ(x) = −1∀x ≤ 0} [3]. Now lets consider one parameter family of functions
defined by

f(x, α) ≡ θ(sin(αx)), x, α ∈ R (2.19)
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Now we choose some number l number of points to be shattered:

xi = 10−i, i = 1, · · · , l (2.20)

Then we specify the labels as:

y1, y2, · · · , yl, yi ∈ {−1, 1} (2.21)

Then f(a) gives this labeling if we choose α to be

α = π

(
1 +

l∑
i=1

(1− yi) 10i

2

)
(2.22)

2.2.5 Minimizing The Bound by Minimizing h

For some of the machine learning algorithms which has empirical risk of zero, we
want to choose that algorithm which has minimal VC dimension. It puts a better
upper bound to the true error. In general, if the empirical risk is non zero, we would
like to choose that machine learning algorithm which will minimize the right hand
side of Eq 2.18.

Here we have to remember that we are only using Eq. 2.18 as a guide. Eq.
2.18 gives (with some chosen probability) an upper bound on the true error. It does
not restrict a particular algorithm from the value of the empirical risk and whose
set of function has higher VC dimension, from having better performance. In fact,
it is possible that a system can perform better but can have infinite VC dimension.
Here we can see that the graph shows that for h/l > 0.37 (and for η = 0.05 and l
= 10, 000), the VC confidence exceeds unity, and so for higher values the bound is
guaranteed not tight.

2.2.6 Linear Support Vector Machines

Here we begin with non linear separable case. Our task is to label the training data
:

{xi, yi} , i = 1, · · · , l, yi ∈ {−1, 1},xi ∈ Rd

Now lets assume that we have some hyperplane that separates +ve and -ve points.
The points where x lie in on the hyperplane satisfy w ·x + b = 0. Our goal is to find
the margin that separates hyperplane d+ and d− where d+ and d− are the shortest
distance from separating hyperplane. In this case the support vector machine algo-
rithm will look for the hyperplany that has maximum margin. This can be derived
in this following way:

xiw + b ≥ +1 for yi = +1 (2.23)

xiw + b ≤ −1 for yi = −1 (2.24)

Now if we combine Eq. 2.23 and 2.24 then we will get the following:

yi (xi ·w + b)− 1 ≥ 0 ∀i (2.25)

Now consider the points for which the equality in Eq. 2.23 holds (requiring
that there exists such a point is equivalent to choosing a scale for w and b). These
points lie on the hyperplane H1 : xi∆w + b = 1 with normal w and perpendicular
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distance from the origin |1− b|/‖w‖. Similarly, the points for which the equality in
Eq. 2.24 holds lie on the hyperplane H2 : xi∆w + b = −1, with normal again w,
and perpendicular distance from the origin |− 1− b|/‖w‖. Hence d+ = d− = 1/‖w‖
and the margin is simply 2/‖w‖. Note that H1 and H2 are parallel (they have the
same normal) and that no training points fall between them. Thus we can find the
pair of hyperplanes which gives the maximum margin by minimizing ‖w‖2, subject
to constraints 2.25 [3].

Figure 2.13: Linear separating hyperplanes for the separable case. [3]

Now as shown in Figure 2.13 a two dimensional case to solve. The training
points lying on H1 and H2 hyperplane holds the equation no 2.25. If we are able to
remove those points the solution can be found, then those points are called support
vectors. Solving by Lagrangian formulationwe we get:

LP ≡
1

2
‖w‖2 −

l∑
i=1

αiyi (xi ·w + b) +
l∑

i=1

αi (2.26)

Here in 2.26 our goal is to minimize Lp with respect to w and b. Requiring
that the gradient of LP with respect to w and b vanish give the conditions:

w =
∑
i

αiyixi (2.27)

∑
i

αiyi = 0 (2.28)

Since these are equality constraints in the dual formulation, we can substitute them
into Eq. 2.26 to give

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (2.29)
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In terms of separable linear case Support vector training, therefore, amounts
to maximizing LD with respect to the αi, subject to constraints equation 2.28 and
positivity of the αi, with the solution given by equation 2.27. As found in this
solution, those points for which αi > 0 are called “support vectors”, and lie on one
of the hyperplanes H1, H2. All other training points have αi = 0 and lie either on
H1 or H2 or on that side of H1 or H2 such that the strict inequality in equation
2.25 holds. For these machines, the support vectors are the critical elements of the
training set. They lie closest to the decision boundary; if all other training points
were removed (or moved around, but so as not to cross H1 or H2), and training was
repeated, the same separating hyperplane would be found.
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Chapter 3

Literature Review

Over the years there has been a lot of demonstration regarding quantum computa-
tion. There are illustrations of how this emerging technology utilizes its effects to
add a new dimension to this era of technological advancement. It opens new doors
of immense possibilities for the researchers.

Jordan’s algorithm[4] is one of the most significant algorithms in terms of op-
timization problems. The algorithm can predict the gradient estimation for a black
box f and d a function with real variables for a given n precision. This algorithm
requires only d number of black box query in quantum machines where it takes d+1
in classical machines. (Durr & Hoyer,1994) proposed a model[2] where they tried to
find the minimum index in a table T of size N in time O(

√
n). (Gilyén, Arunacha-

lam and Wiebe, 2017) they tried to develop a quantum algorithm that computes
the gradient of a multi-variate and real-valued function f : Rd → R by evaluating
only a logarithmic number of points in superposition[10]. Additionally, an improved
version of Jordan’s algorithm has been proposed which has the advancement of
quantum gradient descent over classical gradient descent. Moreover, the research
work has shown that for low-degree multivariate polynomials their algorithm can
provide exponential speedups. They also proposed an improved version of Jordan’s
algorithm.

William Huggins, Piyush Patil, Bradley Mitchell, K. Birgitta Whaley, and
E. Miles Stoudenmire have proposed that approaching to both discriminative and
generative learning, quantum computing along with classical computing can benefit
from the same theoretical and algorithmic developments[17]. In fact, it is possible
to train the same model classically and then transfer it to the quantum setting
for additional optimization. Having benefits for near term devices, tensor network
circuits can provide qubit systematic schemes. In those schemes depending on the
architectural design, the required number of physical qubits scales only logarithmic-
ally with, or independently of the input or output data sizes.

Zhikuan Zhao, Alejandro Pozas-Kerstjens, Patrick Rebentrost, and Peter
Wittek in their research paper have stated that Bayesian strategies have great ben-
efits in machine learning as they specifically provide estimates of the uncertainty re-
lated to a prediction[19]. The connection between deep feedforward neural networks
and Gaussian processes allows the researchers to leverage a quantum algorithmic
rule designed for Gaussian processes and develop a replacement algorithmic rule for
Bayesian deep learning on quantum computers. They also aimed for demonstrating
the execution of the algorithm on modern quantum computers. Their goal is to
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analyze the hardiness of this algorithm with respect to realistic noise models.
Edward Farhi and Hartmut Neven have introduced a quantum neural network

(QNN) which has the ability to represent labelled classical or quantum data. Again
it can be trained by supervised learning[15]. Consisting of a sequence of parameter-
dependent unitary transformations, the quantum circuit acts on an input quantum
state. At the initial stage, they look at classifying classical data sets consisting of
n-bit strings with binary labels. Here the input quantum state is such an n-bit
computational basis state which corresponds to a sample string. They have shown a
way to design a circuit made of two-qubit unitaries which will properly represent the
label of any Boolean operation of n bits. They have introduced parameter depen-
dent unitaries. These unitaries can be modified by supervised learning of labelled
knowledge. Using classical simulation they have proven that the parameters which
allow the QNN to learn to properly differentiate the two data sets can be found. For
learning the label of a general quantum state their QNN can be used. According to
their research, this QNN can be run on a near term gate model Quantum computer
where the exploration of its power will be magnificent.

At the early 2000s, a good number of research works has been done on fun-
damentals and the possibility of applications of artificial intelligence in quantum
machines. The concept of “quantum perceptron”[1] which is the fundamental of a
single neuron was introduced in a paper by Lewenstein(1994) in his journal. More-
over, the author has shown that for low-degree multivariate polynomials their algo-
rithm can provide exponential speedups compared to Jordan’s algorithm in terms
of the dimension d. He formulated a statistical theory of quantum perceptions,
i.e. ideal quantum computing elements that process input states into output states
through unitary transforms. (Ricks & Ventura, 2004) explained about “Training a
quantum neural network”[5] in their research work. Their approach to training a
Quantum Neural Network is to utilize the quantum speedup of search to find weights.
They managed to solve a few popular machine learning problems like XOR, Iris and
Gayes-Roth.

In 2016 Microsoft and Cambridge University researchers have implemented
a few machine learning algorithms in a quantum environment and compared the
complexity over a classical computer. As shown in Table 3.1, it’s been found a
significant speedup[9] in quantum methods. The key factor behind this speedup
was the exponential number of states in quantum computers.

Method Speedup
Bayesian Inference O(

√
n)

Online Perceptron O(
√
n)

Least squares ftting O(logN(∗))
Classical BM O(

√
n)

Quantum BM O(logN(∗))
Quantum PCA O(logN(∗))
Quantum SVM O(logN(∗))

Table 3.1: Quantum speedup in machine learning algorithms

In a recent research paper Daskin(2016) proposed e a simple neural net-
work[14] that requires only O(n log(2k)) number of qubits and O(nk) quantum gates.
Here, n is the number of input parameters, and k is the number of weights applied
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to these parameters in the proposed neural network. The numerical results indicate
the network can be used in machine learning problems and it may provide exponen-
tial speedup over the same structured classical neural network. Apart from that,
Bayesian deep learning algorithms are being implemented in quantum computers[19]
and the Bayesian methods in machine learning, such as Gaussian processes, have
great advantages compared to other techniques. In particular, they provided an
estimation of the uncertainty associated with a prediction. However, extending the
Bayesian approach to deep architectures has remained a major challenge. Recent
research has shown that it is possible to connect deep feedforward neural networks
with Gaussian processes, which allows training without backpropagation. The prop-
erties of the kernel matrix in the Gaussian process ensure the efficient execution of
the core component of the protocol, quantum matrix inversion, providing at least
polynomial speedup over the classical algorithm.

In addition, (Cong, Choi & Lukin, 2018) has proposed a Quantum Convolu-
tional Neural Network(QCNN) [13] which uses only O(log(N)) variational parame-
ters for input sizes of N qubits and allowing for its efficient training and implemen-
tation on realistic, near-term quantum devices. Apart from that, the reinforcement
learning (RL) algorithm has been proposed in a quantum computing environment.
(López, Lamata, Retamal, C., Solano & E., 2018) have proposed a protocol to
perform quantum reinforcement learning with quantum technologies[12]. They con-
sidered diverse possible scenarios for an agent, an environment, and a register that
connects them, involving multi-qubits and multilevel systems, as well as open-system
dynamics. According to their research, this will enable enhanced quantum control,
as well as more efficient machine learning calculations. However, it is important to
mention that all of these above-mentioned models are proposed at the theoretical
stage.

Noise in quantum operation and output is a big challenge. According to
(Verdon, Broughton & Jacob Biamonte, 2017) ’s research on low depth circuits[11]
has proposed a method which employs the quantum approximate optimization al-
gorithm as a subroutine in order to approximate sample from Gibbs states of Ising
Hamiltonians. They used this approximate Gibbs sampling to train neural net-
works for which they demonstrate training convergence for numerically simulated
noisy circuits with depolarizing errors of rates of up to 4%.

After analyzing all these research works we found out that there are the
enormous possibilities waiting for machine learning in quantum technology and there
are a lot of scopes for improvement.
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Chapter 4

Methodology and Implementation

This chapter we discuss how we implement our Quantum Support Vector Ma-
chine(QSVM) to train the discriminative model.

4.1 Dataset

In our experiment, we have used the MNIST dataset [7] with 60000 handwritten
digits training set. From this dataset, we have used only two digits and a very small
amount of data points to fit in the available near term quantum devices.

Figure 4.1: The MNIST dataset samples [7]

4.2 Pre-processing

After retrieving the data we followed these following pre-processing steps before
training the model.
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4.2.1 Data Splitting

At the initial stage, we had to split the data. Here we split the dataset in to two
parts called training and testing part. The training set has the features and labels.
This set is used for the model to learn. The other testing part has the feature points
without any labels. By using this dataset we try to validate the accuracy by the
model. The training part contains 80% of the data and the testing part contains
20% data.

4.2.2 Standard Scaling

At this stage, we remove the mean and scaling to unit variance for standardizing.
Centring and scaling appear independently on every feature by computing the appli-
cable statistics on the samples in the training set. The mean and popular deviation
is then stored to be used on later data using the radically change method. Standard-
ization of a dataset is a common requirement for many machine learning estimators.
They would possibly behave badly if the individual points do not greater or much
less seem to be like standard usually distributed data.

For example, many elements used in the objective function of a learning
algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2
regularizers of linear models) expect that all features are established around 0 and
have variance in the same order. If a character has a variance that is orders of
magnitude large than others, it would possibly dominate the objective function and
make the estimator unable to learn from different features effectively as expected.

4.2.3 Principal component analysis (PCA)

Principal component analysis compresses high dimensional data to lower dimensional
data. Its basically dimensionality reduction using Singular Value Decomposition of
the data to project it to a lower dimensional space.

It uses the LAPACK implementation of the full SVD or a randomized trun-
cated SVD by the method of Halko et al. 2009, depending on the shape of the input
data and the number of components to extract.

It can also use the scipy.sparse.linalg ARPACK implementation of the trun-
cated SVD.

Figure 4.2: Principal component analysis
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Figure 4.3: PCA dim reduced Digits dataset

Here the Fig. 4.3 shows the dimension reduced Digit dataset. However, we
have chosen 2 digits which is 0 and 1 for our final experiment due to lack of available
qubit.

4.2.4 Scaling the features range

As shown in the next section, the way the QSVM architecture derived, we needed
to scale the feature points in the range of -1, +1.

By taking 4 features point, our dataset is shown in the following figure:
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Figure 4.4: Dataset after pre-processing with 4 feature points and 2 digits

Here the data is in dictionary format. The label ”A” represents the digit ”0”
and the label ”B” represents the digit ”1”. This data-set was prepared to fit in a 4
qubit machine. Due to the qubit limitation, we could only take a few data points.
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4.3 Implementation

4.3.1 Quantum Support Vector Machine(QSVM)

The main goal of the support vector machine is to solve the classification problem.
For a given training set T and test set S which are labelled by a map Ω ⊂ Rd. Our
features are mapped in the range of

m : T ∪ S → {+1,−1} (4.1)

The algorithm uses retrieves and processes the data in a classical way but training is
done by the help of quantum state space. In terms of the first proposed model fea-
tures are mapped in non linearly to a quantum state Φ : ~x ∈ Ω→ |Φ(~x)〉〈Φ(~x)|[16].
As shown in figure 4.6 we represent our classical feature data in the Bloch sphere[16].

Figure 4.5: The feature map representation on Bloch sphere for a single qubit

This model is proposed for binary classification problem as the Blue and Red labels
can be represented using this model in an interval of Ω = (0, 2π].
The second model which we used in our experiment is basically followed the unitary
operation. Here each of the feature points is handled by a single qubit. The phase
gate of angle x ∈ Ω is applicable ofr every qubit UΦ(x) = Zx. We can distinguish the
mapped-data by the hyperplane given by the ~w. The positive values will be set to
[+1]Red and the negative values to [−1]Blue. In the circuit, the UΦ(~x) is formed by
the products of single and two-qubit unitaries that are diagonal the computational
basis[16].

One of the major challenge is to map the features. For mapping features for
n qubits generated by the unitary

UΦ(~x) = UΦ(~x)H
⊗nUΦ(~x)H

⊗n

where

UΦ(x) = exp

i ∑
S⊆[n]

φS(~x)
∏
i∈S

Zi

 (4.2)

with this demonstration we plan to map and implement our QSVM model . The
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Figure 4.6: Features mapping with qubits.

final pseudo code for the QSVM model is given as following :

Algorithm 1: Pseudo-code for QSVM training phase

Input: training samples with labels T = {~x, y}where ~x ∈ Ω ⊂ Rn and y ∈ C}

Parameters: ~θ initial parameter

while Remp(
−→
θ ) has not converged do

for i = 1 to |T | do
set ry = 0 for every y ∈ C
/* here ry is a counter */

for shot = 1 to R do
prepare initial feature map state |Φ (~xi)〉 〈Φ (~xi) | by using UΦ(~xi)

apply discriminator circuit W (
−→
θ ) to the initial feature-map state.

get outcome measurement {My}y∈C by applying |C|−
get measurement outcome label y by setting ry → ry + 1

end
calculate empirical distribution p̂y (~xi) = ryR

−1

check the accuracy and error rate by evaluating
Pr (m̃ (~xi) 6= yi|m(~x) = yi) with p̂y (~xi) and yi

Remp(
−→
θ ) = Remp(

−→
θ ) + Pr (m̃ (~xi) 6= yi|m(~x) = yi) /* update cost

function */

end

Define new
−→
θ with the data from Remp(

−→
θ )

end

return the final parameter
−→
θ ∗ and value of the cost function Remp (θ∗)

4.3.2 Backend

The bookend refers whether we want to simulate the experiment in classical device
or run in real quantum device. In our experiment we have implemented both of
the options. In terms of simulation we used a regular classical computer. Then we
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also used IBM Q QASM Simulator. Then we ran our experiment in a real quantum
computer which is IBM Q 14 Melbourne.

4.3.3 Second Order Expansion

The Second Order Expansion feature map transform data ~x ∈ Rn according to the
following equation, and then duplicate the same circuit with depth d times, where
d is the depth of the circuit [20]:

UΦ(x) = exp

i ∑
S⊆[n]

φS(~x)
∏
i∈S

Zi

 (4.3)

where

S ∈ {0, 1, . . . , n−1, (0, 1), (0, 2), . . . , (n−2, n−1)}, φi(~x) = xi, φ(i,j)(~x) = (π − xi)∗(π − xj)
(4.4)

4.3.4 Feature Maps

For pattern recognition and image processing problem, a feature map starts from
an initial set of measured data and incorporates features intended to be informative
and non-redundant, facilitating the subsequent learning and generalization steps,
and in some cases leading to better human interpretations.

In general what we do is basically dimension reduction. It involves reducing
the number of resources needed to explain an oversized set of information. once
applying the analysis of complicated data, one in every of the most important issues
stems from the number of variables concerned. Analysis with an oversized range of
variables usually needs a large quantity of memory and computation power, and will
even cause a classification algorithm to over-fit to training samples and generalize
poorly to new samples. once the input file to AN algorithm is just too large to be
processed and is suspected to be redundant (for example, the identical measure is
provided in each pound and kilograms), then it may be remodelled into a reduced
set of features, named a feature vector. the method of deciding a set of the initial
features is named feature choice. the chosen features are expected to contain the
relevant info from the input file, so the specified task may be performed by using
the reduced illustration rather than the entire initial data[20].

Entanglement

We define the entangler map with a dictionary of lists of non-negative int values :

entanglermap = 0 : [1|...|q − 1], 1 : [0|2|...|q − 1], ..., q − 1 : [0|1|...|q − 2]

The entanglement parameter defined above can be overridden by an entangler
map explicitly specified as the value of the entangler map parameter if an entangle-
ment map different from full or linear is desired. As explained more generally above,
the form of the map is a dictionary; each entry in the dictionary has a source qubit
index as the key, with the corresponding value being a list of target qubit indexes
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to which the source qubit should be entangled [20]. Indexes are int values from 0 to
q − 1 , where Q is the total number of qubits, as in the following example:

entanglermap = {0 : [1, 2], 1 : [3]}

Final Implementation

Before running the experiment these are the final parameter as shown below:

Figure 4.7: Parameters and Configuration of QSVM

Here the backend varied while running on different machine. Now we im-
plement these parameters and the result of our experiment has been shown in the
next chapter.
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Chapter 5

Result Analysis

5.1 Result analysis of Simulation on Classical Com-

puter

In our experiment, we first ran a simulation on our classical computer. As discussed
in the previous section, 4 feature points for our experiment. Here we discuss the
basic machine learning result analysis.

Accuracy:

When we ran our algorithm with 4 feature point the accuracy we got was 95%. The
following work shows the general justification for our work.

• Confusion Matrix: In terms of Classification problem in machine learning,
the performance of a particular learning model can be visualized by a table
called confusion matrix table. In this table each row represents the instances
in a predicted class by the model and each column represents the instances in
an real class. With this relationship table we can calculate the performance.
In our experiment we found the following confusion matrix:
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Figure 5.1: Confusion matrix of classical 4 feature point experiment

• Sensitivity: Sensitivity refers if we get a positive outcome then how often
our prediction is correct. Higher the number the better our model is. It is also
known as ”Recall”. We find a confusion matrix with the following equation:

TPR =
TP

P
=

TP

TP + FN

In our experiment, we found the sensitivity score of 0.9. Which is very high
enough and a good score.

• Specificity: Specificity refers to when we get our prediction negative then
how often our prediction is correct. We can find specificity with the following
equation

TNR =
TN

N
=

TN

TN + FP

In our experiment, we got a specificity score of 1.0. Which means if we get a
negative result then all the time our prediction is correct.

• False Positive Rate: False positive rate shows if we get a negative prediction
then what is the probability of being our prediction is wrong. The less the
value is the better our model. We can find False positive rate using this
following equation:

FPR =
FP

N
=

FP

FP + TN

In our experiment, the false positive rate was 0.0. That means if we get a
negative prediction there is 0% chance of getting the wrong output.

• Precision: In general, it refers to how ”precise” the classifier is when pre-
dicting positive instances. In other words, how often our positive output is
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correct. The higher the number the better the model is.

PPV =
TP

TP + FP

We got a precision score of 1.0 in our experiment.

• Kernel matrix: The kernel matrix shows how the support vector machine
algorithm can draw the margin to differentiate the classes. In this experiment,
we can see our kernel matrix can label the classes properly most of the time.

Figure 5.2: QSVM Kernel matrix on Classical computer

5.2 Result analysis of IBM quantum computer

At the next stage, we implemented and ran our algorithm on a real quantum device
IBM Q 14 Melbourne. This is a 14 qubit quantum computer developed by IBM.
The analysis of the result is given below:

Accuracy:

The accuracy we got was around 80%. Here is the necessary analysis of our exper-
iment:

• Confusion Matrix: In terms of Classification problem in machine learning,
the performance of a particular learning model can be visualized by a table
called confusion matrix table. In this table each row represents the instances
in a predicted class by the model and each column represents the instances in
an real class. With this relationship table we can calculate the performance.
In our experiment we found the following confusion matrix:
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Figure 5.3: Confusion matrix of classical 4 feature point experiment in Quantum
computer

• Sensitivity: Sensitivity refers if we get a positive outcome then how often
our prediction is correct. Higher the number the better our model is. It is also
known as ”Recall”.
While running on a real quantum device we’ve got a sensitivity score of 0.8.

• Specificity: Specificity defines when we get our prediction negative then how
often our prediction is correct. In our experiment on the quantum machine we
got specificity score of .80 . Which means if we get a negative result then all
the time our prediction is correct.

• False Positive Rate: False positive rate shows if we get a negative prediction
then what is the probability of being our prediction is wrong. The less the
value is the better our model. After running on a Quantum computer our FPR
was 0.20. Which means if we get a negative prediction there is 20% chance of
getting the wrong output.

• Precision: In general, it shows how ”precise” the classifier is when predicting
positive instances. In other words, how often our positive output is correct.
The higher the number the better the model is. We got a precision score of
0.80 in our experiment while running in a real quantum computer.
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• Kernel matrix: The kernel matrix shows how the support vector machine
algorithm can draw the margin to differentiate the classes. In this experiment,
we can see our kernel matrix can label the classes properly most of the time.
The kernel matrix has been shown in the following Figure 5.4

Figure 5.4: Kernel matrix on quantum computer

5.3 Result Comparison

As we can see from the analysis given above that the QSVM model was able to map
the data in real quantum device. Moreover our model was able to learn from the
data set and could classify new data as well. The accuracy comparison is given in
the following table:

Device type Accuracy

Simulation on classical computer 94.99%

IBM Q 14 Melbourne 80.04%

Table 5.1: QSVM accuracy on quantum and classical device

It turns out the quantum computer has less accuracy than the classical device.
Which is completely valid and expected though. It happens due to the noise issue in
a quantum computer. Removing noise in a quantum computer is one of the biggest
challenges so far. Apart from the noise issue, we have implemented our QSVM
model and recognise the patterns in both real and classical machine.
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5.4 Limitations

We have found a few limitations of this experiment as well. First of all, as shown
in the result the accuracy on the quantum computer is around 15% less than a
classical computer. Here it is good to mention that the classical simulation is also
implemented by mapping in quantum way. A general normal SVM would have
performed better than this and by using kernel tricks it possible to boost up accuracy
as well. Second of all, In this model, we have incorporated only four feature points
for the four-qubit system. We have reduced the dimension of data by principal
component analysis. In real life problems, there are more data points and we may
need more qubit to map those. In addition to that, the model runs at the circuit
level in the quantum computer. Therefore, it is not possible to modify on the fly or
check each shot.
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Chapter 6

Conclusion

6.1 Conclusion

Throughout our thesis work we tried to show the possibility of learnability in Quan-
tum Computers. The big challenge was to map our classical data on quantum
computer. We have experimentally implemented the QSVM on near term device
that have access right now. Where we found the accuracy gap between the simu-
lation and real quantum device and it happened due to the computational error.
Which might be minimized in the future. However, the bridge that we tried to build
between theoretical hypothesis and application layer is one of the core achievement
of this work.

6.2 Future Work

Quantum computing is a growing and active research field. The technology is im-
proving gradually as well as our theoretical research. Thus, there are a lot of scopes
for future work in this field.

Noise in Quantum Computer is one of the biggest challenges right now. It
also relative to the implementation of our quantum understanding which is based
on physics. There are many elements that can cause noise. One of the main cause
is the noise is caused by the very subtle measurements at the hardware level. The
quantum computers needed to be cooled down at the coldest temperature in this
universe. Slight vibration can cause a huge amount of noise in result. This is a
challenge for the hardware designers to reduce the noise. If its possible to reduce
the noise, the quantum algorithms can be significantly feaster and more accurate.

So far we have a decent number of qubits in the quantum computers. But to
exceed the classical computer, there is an importance of increasing the number of
qubits. If the number of qubits increases in the future, it will be more challenging to
implement these algorithms. Therefore, there is room for improving these algorithms
for large scale quantum devices.
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