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Abstract

The purpose of cancer genome project is to classify the genetic variations that

are related to clinical phenotypes. However, some studies showed that some

specific cellular pathways are targeted by the cancer mutations genes. But a

few of the pathway genes are mutated in each patient. In most approaches,

only the existing pathways are considered and the topology of the pathways

are ignored. Consequently, new attempts have been targeted on classifying

significantly mutated subnetworks and combining them with cancer survival.

We had proposed a novel bioinformatics pipeline to identify quantitative

classification of the breast cancer genome to verify if the steps will be working

or not on real dataset. We have generated a mutation matrix from the

collected dataset and calculated pairwise gene similarity. After that, we

have also done clustering of the identified cancer gene network, which may

help cancer patients by suggesting optimal treatments. We hope our pipeline

can also be used for other types of mutation data analysis.

Keywords: Cancer; gene subnetworks; gene similarity; pathways; clus-

tering; bioinformatics.
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Chapter 1

Introduction

Most of the time cancer occurs for somatic mutations that gather in the

genome over the lifetime of an individual. It occurs with the assistance

from epigenetic and transcriptomics modifications. In past years, DNA se-

quences has changed the way toward recognizing somatic mutation in cancer

genomes. Driver mutations are the hereditary changes that partake in cancer

development and other than these transformations are known as passenger

mutations. The significance of DNA sequencing helped biologists to quan-

tify single-nucleotide changes with speed and precision [1]. These looks into

demonstrated that, the typical cancer genome may have hundreds to thou-

sands of somatic mutations. Cancer cells contain extensive quantities of rel-

atively uncommon mutations, which are not as a rule found in human body.

For recognizing driver mutations, genome-wide studies are vital for sequenc-

ing various patients. Single Nucleotide Variants (SNV) are enhancement in
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a single nucleotide without any imperatives of recurrence and may rise in

substantial cells are most basic among the hereditary varieties. These are

considered as the ’building blocks’ of DNA. The presence of SNV is found in

a gene, can coordinate impact in infections. Copy Number Variations (CNV)

are two duplicates of every gene found in human body. One duplicate of gene

is conveyed from each parent. CNV can likewise be in charge of cancer [2].

Cancer happens when the average rule of cells is meddled. For breast cancer,

the genetic changes are gotten in the midst of the lifetime of an individual

and impact certain breast cells. These movements are known as somatic

mutations. One of the fundamental steps in cancer sequencing is to iden-

tify the driver mutations that are responsible for cancer. Single Gene-Level

Analysis is a stage for the sequencing. Pathway and Network level Analysis

is progressively e↵ective. The advantage of pathway examination is that,

results got for di↵erent related datasets can be thought easily, as pathway

data can guarantee the understanding of the information is done in a typical

element space. This is a way to test relationship among transformation and

phenotype at the pathway level has been executed in di↵erent examinations.

There are various methods that can detect mutually exclusive genomic al-

teration patterns in cancer genomic datasets. De Novo Driver Exclusivity

(Dendrix), Mutated Driver Pathway Finder (MDP Finder), PARADIGM,

Mutex, Mutually Exclusive (ME) are some types of methods for detecting

mutually exclusive genomic alteration patterns in cancer genomic datasets.

For our research purpose, we have used two datasets; one is Discovery dataset

2



and the other is Validation dataset. At first, we retrieved gene names and

generated mutation matrix generation. After that, we calculated pairwise

weighted gene similarity. Lastly, we have used K-Means clustering algorithm

for clustering gene network using weighted values.
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Chapter 2

Background

2.1 Cancer and DNA sequencing

Cancer happens for somatic mutations in the Deoxyribonucleic acid (DNA)

sequence of an individual that occurs during the lifetime of person. DNA

replication is the main cause for the development of the mutations which

happens as cells develop and split into two subsidiary cells. Mutations arise

because errors in DNA replication process and determine the DNA in the

daughter cells from the parental cells. A major goal of cancer genome se-

quencing is to establish functional links between genetic variations and hu-

man diseases. Critical diseases like cancer may often drive by inconstant

changes in multiple genes in pathways. Modules or sub networks in bi-

ological networks helps to isolate systems with disease related topics. A

milestone paper integrates gene expression marks with protein–protein inter-
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actions (PPI) to discover predictive modules of cancer result. Most of the

time cancer occurs for somatic mutations that gather in the genome over the

lifetime of an individual. It happens with the help from epigenetic and tran-

scriptomics alterations. In past years, DNA sequences has transformed the

process of identifying somatic mutation in cancer genomes. Driver mutations

are the genetic mutations that participate in cancer development and other

than these mutations are known as passenger mutations. Additionally, driver

mutations are caused by high frequency of passenger mutations which are in-

appropriate for progression of cancer phenotype. Entire genome sequencing

uncovers somatic mutations of di↵erent kinds, while sequencing distinguishes

coding mutations at a lower cost, however does not permit the analysis of

non-coding regions. The importance of DNA sequencing helped biologists

to measure single-nucleotide mutations with speed and accuracy [1]. These

researches showed that, the typical cancer genome might have thousands of

somatic mutations. Cancer cells contain large numbers of comparatively rare

mutations, which are not usually seen in human body. For identifying driver

mutations, genome-wide studies are necessary for sequencing numerous pa-

tients. Though DNA sequencing technology has advanced in recent years, it

still faces numbers of complications. Genome sequences reveal all types of

somatic mutations. There are three major challenges found in cancer genome

sequencing. Firstly, depending on the presence of intra-tumor heterogeneity,

somatic mutations from the sequence reads are generated by high through-

put technologies. Secondly, recognizing the relatively small number of driver
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mutations that are responsible for the growth of cancer from large num-

ber of driver mutations which are not responsible for the cancer phenotype.

Lastly, the challenge of determining the biological processes that are altered

by somatic mutation. The quick developments in high throughput DNA se-

quencing technologies and their application helps to analyze the resulting

data.The recent accessibility of extensive protein systems gives one means

to in any event mostly address these di�culties. Utilizing protein–protein

connection systems, the yeast two-hybrid framework, or mass spectrometry,

various methodologies have been exhibited for extracting pertinent subnet-

works dependent on reasonable articulation examples of their genes or on

preservation of subnetworks over di↵erent species. Each subnetwork is sug-

gestive of a particular practical pathway or intricate, yielding well known and

novel pathway speculations in life forms for which adequate protein associa-

tion information have been estimated. Substantial protein systems have as

of late turned out to be accessible for human empowering new open doors

for explaining pathways engaged with real illnesses and pathologies [3].

2.2 Single Nucleotide Variants

Single Nucleotide Variants (SNV) are diversification in a single nucleotide

with no constraints of frequency and may emerge in somatic cells are most

common among the genetic variations. These are considered as the ‘build-

ing blocks’ of DNA. The presence of SNV in the DNA of an individual is
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a common consequence. When the existence of SNV is found in a gene,

it can direct influence in diseases. SNV can a↵ect gene function. Most of

the time SNV does not have important e↵ect in the development of human

health. SNV is responsible for the variations among people and the familial

characteristics like hair color, eye color and other external characteristics.

Sometimes the drug e↵ect di↵erences are also influenced by SNV. SNV may

also cause mutations like synonymous and nonsynonymous. Single nucleotide

polymorphism (SNP) is the least complex type of DNA variety among peo-

ple. These basic changes can be of progress or transversion type.They might

be in charge of the assorted variety among people, genome advancement, the

most well-known familial attributes, for example, curly hair, inter-individual

contrasts in medication reaction, and common diseases like diabetes, hyper-

tension, and mental issue. SNPs may change the encoded amino acids or can

be quiet or just happen in the non coding areas. They may impact adver-

tiser movement (quality articulation), delegate Messanger Ribonucleic acid

(mRNA) adaptation , and subcellular confinement of mRNAs or potentially

proteins and henceforth may deliver illness. In this manner, distinguishing

proof of various varieties in qualities and examination of their belongings

may prompt a superior comprehension of their e↵ect on health of a person

[4, 5, 6].
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2.3 Copy Number Variations

Copy Number Variations (CNV) are two copies of each gene found in human

body. One copy of gene is carried from each parent. There are several

cases where copy number of a specific gene varies from person to person.

The person can have only one copy or more than two copies of a specific

gene. There are also cases like one or two copies of genes are missing. These

di↵erences are stated as genetic di↵erences and they are known as CNV.

CNV can be responsible for diseases. All mutations are not responsible for

the damage of human cells. Copy number variation (CNV) of DNA sequence

is practically noteworthy yet still cannot seem to be completely learned.

CNVs contain many qualities, sickness loci, useful components and segmental

duplication [2].

CNV results three types of mutation sequence in large DNA segments.

They are- insertions, deletions and duplications. These variations can work

positively sometimes. Extra copy of gene create overflow in the gene. That

means extra copy of gene can develop task for adoption. The remaining

copies also perform the original task [7].

2.4 Breast Cancer

There are a few genes in our body that controls essential cell functions, for

example, cell development, cell growth and cell division. The cell functions

should be directed carefully to guarantee that DNA is copied appropriately.
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At the point when these genes are done with mutation, it influences the

cell functionalities. Therefore, the problem is DNA is not fixed and cell

development and division becomes tough to control, which gets the form

of tumor. Cancer happens when the typical guideline of cells is interfered.

For breast cancer, the hereditary changes are gotten amid in a lifetime of a

person and influence certain breast cells. These progressions are known as

somatic mutations. Moreover, hereditary transformations present in all cells

in the body can also induce the danger of breast cancer. These hereditary

changes are known as germline mutations. The main di↵erence between

somatic mutation and germline mutation is that germline transformations

are acquired from parents [8].

2.5 Various types of Breast Cancer

Depending upon how cancer cells react to various receptors, from an indica-

tive perspective, breast cancer growth has been separated into unique types.

This division guarantees that each kind of breast cancer has been treated

with various chemotherapy and di↵erent types of hormone treatments.

2.5.1 Human epidermal growth factor receptor 2 (HER2)

Sometimes, the cells that contain tumor produces overabundance of HER2

protein. This kind of cancer growth becomes moderately quick in comparison

with di↵erent sorts.
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2.5.2 Hormone receptor-positive (ER+& PR+)

A hormone-receptor-positive HR+ tumor is a tumor which contains cells that

express receptors for explicit hormones. The term most ordinarily refers to es-

trogen receptor positive tumors and likewise incorporate progesterone recep-

tor positive tumors. Estrogen-receptor-positive tumors have receptors that

enable them to utilize the hormone estrogen to develop and these rely upon

the presence of estrogen for progressing expansion. Moreover, Progesterone-

receptor-positive tumors are sensitive to the hormone progesterone, and the

cells of these kind of tumor have receptors that enable them to utilize this

hormone to develop. Around 80% of all breast cancer growths are supposed

to be ER+. Out of these, around 65% develops in response of progesterone

hormone, which is known as PR+.

2.5.3 Triple positive and triple negative

Triple positive are usually types of cancer that are HER2+, ER+, PR+. For

triple negative, it is HER2-, ER-, PR-.

2.6 Subtypes of Breast Cancer

2.6.1 Luminal A

Luminal A breast cancer is the very first type of breast cancer mentioned in

past subsection (ER+ and PR+). In any case, it’s HER2-and has low dimen-
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sions of the protein Ki-67, which maintains the speed of cell development.

Luminal A malignant growths develop gradually and have the best prognosis

[9].

2.6.2 Luminal B

Luminal B breast cancer growth is also ER+ and PR+, and either HER2+

or HER2-. The distinction with Luminal A being, in Luminal B there are

abnormal amounts of Ki-67.Luminal A for the most part becomes marginally

quicker than Luminal A malignant growths and have somewhat more terrible

guess than Luminal A [9].

2.6.3 Triple-negative/basal-like

Basal-like breast cancer refers triple negative (ER-, PR-, HER2-).This sort of

cancer likewise is progressively seen among more young people and African-

American women [10, 11]

2.6.4 HER2-advanced

This subtype of breast malignancy is ER-and PR-yet HER2+. HER2-advanced

tumors becomes quicker than luminal cancer growths and can have a negative

prognosis [12].
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2.6.5 Normal like

This subtype of breast disease resembles Luminal A subtype, ER+ and PR+,

HER2-, and has low dimensions of the protein Ki-67. Moreover, it is prog-

nosis marginally bad than Luminal A.
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Chapter 3

Mutation Analysis Approaches

There is a lot of information to distinguish driver genetic mutations from

the passive passenger mutations. The common steps are to analyze the ge-

nomic alterations over a large number of patients where the variations usually

correspond to non-random mutations. However, there is another complex ap-

proach to identify genes with driver mutations which helps to discover genes

with a significantly high mutation frequency over a large number of patients.

In the following sections, we will discuss about single gene level, pathway

and network level of mutation analysis approaches.

3.1 Single Gene-Level Analysis

As discussed before, one of the fundamental steps in cancer sequencing is

to identify the driver mutations that are responsible for cancer. In spite of
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the developmental phases which gives us significant advantage generating the

output. However, other than mutation frequency, a number of characteristics

of mutation rate could a↵ect sequence contexts, mutation types, mutation-

specific, gene-specific features scores that evaluate functional impact and so

on. Therefore, recently a number of frequency-based methods developed

which get a more absolute Background Mutation Rate (BMR) estimation

by adopting one or more of these features.For example, both Mutational

Significance in Cancer MuSiC [13] and MutSigCV [14] sample-specific rates

of mutations and employ the types of mutations. MutSigCV also allows

addition of gene-specific features like the replication timing and expression

level.Mutational Significance in Cancer (MuSiC) for these extensive data sets.

The coordination of analytical activities in the MuSiC structure is generally

relevant to a wide arrangement of tumor types and o↵ers the advantages

of automation and additionally institutionalization. Thus, we portray the

computational structure and factual underpinnings of the MuSiC pipeline

and show its execution utilizing 316 ovarian malignancy tests from the TCGA

ovarian disease venture. MuSiC e↵ectively a�rms many expected outcomes,

and recognizes a few conceivably novel roads for disclosure[13].

3.2 Pathway and Network level Analysis

Contrasted with breaking down hereditary transformation information at sin-

gle quality level, pathway and system examinations can extricate more data
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as these strategies manage di↵erent qualities in a similar pathway or system,

so the likelihood that an atomic occasion will pass the measurable edge is

expanded and the quantity of speculations tried are diminished [15]. Another

advantage of pathway examination is that outcomes got for various related

datasets can be thought about e↵ortlessly, as pathway data can guarantee

the understanding of the information is done in a typical element space [16].

This way to deal with test relationship amongst transformation and pheno-

type at the pathway level has been executed in various investigations [17].

An ongoing report led a pathway-level examination to foresee the general

survival of Ulcerative Colitis (UC) patients [18]. They found that 35 out

of 103 examples had transformations in no less than one quality in Tumor

Protein P53 (TP53) and PIK3CA, which comprises of 16% and 9% of the

aggregate number of changes recognized in the examination. The creators

additionally found that around 65% of the patients had CNV changes.

Pathway level investigation can expand the measurable capacity to distin-

guish altogether transformed pathways in particular growths and has better

organic translation. Be that as it may, the approach of recognizing path-

ways being changed in extensive quantities of patients has its impediments

as well, on the grounds that exclusive existing pathways are considered, over-

looking the topology of the pathways. Besides, the pathways are examined

in detachment however they communicate in bigger systems, which may dis-

regard numerous gatherings of interfacing qualities that are not in known

pathways but rather have critical relationship with clinical phenotypes [19].
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As of late, techniques to distinguish transformed subnetworks among ma-

lignancy genomes have been presented. They proposed a system construct

approach situated in light of the speculation that cell systems are partic-

ular and have between associated proteins that perform particular natural

capacities [20]. The creators utilized a bound together atomic association

arrange comprising of both protein-protein collaborations and pathways to

play out an incorporated system investigation for distinguishing applicant

driver changes. Their approach was a mix investigation of grouping changes

and duplicate number modifications.

Furthermore, another approach discovered subnetworks by considering

that changes in the subnetwork are corresponded with the clinical parameter

of survival time of patients [19]. They introduced a calculation called HotNet

to distinguish essentially changed subnetworks controlled by the transfor-

mation recurrence of individual qualities alongside the associations between

them. They considered the change as a wellspring of warmth on the system

and extricated the ’hot’ hubs. The criticalness of the subnetworks was com-

puted utilizing both the topology of the systems and the recurrence of trans-

formation of the qualities. An alternative proposal was presented which is a

changed variant of the beforehand said Hotnet calculation was named Hot-

net2 [21]. They utilized this refreshed calculation to examine a Pan-Cancer

dataset of 3281 examples from 12 growth writes. The creators distinguished

altogether transformed subnetworks with referred to pathways, for example,

TP53, RTK, PI3K, and so forth. Nonetheless, the creators noticed that a

16



few qualities with high individual change scores were missing from the sys-

tem investigation comes about and expressed this is because of the absence

of information and false negatives in the broke down information.

One key restriction of the current subnetwork-based methodologies is that

they don’t allot the same changed qualities into various subnetworks in spite

of the fact that covered subnetworks are conceivable. This propels us to ap-

ply two system based grouping calculations to examine bosom malignancy

CNV transformation information for recognizing altogether changed subnet-

works. The recognized subnetworks can be utilized to test the relationship of

transformation status of the qualities in the subnetworks with bosom growth

patients’ survival. The main approach is called HotNet2 [22] while the other

approach is called ClusterOne [23], which has not been connected to examine

tumor change information previously, however was produced and connected

to recognize covered protein buildings in protein collaboration systems. We

embraced this approach since a quality can be doled out to di↵erent sub-

networks and qualities are generally engaged with numerous buildings and

pathways. We grew new change investigation pipeline by considering sys-

tem topology for estimating quality combines transformation comparability

to induce the altogether changed subnetworks [24].
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3.3 Comparative Analysis of Di↵erent Approaches

Table 3.1: Comparative Analysis

Method Category Description Data Type Technique

Mutual

Exclu-

sivity

Modules

(MEMo)

[25]

Prior

Knowledge

- Based

determines the applicant

driver subnetworks with

properties (1) the genes

that are part of driver

pathway are repeatedly

modified among various

patients;(2) the genes have

a tendency to take part

in similar pathway or bi-

ological process; and (3)

the modified genes inside

the driver pathway are

mutually exclusive

Somatic

Muta-

tion data

and Copy

Number

Alter-

ations

(CNAs)

Bayesian

Method and

Statistical

Analysis (STAC,

GISTIC, CMDS,

DiNAMIC)

18



Continued from Previous Page

De Novo

Driver Ex-

clusivity

(Dendrix)

[26, 27]

De Novo

Identifica-

tion

algorithm to identify driver

genes with high scopes and

high specificity

Mutation

Data

Markov Chain

Monte Carlo

(MCMC) algo-

rithm

Mutated

Driver

Pathway

Finder

(MDP

Finder)

[27]

De Novo

Identifica-

tion

Using stochastic search al-

gorithm and an exact model

find mutated driver path-

way

Submatrix

Problem

Binary Linear

Programming

(BLP)

Genetic

Algorithm

(GA) [27]

De Novo

Identifica-

tion

maximize more common

and adjustable weight

functions

Gene Ex-

pression

Data

Statistical Test

(ANOVA F-

test,Student

t-test, Paired

sample t-test

etc.)
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Continued from Previous Page

Mutex [28] Combination

of Prior

Pathway

Knowl-

edge and

Statistics

a method which determines

groups of mutually exclu-

sive modified genes having

typical succeeding target

Interaction

Database

Greedy Al-

gorithm and

Permutation

Test

Mutually

Exclusive

(ME) [28]

De Novo

Identifica-

tion

it is used for searching can-

cer modification data and

find faulty gene sets

Gene Ex-

pression

Data

Statistical Test

(ANOVA F-

test,Student

t-test, Paired

sample t-test

etc.)

Pairwise

Search

for Mu-

tational

Pattern

(PSMP)

[29]

Simple

Mutual

Exclu-

sivity -

based

it is the basic for under-

standing various methods

for identifying driver path-

way

Somatic

Mutation

Bayesian

Method
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Continued from Previous Page

Identifying

Mutated

Core Mod-

ules in

Cancer

(iMCMC)

[30]

Network-

based for

De Novo

Identifica-

tion

to discover various mutated

core modules present in ini-

tiation of cancer formation

pathways

Somatic

Mutation,

CNAs and

gene ex-

pressions

Bayesian

Method & Sta-

tistical Analysis

(STAC, GIS-

TIC, CMDS,

DiNAMIC)

Co-

occurring

Mutated

Driver

Pathway

(CoMDP)

[31]

Cooperative

Pathway

a way to explore combi-

nation of di↵erent pathway

and if they are concurrently

mutated in huge group of

patients

Simulation

Data and

Biological

Data

Clustering (Can-

cer Correlation

Clustering [32])

PARADIGM

[33]

Network-

or

Pathway-

Based

Approach

a method for discovering

constant pathways in cancer

CNVs

and Gene

expression

Bayesian

Method &

Statistical

Test(ANOVA

F-test,Student

t-test, Paired

sample t-test

etc.)
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Continued from Previous Page

DriverNet

[33]

Network-

or

Pathway-

Based

Approach

identifies driver mutations

evaluating their e↵ect on

mRNA expression

Somatic

Mutation

Statistical Test

(SOMAT)

HotNet

[34]

Interaction

Network-

Based

Method

an algorithm to discover no-

tably modified subnetworks

present in a huge interaction

network

Mutation

and

Known

Pathways

Heat Di↵u-

sion process

and Statistical

Test (Com-

binations of

Mutually Exclu-

sive Alterations

(CoMET))

Gene

Set En-

richment

Analysis

(GSEA)

[35]

Pathway

Analy-

sis and

Combina-

tions of

Mutations

a technique to sort the mu-

tated gene list and evalu-

ates whether a pre-defined

set of genes has more

high-ranking genes than ex-

pected

Mutation

and

Known

Pathways

Statistical Test

(CoMET)
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3.4 Motivation

Somatic mutation in DNA sequence is mainly responsible for cancer. Can-

cer genome sequence is necessary for establishing functional links between

genetic variations and human diseases. A type of cancer mutation named

driver mutation is responsible for the growth and survival of cancer. On the

other hand, passenger mutations do not have any impact on cancer. Since

genes (proteins) for the most part interact with di↵erent genes to execute

their capacities, networks can be measured and separated into subnetworks.

Our thesis proposed a new analysis pipeline for identifying mutated subnet-

works in breast cancer genome. We utilized one existing clustering algorithm

to implement the pipeline. One obvious di↵erence from the existing meth-

ods from our method is, our method is a weighted method. The weighted

values are used for clustering of the gene networks. Weighted methodology

guarantees that the score for every gene are distributed depending on their

mutation frequency over every one of the samples. That is, genes that are

responsible for cancer are connected with each other. So it is easier to iden-

tify the responsible genes in a subnetwork which is more precise than the

unweighted approach. The calculated weighted values are used for K-means

clustering algorithm.
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Chapter 4

Data Analysis and

Methodologies

For locating significantly mutated and clinically relevant subnetwork we de-

signed a pipeline as shown in Figure [3.1]. It describes our collection of

two sets of data and then pre-processing the datasets for clustering. Finally

combining the two result we will compare them.

4.1 Data Analysis

Qualitative classification of the breast cancer genome requires gene inter-

action networks and patient specific mutations. We have collected CNV

datasets for mutation data from a Canada-UK based project known as METABRIC

(Molecular Taxonomy of Breast Cancer International Consortium) where
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Figure 4.1: Analysis Pipeline
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they have over 2000 clinically clarified foremost fresh-frozen breast cancer

specimens collected from their tumor banks [36, 37]. These datasets classify

the breast tumors into more subcategories. In the first place, location of chro-

mosomes, paired DNA and RNA in a dataset of 994 samples were evaluated.

This data set of 994 female patients is represented as ‘Discovery’ dataset.

Another group of 990 data set samples is represented as ‘Validation’ set.

The basis of ‘Validation’ dataset was to test against the ‘Discovery’ dataset

and to verify whether the accuracy was su�cient. The dataset is composed

of chromosomes, their starting location, ending location and the length of the

CNV. The chromosomes were given numbers based on their location. More-

over, four types of discrete somatic conditions existed: GAIN, AMP, HETD

and HOMD. GAIN and AMP had been converted to gain from these somatic

discrete and HETD and HOMD had been converted to loss. Therefore, the

CNV calls were represented as 1 and -1 for gain and loss accordingly.

4.2 Methodologies

4.2.1 Mutation Matrix Generation

Our first target was to get the location wise names of the genes as our output

from the collected two datasets. For the ‘Discovery’ set there were a total

number of 131956 calls and for the ‘Validation’ set there were 137896 num-

ber of calls in total. Therefore, to get the location wise names of the genes

for ‘Discovery’ set and ‘Validation’ set, we needed the chromosome number,
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their starting location and ending location from the data sets. Thus, for

retrieving the CNV specific genes we called ’biomaRt’ library on R and read

the csv files of the two datasets separately [38]. Moreover, we have also used

a dataset for human genes from ’Ensembl’ database known as ’hsapiens gene

ensembl’ [38]. After that we have set ’NULL’ for no genes present in any

chromosome and ’NA’ was set for the genes not located in any chromosome

and the rest of them were the name of the genes. We wrote the csv files

for ‘Discovery’ set and ‘Validation’ set as ‘Result Discovery’ set and ‘Re-

sult Validation’ set respectively. Finally, we found on ‘Result Discovery’ set

and ‘Result Validation’ set that on some locations in the chromosomes there

were no genes present and on some there were multiple genes present and

some of them were not available. We filtered out the ‘Result Discovery’ set

and ‘Result Validation’ set drawing out the samples which were ’NULL’ and

’NA’. In the ‘Result Discovery’ set the total number of calls were 165776 and

after filtering out the ‘NULL’ and ‘NA’ there were 127188 calls. On the other

hand, in the ‘Result Validation’ set the total number of calls were 173750

and after the omission the total number of calls were 133499 calls. Further-

more, the same genes were found multiple times under one Metabric ID and

under di↵erent Metabric IDs the same types of genes were found. But we

needed to find the CNV Gain and CNV Loss for unique genes and for each

unique Metabric IDs. Thereafter, for getting a matrix of rows for unique

Metabric IDs, we turned the same Metabric IDs found multiple times for

same genes into unique Metabric IDs. Likewise, to get columns in the same
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matrix for unique genes, we turned the same genes found multiple times un-

der one Metabric ID into each unique gene. The CNV types for each gene in

each Metabric IDs were Gain and Loss. If the CNV type was Gain the value

was 1, if the CNV type was Loss the value was -1 and for neither Gain nor

Loss it was set as 0. After this, we saved these csv files as ‘Matrix Discovery’

set and ‘Matrix Validation’ set. In the ‘Matrix Discovery’ set we found 790

unique genes for 994 Metabric IDs. Similarly, in the ’Matrix Validation’ set

790 were unique genes and 990 were Metabric IDs. The total number of Gain

and Loss calculated was 111460 and 54316 respectively for ‘Matrix Discovery’

set. Similarly, we have also calculated the total number of Gain and Loss for

‘Matrix Validation’ set which are 113213 and 60537 accordingly. Besides, we

created a line graph for the total gain and total loss in each Metabric ID for

the both sets as shown in Figure[4.1] and developed a bar chart total gain

and total loss for both the sets as shown in Figure [4.2].We also generated

two curved graphs for Top 200 gain values and Top 200 loss values for both

‘Matrix Discovery’ set and ‘Matrix Validation’ set as given in both Figure

[4.3] and Figure [4.4].

4.2.2 Pairwise weighted gene similarity calculation

Our next step after mutation matrix generation was to calculate the pairwise

weighted gene similarity. For similarity calculation, at first, we looked for

suitable similarity equation and found cosine similarity equation (3.1) [39].

In this equation m and n represents the genes and t represents their mutation
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frequencies. We have two types of mutation frequencies, one is gain (k=g)

and the other is loss (k=l).The purpose of finding the mutation frequencies is

to have a gene-specific mutation score measure so that we can use the score

as the weight for each interaction in the network.

cos sim(m, n) =
Õ

k2g,l tmktnkqÕ
t(mg)2

qÕ
t(nl)2

(4.1)

So, to calculate the similarity at first we calculated the total number of

gain and total number of loss for each gene for both ’Matrix Discovery’ data

set and ’Matrix Validation’ data set and made two csv file named as ‘Matrix

Discovery Sum Gain Loss’ and ‘Matrix Validation Sum Gain Loss’. After

that we called the csv files on R separately and put the above equation inside

loops to get the output matrix as csv files named ‘Similarity Genes Discovery’

and ’Similarity Genes Validation’for ‘Matrix Discovery Sum Gain Loss’ and

‘Matrix Validation Sum Gain Loss’ respectively. We have set the loop in such

a way that each gene will be compared with all other genes in the matrix. The

numerator of the equation is the product of the total gain of two di↵erent

genes and in the denominator, it is the product of the square root of the

squared of total gain and total loss of the same gene. Since we have two

types of mutation frequencies, we have used this equation in such a way that

the similarity of the genes are calculated considering both total number of

gain and total number of loss of each gene. The similarity calculation of each

gene with every other genes in the datasets is done as shown in Figure [3.2].
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Figure 4.2: Sample Representation of Gene Similarity Calculation

Finally, after calculation we have found out that the total number of data in

both the output files are same which is 108264. The similarity values of the

paired genes will be used as input for the clustering of gene network.

4.2.3 K-Means Process

We have used a centroid based hard clustering type of algorithm known as

K-means for clustering of gene network. It is an iterative clustering algo-

rithm that derives the notion of similarity from how close a data point is

to the centroid of the cluster. This method divides the dataset into unique

homogenous clusters whose observations are like each other yet not the same

as other clusters and the resultant clusters do not overlap with each other

[40]. This algorithm consists of two di↵erent steps. Firstly, the in advance

fixed values of k as cluster centre is chosen randomly. Thereafter, in the

second step, each data object is taken to the closest centre after the cal-

culation of the distance between each data object and all k cluster centre
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[40, 41]. Generally, the distance between each data object and the center of

the clusters are determined by Euclidean distance. At the point when every

one of the data objects are incorporated into certain clusters, the initial step

is finished and an early grouping is finished. After that, recalculation of the

mean of the clusters’ center of each clusters which were formed early is done.

This iterative procedure proceeds over and over until the criterion function

becomes the minimum [40].

An improved k-means algorithm has been proposed by the authors in 2010

from the above explained method [40]. In the improved k-means algorithm

the authors’ idea was to set two straightforward data structures to hold the

names of the clusters and the distance between all the data object and closest

cluster during each iteration which can be used in the next iteration. They

calculated the distance between the present data object and the new cluster

centre. After that, if the calculated distance is smaller than or equivalent to

the distance of the old cluster centre, the data object remains in it’s previous

iteration cluster.[40]

4.2.4 Identification of Mutated Subnetworks Using K-

Means

After finding the similarity values of both ‘Matrix Discovery Sum Gain Loss’

dataset and ‘Matrix Validation Sum Gain Loss’ dataset, we saved it as CSV

file named ‘SimilarityGenesDiscovery’ and ‘SimilarityGenesValidation’. As
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mentioned above, in the output files of similarity calculation there were two

columns for Genes and one column was for the similarity values. These

similarity values are weighted values. This weighted methodology guarantees

that the score for every gene are distributed depending on their mutation

frequency over every one of the samples. The weighted values in the datasets

were less than 1 and those values which were equal to 1 are the comparison

that occurred with itself. We have seen that both the datasets were too

large and we did not have the system for having the whole calculation on

process. Thus, we have selected the genes which have got most similarities.

From the discovery dataset we considered the genes whose weighted values

were greater and equal to 0.9 and less than 1 and finally selected 19462

CNV data. We made a dataset consisting of these 19462 CNV datas and

named it ‘topdiscovery’ and saved it as a csv file. Next, we made the dataset

into matrix form and found 7763 genes by 4375 genes and their weighted

values and saved it as a csv file named as ‘Similarity disM’ We used two

libraries on R named ‘tidyr’ and ‘dplyr’ to create this matrix format from

the column wise values. Since our dataset is too large we added a new row

and spread the columns into numeric matrix and saved a new CSV file named

‘Similarity disM’. After that, we have omitted the ‘NA’ values and replaced

it with ‘0’. Finally, we used K-means algorithm setting the centres of the

clusters to ‘10’ and drew a plot as shown in Figure [4.5]. Likewise, from the

validation dataset we selected 19010 considering the genes whose weighted

values were greater and equal to 0.9 and less than 1 and created a csv file
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named ‘topvalidity’. Hereafter, we have followed the same procedure as we

did for the discovery dataset using the two libraries named ‘tidyr’ and ‘dyplr’

to create matrix format from the column wise values. We found 6960 genes

by 4416 genes with their weighted values and saved the dataset as csv file

named as ‘Similarity valM’. Similarly, we used K-means algorithm setting

the centres of the clusters to ‘10’ and drew a plot as shown in Figure [4.6] as

we did for discovery dataset.
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Chapter 5

Result Analysis

5.1 Mutation Matrix Generation

We found 790 genes in both ‘Discovery’ dataset and ‘Validation’ dataset

based on the individual CNV positions. We calculated the total number of

mutation frequencies in each Metabric Id individually for both the datasets

and created a line graph. We created a 2d line graph as shown in Figure [4.1]

where along the x-axis we considered the Metabric Ids of the patients and

along the y-axis we considered the total number of mutation frequencies. We

have curved the graph for both the datasets. For identification, gave blue

color for ‘Discovery’ dataset and red color for ‘Validation’ dataset. From the

graph, we have found out that for same gene the mutation frequencies can

be di↵erent for same patient. To clarify, the CNV type can be both Gain

and Loss in one gene for same patient and also for di↵erent patient.
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Figure 5.1: CNV Type For Discovery and Validation
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Furthermore, we created a bar chart as shown in Figure [4.2] to have a

graphical view of the total number of mutation frequencies of all Metabric Ids.

In the bar chart, for identification, we gave blue color to ‘Discovery’ set and

orange color to ‘Validation’ set. From the bar chart we have seen that the

total gain in ‘Discovery’ dataset is approximately 86% and in ‘Validation’

dataset the total Gain is around 92%. On the other hand, the total loss in

‘Discovery’ dataset is around 36% and the total Loss in ‘Validation’ dataset

is approximately 40%.

Figure 5.2: Total number of Gain and Loss For Discovery and Validation
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Besides, we have also generated two curved graphs for ‘Top 200 Gain’ as

shown in Figure [4.3] and ‘Top 200 Loss’ as shown in Figure[4.4] for both

datasets. From the graph ‘Top 200 Gain’ we found out that the Gain in

‘Validation’ dataset is greater than that of ‘Discovery’ dataset. Likewise, the

Loss in ‘Discovery’ dataset is smaller than that of ‘Validation’ dataset.

Figure 5.3: Top 200 Gain
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Figure 5.4: Top 200 Loss

5.2 Pairwise weighted gene similarity calcu-

lation

We have done the similarity calculation of 27,475 gene interactions for ‘Dis-

covery’ dataset and for ‘Validation’ dataset the similarity calculation is of

27,298 gene interaction. We have shown the similarity calculations in the

form of tables for both the datasets Table [4.1, 4.2]. From the table we can see

that for same type of pairwise gene similarity calculation the values in ‘Dis-

covery’ dataset and ‘Validation’ dataset are di↵erent. For example, for genes

CDH2 and CDH11 the similarity value for ’Discovery’ dataset is 0.72868235.

However, for these two genes the similarity value for ’Validation’ dataset is

0.758765207. These similarity values are weighted vales and thus our method
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is weighted. This weighted methodology guarantees that the score for every

gene are distributed dependending on their mutation frequency over every

one of the samples. We used these weighted values as inputs for clustering

of gene network where we used K-means clustering algorithm.

Table 5.1: Gene Similarity Calculation For Discovery Dataset

Gene 1 Gene 2 Similarity

A1BG GRB7 0.996778745

GRB7 HADHB 0.818046004

HADHB HADH 0.976888492

A1BG SMN1 0.690344383

ADA ADORA1 0.998731322

CDH2 CDH11 0.72868235

AKT3 CDKN1A 0.953360454

MED6 MED16 0.989825387

NR2E3 CDK9 0.999977251

SIGLEC14 TYROBP 0.893485695
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Table 5.2: Gene Similarity Calculation For Validation Dataset

Gene 1 Gene 2 Similarity

A1BG GRB7 0.99679647

GRB7 HADHB 0.915119363

HADHB HADH 0.828442649

A1BG SMN1 0.640730903

ADA ADORA1 0.999603489

CDH2 CDH11 0.758765207

AKT3 CDKN1A 0.958537211

MED6 MED16 0.994701142

NR2E3 CDK9 0.997438488

SIGLEC14 TYROBP 0.874449109

5.3 K-Means Clustering Algorithm

As mentioned before, the input datasets that we had was too large to work

with because of not having su�cient system to run those inputs we catego-

rized those input values from both the files into six categories and made two

new csv files. We have shown our collection of data based on the categorized

weighted values in Table 4.3. In the table we have shown the total number

of genes that we calculated for the weighted values in both the datasets.
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Table 5.3: Total number of genes per weighted value regions for Discovery
set and Validation set

Weighted Values Number of

Genes for Dis-

covery

Number of

Genes for Vali-

dation

between 1 and 0.9 54733 54113

between 0.9 and 0.8 14151 14478

between 0.8 and 0.7 9606 9950

between 0.7 and 0.6 7552 8142

between 0.6 and 0.5 6280 6527

less than 0.5 16010 15091

We know that K-means is an iterative algorithm which completes in two

steps. The first step is ’Cluster assignment’ step where the algorithm goes

through every one of the data points and relying on the nearest cluster centre,

the data points are assigned. The second step is known as ’Move centroid’

step where the centroids are moved to the means of the data points in a

cluster by K-means. As such, the calculation ascertains the average of the

considerable number of data points in a cluster and moves the centroid to

that mean area. This procedure is repeated until there is no adjustments

in the clusters. Here, we have taken the weighted values which were greater

and equal 0.9 and 1 as initial starting point selecting from the huge dataset.
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Figure 5.5: Cluster For Discovery Set

We used ’cluster’ library on R to get the output clusters. We have shown

the clusters of Discovery set and Validation set plotting on graph as shown

in Figure [4.5, 4.6]. We can see di↵erent colors of dots in the figures. Each

color refers to the centre of each cluster. There are 10 colors for 10 di↵erent

clusters. We have plotted a two dimensional scattered diagrams and it is

gene by gene plot. Because of huge dataset and the picture being zoomed

out the clusters are found closer to one another.
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Figure 5.6: Cluster For Validation Set
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Chapter 6

Conclusion and Future Plan

6.1 Conclusion

For our work, we have designed a novel bioinformatics analysis pipeline for

qualitative classification of the breast cancer genome and clustering of the

cancer gene network. We collected datasets which were divided into Dis-

covery dataset and Validation dataset from METABRIC. We retrieved gene

names for the cancer patients of the two sets. Next, we found out the to-

tal number of CNV mutations in each the genes for all the Metabric Ids so

that we can understand how much the cancer was spreading. After that, we

calculated the pairwise similarity of genes for clustering of the cancer gene

subnetwork. The advantage of our work is that the values we got after cal-

culation of similarity are weighted values. We used those weighted values as

input for identification of mutated subnetworks. Another advantage is that
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we have worked with datasets of original cancer patients. The disadvantage

of our work is that we used only one clustering algorithm named K-Means.

If we could have used more than one clustering algorithm for identification of

mutated subnetworks then our work would have been more precise. The anal-

ysis pipeline of our paper is a novel bioinformatics pipeline which has never

been used to identify qualitative classification of breast cancer genome. The

main purpose of our paper was to verify that if the pipeline is working or not

on the real dataset that we used. Moreover, we have used weighted analysis

which have never been used for clustering of the subnetwork. Weighted ap-

proach makes it easier to identify genes that are responsible for cancer. We

calculated mutation score for all the genes and used that score to find the

weighted values.

6.2 Future Plan

In the future, we will do statistical analysis and survival analysis based on

the cluster of the subnetwork and after that we will combine the results of

our two data sets and compare between them. Finally, we can say that if our

approach is working or not. Moreover, we hope to publish our paper after

completion of our research work.
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