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Abstract

The aim of this system is to identify potential cases of threats, and provide an early warning
or alert to such cases. This will be based on voice such as voice chat over telecommunication
networks or social media. The intended result will be achieved in three major steps. At first,
the conversion of speech to text from both real time audio recordings and from accent groups
will be applied using primarily IBM Watson’s Speech to Text. This will then be used to
identify possible trigger words or word patterns from a classified selection of threat-related
and negative words. And finally, the same audio source will be utilized for detecting emotions
from the frequency shifts through vocal feature extraction from audio input and processing
it using multiple classifier algorithms such as Support Vector Machines (SVMs), Random
Forests and Naïve Bayes. Libraries such as LibROSA will be applied to extract primary
audio features such as Mel Frequency Cepstral Coefficients (MFCC) to generate accurate
predictions. The system yields a result of approximately 84% using the SVM RBF (Radial
Basis Function) kernel, which highlights the accuracy of emotion detected based on the
speech.

Keywords— Emotion Recognition; Support Vector Machines; Speech to Text; Random
Forest; Feature Extraction; MFCC
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Chapter 1

Introduction

1.1 Introduction

In recent years, the advancements in networking and telecommunications has proved to be
imperative for the global technological progress. Enhanced communication and instant up-
dates in messaging, video-based communication, location tracking and even traffic conditions
around the user are excellent examples of how much the world wide web has contributed to
create a link around the globe. However, with its benefits, there must also be some drawbacks.
Among the many are the crimes that are secretly taking place through the same instant
messaging and voice calls. One article [1] illustrates this clearly; telling about a German male
who ended up killing two women whom he claimed to have met in online chat rooms. This is
just one of the minor cases in contrast to all the other indescribable events that have occurred
to this day. This calls for taking certain measures and fast; hence the aid of machines and
machine learning is required, where both voice and text can be effectively used to hint at
potential danger and threat before any situation escalates.

1.2 Objective

The aim is to create a system that combines multiple disciplines such as speech to text,
word recognition as well as emotion recognition that will aid in assisting in investigations,
evaluating voice conversations and give predictions and estimations for potential threats.
This will be done by both analyzing the words spoken during the call, as well as the predicted
emotions using machine learning and the results will be compared to come to a conclusion
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whether a threat exists or not, the topic of the conversation and the way the message is
conveyed.

1.3 Motivation

The technology of speech recognition - also referred as STT (Speech to Text) or ASR
(Automatic Speech Recognition) - has come a long way in terms of development and has
opened up numerous potentials for use in practical everyday life, from creating language aid
to medical prescription applications and now it is increasingly becoming famous in creating
autonomous home appliances and wearable smart technology.

There has been great deal of advancement in technology that has made the work of
humans a lot easier and reduced the need of large labor. But some functionalities are still
being worked on for the betterment of mankind. The requirement of recognition of human
emotion has been of great need as this can be a breakthrough in the identification of human
psychology. Speaking can be of different tones which can identify how a person is meaning
to say that particular speech. Thus, to identify the emotion or manner of saying behind the
speech is important. This is where the need of machine learning comes into play that can
identify the type of emotion being applied in a particular sentence by analyzing the vocal
characteristics or in other words, audio features, of the particular audio sample. The features
that are identified can be applied into the well-known classification algorithms in machine
learning which then classifies the emotions according to the matching features.

1.4 Orientation

The paper is organized into the following chapters: Chapter 2 highlights some of the work
related to the tasks relevant to our research (STT, word recognition as well as emotion
classification). Chapter 3 gives a short introduction and working principle of the tools,
libraries and algorithms used during the research. This is followed by Chapter 4, which
describes the proposed design created for the system, its proposed interface and working
process. Chapter 5 explains the implementation of the system - starting from the database
selection, to the features extracted for the data using selected libraries. It also includes
multiple findings in the duration of the research, an in-depth description on the modifications
and comparisons needed to be made that lead to the final results. The results are discussed in
Chapter 6, and the conclusions are drawn, along with potential future implementations in
Chapter 7.



Chapter 2

Literature Review

2.1 Speech To Text

For the Speech to text conversion, multiple approaches are observed. A similar work [2]
has been done where speech to text is performed for mobile devices to enable and enhance
the voice recognition and command features in the newer smartphones. Through efficient
algorithms and the addition of neural network, such as the General Regression Neural
Network (GRNN), over 95 percent accuracy in speech recognition is achieved. A VAD or
Voice Activity Detection algorithm pipeline is used which involves two algorithms performing
distinct tasks. One to calculate the signal features directly from the audio energy and the
other performs similarly, but is determined by the Zero Crossing Rate in the signal and Mel
Frequency Cepstral Coefficient (MFCC) is used for the feature extraction. Based on these
values, it provides an estimation (VAD decision variable) of speech recognition. Moreover,
the introduction of Neural Networks and creation of distinct identifiers in the database which
allows for particularly uttered syllable detection, boosts the overall performance of the system.
The recognition results are effective and similar to our approach to convert text from speech.

Other relevant methods of speech to text conversion includes this article [3], where the
STT uses MATLAB’s Kalman filter, which provided excellent accuracy in noisy environments
and over a certain Decibel threshold. Emphasizing on the reduction of background noise
to imitate speech in practical life situations, a Bidirectional Kalman Filter is applied which
the author claims to provide the best results, especially in noisy environments. Similarly,
MFCC features are extracted along with Linear Predictive Coefficients (LPC) for increased
accuracy. A comparative study has been made with another process where Hidden Markov
Model or HMM is being used with a TIDIGIT database which proved to be better with an
overall accuracy of 90 percent. Another approach [4] proposes the use of Microsoft’s Speech
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API (SAPI) to detect language such as distinct Bengali words through XML document feeds,
which proved to be accurate 75 percent of the time.

Fortunately, in recent times, the principles of speech to text systems has been made easy
and readily available in the form of applets and online services such as the IBM Watson’s
Speech to Text service [29]. This allows quick conversion of speech to text in real time,
provided a volunteer speaker or even multiple formats of recorded audio files. Further in the
discussion, many test cases are provided which highlights the accuracy, efficiency and the
convenience of having a complex program readily available which is able to provide greater
accuracy than the above mentioned.

2.2 Trigger Word Detection

For the detection of offensive or trigger words, [5] mentions a couple ways for recognizing
profane or offensive words from a text, most of them sorts the text in some way and then
compares it with one or more dictionaries, i.e. brute force, along with the incorporation
of some other features. The most notable of them is the lexical syntactic feature which
not only checks the offensiveness of the word but also checks the offensiveness in user
level. It yields with the precision of 98.24% and recall of 94.34%. For the lexical feature
extraction, ’Bag-of-Words’ used to be very popular in the early research programs but using
this approach yields low accuracy in subtle offensive language detection and gives high false
positive rate during heated conversation. The N-gram approach, most notably the Bi-gram
and Tri-gram, is a much safer and improved approach as it also includes information of the
words nearby context. For the syntactic feature extraction, we introduce natural language
parsers to parse sentences on grammatical structures to avoid unrelated word sets in the
offensiveness detection of the user.

Also, after much research, we found multiple applets and online sources which takes in
text as input and checks to see if the text is offensive or not, what are the offensive words
within it, replace those words with symbols, etc. The one which seemed much reliable, fast
and with a higher success rate was the Bad Word Filter API, developed by Neutrino API [30],
which allowed us to quickly list out all the profane words from any given text.

However, due to certain restrictions, the optimal and desired results were not obtained.
For instance, it lists a limited number of only profane words and slangs. Our system requires
a lot more since only profane words are not enough to indicate a threat or a threatening
situation during a conversation. There are numerous words which express negativity and
may lead to a worse situation and these must be taken into account. Thus, we have devised a
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small program that list most negative meaning words in the English language, as well as the
profane words, to work in conjunction to identify them in the speech.

2.3 Emotion Recognition

For the emotion detection, there has definitely been intensive work and research on this field
of how to recognize human emotion via speech or other physical traits. We have studied
about such works and most of them deal with how to extract values of sound such as pitch,
amplitude, frequency and time, to match the corresponding specific emotion. In one such
work, the data has been used from the Berlin Database of Emotional Speech (EMO-DB) [6] to
extract emotion from the German language and for American English the data was used from
the Speech Under Simulated and Actual Stress (SUSAS). The software they used was the
Waikato Environment for Knowledge Analysis (WEKA) [28] which is a JAVA based software
and they have executed their emotion extraction using the most significant classification
features of the emotional states. The algorithm used for this work was Sequential Minimal
Optimization under the supervised learning model of SVM. The feature selection was done
by the technique provided by WEKA was CFS Subset Eval. This algorithm uses a feature
evaluator known as Correlation base Feature Selection (CFS). Thus, through this they have
selected 10 different sets of parameters. The results that they have found out after performing
several different algorithms on the features is that the Sequential Minimal Optimization
(SMO) algorithm has given the best of the outputs on both for the German and American
English languages.

Another work [7] has been carried out but here there has not been any use of algorithm
rather the comparison of some acoustic parameters. The acoustic parameters used were
mean overall fundamental frequency, overall mean energy, overall mean standard deviation
of energy, mean overall jitter and mean overall shimmer. The data source for this research
included a 27-year-old female and a 32-year-old male. Seven different emotions were
considered for this study which were happiness, sadness, cold anger, hot anger, interest,
elation and neutral. The number of sentences they have taken to compare the results of all the
acoustic parameters of corresponding emotion were 70. Thus, the two subjects were exposed
to neutral environment and recorded each of the emotional conditions for all the 70 sentences.
The values recorded against each emotional state for each parameter was used to identify the
differences in values of the parameters in each emotion.

Furthermore, a study [8] was conducted on the pitch difference of each form of speech
and the best form of algorithm was found out executing the data that has been used to identify
them. The source of the data used was from Pitch Tracking Database from Graz University
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of Technology (PTDB-TUG). There source has provided 2342 recording of 10 males and 10
females. The algorithms used for speech identification using pitch where Entropic Signal
Processing System (ESPS), Average Magnitude Difference Function (AMDF) and the Praat
algorithm. The ESPS and AMDF algorithm was used in Wavesurfer and Praat algorithm
was used in Praat Script. The final evaluation was done in Python. The end result of this
evaluation was that the ESPS was the most accurate results compared to that of the other two
algorithms.

A comparable study [9] of emotion recognition has also applied multiple machine learning
algorithms, such as the SVM and Random forest, to compare between the efficiency and
accuracy. The Random forest algorithm proved to be the most accurate, at 81.05%, followed
by Gradient Boosting at 65.23% and finally the SVM algorithm, a comparatively poor
performance score of 55.89%. Like most others, the training and testing of the model is done
using the Berlin Database of Emotion Speech, on a total of 535 samples which includes 7
emotions in total: Neutral, Sad, Happy, Fear, Anger, Boredom and Disgust. The features
selected are the MFCC and Energy, that are extracted and applied on the aforementioned
classifiers.

This particular work [10] also relates to some level to what we are trying to achieve in
our work. There is similarity in the use of the MFCC (Mel Frequency Cepstral Coefficients)
features to detect any sort of noise that can remotely indicate possible threats. Such noise
would include glass breaking, gun shots, explosions and other forms of threatening sounds.
They have used both audio and visual effects of the possible threatening situation using
network cameras and the samples of sound collected are then processed by main node, where
a decision is made using supervised algorithms to identify and give the level of danger present
in the monitored area. Simultaneously, a signal of warning is sent to a crisis management
center. The results after application, has shown that there has been a 79 percent accuracy
for threat identification. They have also tried to use the SVM along with PCA but that could
not match the accuracy of the single frame SVM. The other algorithm used also did not give
enough accuracy that is the Dynamic Time Wrapping (DTW).

2.4 The Psychology of Threat and Speech Under Stress

To justify the psychological aspect of potential threat from the emotion recognition using
similar features such as energy, pitch and MFCC, etc. multiple studies have been done in
the past. This is termed as stress or speech under stress. The method for identifying such
a case is to compare the audio features with and without stress – whether or not the values
have impacted greatly. This book [16] suggests that psychological threat revolves around the
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relation between anger, fear and anxiety; and showcases a shift diagram to prove that during
stress and arousal – the excitation level of a certain emotion – the results are different than
otherwise. The frequency, pitch and the speaking rate changes when one is under stress and
then eventually goes back to normal as stress decreases.

This book [17] also specifically defines psychological speech stress as “a response to a
perceived threat” or any scenario involving an individual to experience anger, anxiety or fear.
It mentions stress can be caused by a variety of reasons, from everyday workload to assuming
chances of being inflicted with pain (under threat). However, both sources acknowledge and
admit the fact that – as psychology goes – stress is different for each person and therefore is
difficult to define it in a binary way. Each person handles, cope and react to stress differently
and some through training, not react to stress at all. Lastly, more factors come into play with
numerous accents, dialects, knowledge, frequency and mastery of the language itself, etc.

Using these as the underlying principle of speech under stress, more studies have been
done where this psychology has been considered through the extraction of audio features
in digital form and classified using suitable algorithms. This work [18] in particular, is
performed on the SUSAS (Speech Under Simulated and Actual Stress) database, focusing
only on the stress and its related emotions labeled Neutral, Angry, Lombard (an effect where
sound quality is altered to adjust with a noisy environment) [19] and Loud. Multiple stress
related features such as pitch, MFCC and other spectral features are used on a multiclass
SVM to achieve around a 100 percent accuracy rate.
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Chapter 3

Algorithm, Database and Tools

3.1 Classfiers and The Confusion Matrix

Below is described the supervised algorithms that we have used for the entire thesis work.
The understanding of supervised algorithm is that the algorithm is being trained with data
that consists of already known outcome to be able to predict the same outcomes using the
previously learned training set of data. This work requires classification of data which has
been achieved using classifiers under supervised algorithms. The confusion matrix each of
the classifiers have given is used to identify the number of correct and incorrect prediction the
classifying algorithm has been able to produce. The True Positives (TP) and True Negatives
(TN) in a confusion matrix gives the number of correct classification and the False Positives
(FP) and False Negatives (FN) gives the number of incorrect outcomes when we consider
only two classes. In case of multiple classes, the matrix expands in dimensions accordingly.
Of these positives and negatives, a few calculations are derived that define specific values.
As part of the implementation of the pyAudioAnalysis library, these values are displayed to
measure the accuracy of the classifiers:

• Precision – The number of correct predictions of a label out of all predictions made for
the label/class. PRE = TP / (TP+FP)
• Recall – The number of correct predictions out of total predictions for all classes. REC =
TP / (TP+FN)
• F1-Score – The weighted average of both precision and recall. F1 = (2*PRE*REC)/(REC+PRE)
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3.2 Algorithms

3.2.1 Support Vector Machines

The supervised learning models which are associated with other learning algorithms in
order to research on data for regression and classification analysis are called Support Vector
Machines, or SVMs. It falls under the category of non-probabilistic binary linear classifiers.
The advantage of using SVM is that it can deal with large set of feature dimensions and
also work even when sample number is less than the feature number. The different kernels,
provides diversity and versatility which can be used for specific decision functions. There
are different SVM modules such as SVC and NuSVC which allows the libsvm library to
use different kernels whereas the LinearSVC is based on liblinear library and only supports
linear SVM kernel. The SVC used can have kernels such as linear, polynomial and RBF
(Radial Basis Function)/Gaussian kernels. These are used in basis of the dataset that is at
hand. If there is no basic prior knowledge of the type of dataset that is available, then it is
recommended to try out the sample dataset in linear kernel to see if the features or dimensions
are separable linearly. If there is a need of higher levels of dimension for the dataset then we
use polynomial or RBF kernel.

To explain the basic concept of SVMs, let us refer to the figure below where the orange cir-
cles represent some data about Oranges and the red circles represent some data about Apples.
If we were to separate the data of these two types of fruits, we could draw a lot of different
lines on different angles in order to separate this two sets of data. But what SVM does is, it
creates a line that best splits these two sets of data. This line is called the Hyperplane and it is
said to be equally and as far away from the Support Vectors, which are the circles closest to
the hyperplane, or another way of saying this is that, it maximizes the widest possible Margin
between the support vectors. The support vectors are the decision functions. The support vec-
tors are called so because they are the reason why this hyperplane exists. In fact, if there were
no other points present in this figure except the support vectors, the hyperplane would have
still looked the same. The hyperplane maximizes the margin between the support vectors in
such a way that the support vectors are separate from each other with equal distance. So now
if had some random set of data of some kind of fruit which is either an apple or an orange, we
can pass this data through the SVM model and classify it, i.e. if it lies left of the hyperplane it
is considered to be an orange or if it lies right of the hyperplane it is considered to be an apple.

So how does SVM maximize this margin between the hyperplanes? This is a form of
constrained optimization problem because we are trying to maximize this margin which
involves optimization and the circles are constrained because they cannot go within the margin
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[26]. These types of constrained optimization problems can be solved by the implementation
of the Lagrange Multipliers technique.

Fig. 3.1 Support Vector Machine and Hyperplane

The example that we have seen above involves only two features or dimensions. That is
the reason why we can separate the data above linearly, i.e. with a line. But it is not always
that we will have only two features for classification. If we had three features, we could
separate the data with a three-dimensional plane, if we had four features or more, we would
separate it with a hyperplane with multiple dimensions which would be hard to visualize but
can still be implemented by SVM. Also, we are more likely to get data that are not perfectly
separate from each other. We are more likely to run into one or more misclassified data which
can disrupt our classification of the data. Fortunately, the SVM has a parameter called the C
Parameter which allows us to set the amount of misclassified data that we want to penalize.
Also, SVMs are not limited to just two sets of classes. We can have multiple number of
classes and the SVM would still manage to classify each of them separately. Lastly, SVM
is also popular for its Kernel Trick. For example, if we obtained a graph that is inseparable
with a line, then what SVM does is, using the kernel trick it creates another dimension which
would then help us to separate the data with a linear plane. The basics of how a Support
Vector Machine is explained. There are multiple parameters taken by the classifier which
include C parameter and Kernel.

The Kernel sets from SVM are used. On the other hand, there is also degree parameter
which is only used in polynomial SVM and has a default value of 3. This basically gives
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us the number of dimensions inside the polynomial function when the data is not linearly
separable. As the number of features is high thus, we need greater dimensions and the degree
specifies the number of dimensions required. The next parameter that is used is the gamma
which is applicable in poly, RBF and sigmoid kernels. This is value is predefined to be 1/n,
n is being the number of features. The max_int parameters take the maximum number of
iterations and finally the random state parameter, which is used to randomize the provided
dataset for the SVM available for all the types of kernels.

3.2.2 Random Forest Classification

The Random Forest, also known as Random Decision Forest, is a classification and regression
technique that functions by constructing a series of multiple Decision Trees during the train-
ing phase of the algorithm, which is then used to decide the final decision, or classification,
based on the maximum number of trees chosen by the random forest. This is a form of
ensemble learning: meaning this algorithm takes another set of multiple machine learning
algorithms and creates a bigger machine learning algorithm. In this case the use of Decision
Trees to ultimately classify the dataset.

Fig. 3.2 Simplified Model of Random Forest Algorithm
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To understand how random forest works, we first need to understand what is a Decision
Tree. A Decision tree is a tree diagram, because of its tree-like structure, which is used to
determine or classify some form of action. Each of the branches of the tree can represent an
occurrence, reaction or some sort of decision made by that branch. A decision tree is based
on some important terms –

• Entropy – It is the measure of the randomness of the given set of data. Everything on
the decision tree and the decisions that it makes is based on entropy. The higher the entropy,
the dataset becomes more unpredictable.

• Information Gain – It is the measure of the difference from going from higher entropy to
lower entropy by splitting the dataset, i.e. Information Gain = High Entropy – Low Entropy.

• Leaf Node – It is used to carry the decision throughout the branches of the decision tree.
• Decision Node – It has two or more branches and is situated above the leaf node.
• Root Node – It is the decision node that is situated at the top of the decision tree.

So, what random forest does is, it creates multiple decision trees based on multiple trained
datasets. Each decision trees do not contain all the data points of the entire set but instead,
each decision tree have equal number of data points of different combinations from the list
of data points. When we pass a test data through this decision trees, each of these trees have
their own unique output. The train data is then assigned to the class which was common from
the majority of the results given by the decision trees.

The parameters that are present in the Random Forest Algorithm includes n_estimators.
This basically sets the number of trees in the forest. The criterion parameter can be of two
values ether gini or entropy where the latter is used for information gain and the former is
for Gini impurity. Other parameters include max_depth meaning the maximum number of
nodes, sample_split is the minimum number of samples to make a leaf node, max_features
are the number of features used for making best split and random_state which again like other
algorithms, provides randomization of the samples. In the Random Forest algorithm, the
split that is chosen is not the best split from all the features from a random subset of features.
This increases the overall bias of the algorithm and due to the averaging, the variance also
decreases to compensate for the higher bias resulting in a better model.

3.2.3 Naive Bayes

The Naïve Bayes algorithm is a machine learning algorithm that is being used based on
the Bayes Theorem. So, to understand how this classifier works, it necessary to have some
knowledge about the Bayes Theorem. The Naïve Bayes is a form of probabilistic algorithm
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that uses the advantage of probability to classify considering the features present for the given
dataset. The basics of the Bayes Theorem is that there is a certain set of possible outcomes
of two different instances. Thus, the formula of the theorem as shown in the diagram is
that we find the probability of something happening given that a certain condition is being
maintained. Thus, to explain it in a particular scenario, we can consider an example. It can
be considered that there are two set of machines that produces a certain number of wrenches.
It is known that which machine produce which - meaning the wrenches are labelled by the
machine producing it. Based on the certain number of productions by the two machines
it can be found out the probability of a choosing a defect wrench among the collection of
wrenches provided that it is from machine two. This can be done using the Bayes Theorem.
The probability is found by finding out the probability of the number of wrenches that are
from machine two given that it is defect and multiplying that with the probability of a chosen
wrench being from machine two. The product of this calculation is then divided by the
probability of choosing only wrenches that are defected. This in turn will give us the result
of how to find the reverse condition probability that is choosing a wrench that is defective
given that it is from machine two. This is the Bayes that is being used in the Naïve Bayes
algorithm using the same concepts to make prediction and classification. The values that
are being used have separate meaning. The finding that is on the left side of the equation
is known as posterior probability. The values on the right side is likelihood multiplied with
prior probability that is being divided with the marginal probability.

Fig. 3.3 Fundamental Principle of The Naïve Bayes Algorithm

The equation above describes how the prediction and classification is made. The values
of B basically represent the features of the data set. The values of A are the specific classes.
Thus, we are to find the posterior values and compare for each class. The prior probability of
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the class is calculated meaning the probability of a certain point or item being in that class.
The marginal likelihood is the calculation of the probability that a certain item would exhibit
the features that are close to the points own feature of the different classes. This basically
means we are to consider the number of occurrences of particular class that are closest to
that of the added item and find the probability by dividing it with total of all the classes. The
next value that we need to find out is the likelihood which is the probability that given it is of
a certain class the probability that the added item will exhibit that class’s features. Finally,
using the found values we are able to find out the posterior probability. For each class this
value is then found out and then compared to find out which is the most likely class does the
added item belong to.

Naïve Bayes is a very common and highly recommended classifier Algorithm that is
used in all dataset classification problems. But this algorithm executes based on a certain
assumption that is the conditional feature independence assumption. This basically means
that the features of the dataset are not interdependent on each other and all the feature are
separate and independent not influencing any other feature present. This is not always the
case as correlation between features is very much possible while classifying. Even though
Naïve Bayes works under this assumption, it still performs remotely well as a classifying
algorithm. This algorithm is very easy to implement and needs a small set of data for
classification. In case of large sets of data there is the partial_fit method that can be used to
incrementally use datasets so that it does not over fit the memory.

3.3 Databases

In our research period we have come across multiple sources of data availability. This gave us
a large scope of choosing amongst those sources. In most cases of thesis work, gathering data
is one of the most challenging parts. But in our line of thesis work we have not faced such
difficulties. Nevertheless, the sources of our data were not all compatible to the requirements
of our work. Thus, we needed to examine these sources separately to match the requirement
we needed. Also, most researches [6, 9, 12] were conducted using a Berlin Database as
primary database which contained German sentences and words and not executing their work
on English database. There were use of Danish database [11] and this would significantly
have different output in the type of database that is being used while carrying out the work.
The form of data that we came across at first was the voice samples from [31] to convert
the sound waves to digitally readable data. However, this dataset was only usable till the
speech to text part of our program since it lacked the emotional expression when delivering
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the speech i.e. the speech was dictated in a neutral tone rather than being read to express
emotion.

An alternate was required to be found against the data we had seen in [31]. Thus, we
ended up with The Toronto emotional speech set (TESS) [35]. This had the credibility of
The University of Toronto as they would execute this kind of work under great surveillance
and perfect form of discipline. The database here was created using two female actors each
uttering a set of 200 words under seven general emotional states. They were tested to have
thresholds within the normal range and had English as there first spoken language. The actors
were aged 24 and 64 to also take into consideration about the variation of vocal characteristics
due to age. A common speech phrase of “Say the word ...” was used to utter each of the
200 words that were used. It was still not compatible enough with the type of data set we
required, our work needed complete sentences that would have these type of triggering words
inside general sentences. This data base did not provide the structure of data we required and
only the words were spoken in the seven emotions that have been mentioned. We required a
general sentence to have a single emotion flow through it.

With the aforementioned considerations, a quantifiably greater and rigorously tested
database in the common English language is selected for our research. This is the Ryerson
Audio-Visual Database of Emotional Speech and Song or RAVDESS in short [13]. It is
a ‘multimodal’ database consisting of speech with emotions and songs performed by 24
professional actors. Some fundamental features to make this database relevant and well
developed consists of having a diverse cast – different race and genders – of professional
volunteers who achieved a total of around 7400 distinct set of recordings. It is moreover
performed in 3 possible expressions, namely normal, strong and in a neutral tone. The
accuracy, throw, and natural emotion validity is also ensured by over 300 selected group
of participants and researchers. It is further versatile by providing visual expressions with
its own dataset alongside the audio. Relevant to our research for emotion recognition, the
huge database includes 8 distinct emotions: happy, calm, angry, fearful, disgust, neutral,
surprised and sad emotions and this particular database is based on a neutral North American
accent which further classifies for the ease of data use. Access to a large database, which
is so critically tested (by many) for accuracy and genuineness of expression is the primary
reason for RAVDESS to be the operating database for the research. For this, the audio data
will be fed to the program which will extract the vocal features and create models for the
classification algorithms such as SVM to identify given emotions.
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3.4 Libraries

3.4.1 PyAudioAnalysis

The pyAudioAnalysis [14] is an open source and versatile library which is able to easily
handle audio related tasks. The aim of this library is to provide multiple sound and audio-
based functions which are easy and ready to use. Command for these options can be either
customized if there is a need for changes in parameters or can be easily called in a python
supported command prompt window. The library also gives in depth and analytical contents
such as the ability to produce spectrograms and chromagrams (for music related features),
etc. This library has contributed to a large part of our study, primarily due to its multitude of
available functionalities which proves to be user and beginner friendly in the line of audio
processing and analysis. This is because it highlights and simplifies the important steps
related to preparing the data, training the classifier model and testing the model directly
on newer data sources. For our research, the pyAudioAnalysis library is used for feature
selection from the RAVDESS recordings database. By default, it is capable of preparing a
dataset consisting of 34 distinct features - directly from an audio file – and create a Comma
Separated Values or CSV file, along with a numpy file for ease of data structure use in python.
A total of four files are created, a csv and numpy file consisting of the short-term values of
the 34 features, and another pair which contains the mid-term mean and standard deviation.
Of the 34 features, 21 features have been used in our comparative study (Details in Section
5). Further convenience regarding feature extraction and visualization includes the ability to
extract single or an entire folder of multiple audio files in the Wav (Waveform Audio) and the
display of the spectrogram and chromagrams of the selected audio file (as shown in Fig. 5.8).

The library truly excels in providing detailed classification of multiple common classi-
fier algorithms such as SVM, kNN (k Nearest Neighbours), Random Forest and Gradient
Boosting. Hence, the data can be trained and classified with ease using this. The labeled data
extracted from the previous steps can be used in parameters along with the desired algorithm,
to train and generate a model file; classification of the test data will use this model file to
predict the data as labeled. Similarly, single and multiple files and folders can be trained
and classified. Traditionally, any new test data – before a classifier is to be applied – needs
to follow the feature extraction, selection and scaling process. However, this can be easily
done with the pyAudioAnalysis by directly setting the audio Wav file as the parameter during
classification. The results displayed can be tuned as well; during classification, each file can
be labeled individually as well as giving an overall result. In relation to our study, the labels
are the five emotions (Calm, Happy, Sad, Angry and Fearful). After training a portion of the
database, each test case can be classified separately (giving predictions for each emotion)
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as well as give an overall prediction of the test set, based on the accuracy of the trained
model. Consequently, it also showcases a confusion matrix to highlight the number of correct
predictions made by the trained model.

Yet another useful tool in the library is the fixed segment classification which is also
available for HMM based classification. The process allows for fixed sized segmentation
of the audio file and performs the trained classifier model on each segment, labeling the
estimates for each segment as well. More functionalities include the isolation and removal of
silence (0 frequency) in the audio and the vice versa with energy/event detection found in the
audio; the Speaker Diarization, where multiple speakers can be identified and their features
and frequencies separated – which is done through feature extraction and then applying a
K-means clustering and finally a smoothing method [15]. Other features available are audio
thumbnailing for music representations, audio recording based on fixed sized segments, and
audio conversions from Mp3 to Wav and Wav to CSV and vice versa.

3.4.2 LibROSA

For the purpose of feature extraction from the audio (or .wav) files in our dataset, one of
the libraries that we came across was LibROSA [32]. It is an open source, popular python
package for the purpose of analysis on signal processing, mainly audio and music. It holds
its credibility under the license of ISC. Its documentation states that it provides the basic
functions required to create audio information retrieval systems. Some of the basic functions
included in LibROSA is described below:

• librosa.core – This is the default sub-module of LibROSA, i.e. can be accessed directly
using top-level librosa.* namespace. It is used to load audio files from the directory, perform
several spectrogram representations and a wide variety of other tools used in music analysis.

• librosa.decompose – This group of functions are used for harmonic-percussive source
separation and generic spectrogram decomposition with the help of another library, called
scikit-learn.

• librosa.display – This functions are used for the help of visualization with the help of
matplotlib library.

• librosa.feature – This sub-module is used for the feature extraction, such as chroma-
grams, mel spectrogram, etc., and manipulation, such as delta features, memory embedding,
etc., purposes of audio data.

• librosa.onset – This functions are used for onset detection and strength computation.

For the purpose of our topic and after doing some research, we decided to use LibROSA
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to compute MFCCs from each audio in our dataset. We are using the extraction function of
mfccs, from the librosa.feature sub-module, i.e. librosa.feature.mfcc(y,sr), where the default
parameters, y is the audio time series and sr is the sampling rate of y. LibROSA, by default,
resamples audio signals to 22050 Hz or 22.05 kHz; and computes the first 20 MFCCs. The
whole process would be described and discussed in the implementation part.

3.5 Software and Tools

3.5.1 Application Program Interfaces (APIs)

IBM Watson Speech to Text Service

For the STT system, the IBM Watsons Speech to Text API [29] and the voice samples from
[31] to convert the sound waves to digitally readable data. Essentially, the voice data is
sampled to smaller parts and passed on to a neural network which detects the next closest
guess for the letter/word provided by the datasets. Moreover, a significant advantage of using
the API is that it automatically detects multiple speakers in the speech (Speaker Diarization)
as well as separate the strings based on the sentences in the converted text. This proves to be
time-saving in terms of handling these tasks manually, or using other plugins or tools.

The functions of a common speech recognition are handled in the regular probabilistic ap-
proach where, from a given database, assuming a word is spoken, the language/vocal features
will be extracted and multiple calculations will be compared for the highest probability score.
Using this, the next letter and word will be recognized. This process of ASR or Automatic
Speech Recognition is divided into following sub processes:

A. Speech Segmentation
B. Feature Extraction
C. Calculating language model and comparing with the database
D. Result processing

The types of data used in the workflow are voice samples of people from different
nationalities, therefore conducting an accent group dependent recognition, as well as real
time voice recording is conducted. Moreover, a dictionary database is employed which
in addition includes syllables and pronunciation to segment and identify. The two main
components to be extracted and segmented regarding speech are phonemes and prosodies.

Phonemes are the smallest unit of speech with a meaning or semantic. These can
be extracted or distinguished from speech into smaller segments to aid in the vocabulary
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database formation as well as recognizing the speech segments in terms of finding the next
probability of letter or following word. Prosodies define the pitch, tone and stress that is
put to enunciating a syllable, phenome, letter or a word in continuous speech. These are
differentiated into linguistic, paralinguistic and non-linguistic parameters which can aid
in the classification of speech as well as emotion analysis. Linguistic prosodies can be
described in written context; whereas paralinguistic prosody refers to speaking styles, stress
and accents. Finally, non-linguistic prosody deals with portraying emotions through physical
and emotional factors.

A. Speech Segmentation: Based on energy of frequency, the phenomes can be segmented,
then calculated for recognition probability. However, practically, in almost all use cases, the
speaker will be in an environment with background noise which will impact the frequency,
energy and the phenome probability being produced. There are a few ways in which the
possibility of noise-based errors can be reduced.

B. Feature Extraction: With a set frequency and time, audio sample are extracted. The data
is arranged in a multi-dimensional vector called a feature vector. These sets of concatenated
vectors together determine the current formation of sound which helps to further identify the
matching letter or word. Varying pass filters and frequencies can also help in optimizing the
feature vector in order to achieve best results.

C. Calculating Language Model: In this stage, the feature vectors along with an ‘acoustic
model’ and a language model to match with a dictionary library. A common acoustic model
uses the Hidden Markov Model for each phenome or word. The Hidden Markov principle is
a probabilistic function containing a Transitioning probability (A) and Output probability (B)
based on A, therefore P (A, B). Each state A is checked over till B is obtained.

The language model is optional but can greatly increase accuracy and lower recognition
and search times. Language Models are comprised of a set of grammatical rules which
provides words and likelihood of the upcoming words. The probabilistic decoding to get the
next most likely word is defined by the general equation of speech:

[ w = argmaxw(P(X|w).P(w)) ]

Where: X is the number of observations;
w is the word from the dictionary
P(X|W) is the probability derived from the feature vectors in the Acoustic Model
P(W) is the word probability from the Language Model;
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Neutrino Bad Word Filter API

As the name suggests, the Bad Word Filter developed by Neutrino [30], detects and censor
negative words such as swears and profanities from a given text. In its current iteration, it can
only work with the English language databases, but this simple program is highly efficient.
It is comprised of four basic output parameters: providing a binary answer if the input text
contains any bad words, the total number and listing of the words, and a filter to allow or
block censored contents. The input text can be provided directly as a string or as a URL link
(Uniform Resource Locator).

Unfortunately, we were not able to use the Neutrino Bad Word Filter API due to the
fact that we had to use a word detection algorithm with a specific set of words (or word
dictionary). So, using the concept from the Neutrino Bad Word Filter API, we created our
own word detection algorithm using python with our custom dictionary. The dictionary is a
list of words, around 5500 of them, all within the context of in general negative, threatening
and profane. As a result, we are able to detect any set of words from a string within the
dictionary and also classify them accordingly, i.e. a detected word is either assigned negative,
threatening or profane based on classifiers assigned to each word.

3.5.2 Program Dependencies and Tools

All the libraries and tools used in the system is based on and compatible with Python and
Python Standard Library. To effectively run each tool, there are some plugins or dependencies
required which serves different use for data structure, data visualization, data preprocessing,
feature extraction, etc.

NumPy – Python library for handling, scaling and indexing data structures such as
matrices, vectors and n-dimensional arrays and computing complex mathematical solutions
and supporting large variety of mathematical functions; from linear algebra, polynomials,
and statistics to complex Discrete and Fast Fourier Transform. This base library has been
utilized to create dataframes for our dataset and for indexing purposes.

Matplotlib –Matplotlib [34] is a Python library that supports a huge number of scien-
tific and mathematical expressions and calculations, ability to plot in various map, charts,
histograms, etc. and generate both raster (pixel) and vector as output. The display of each
visualization can be fully customized, for instance the font size, colors, labels, etc. This is
used in out study to generate frequency charts along with spectrograms for each feature.

Sklearn – Sklearn or scikit-learn [33] is an open source machine learning library in
python which has numerous uses such as data collection and analysis, data preprocessing and
clustering. It also supports regression and classification of a multitude of classifier algorithms
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and hence is of significant importance in our study. Moreover, it is based on NumPy, SciPy
and Matplotlib which allows for an array of mathematical, scientific and visualization tasks
to be easily performed.

Hmmlearn – Sequentially, this open source library is built on the previous dependencies
mentioned, and provides algorithms and models compatible for learning Hidden Markov
Models or HMM in python.

PCA – PCA or Principal Component Analysis is a small program in python that serves a
significant purpose: to reduce the number of dimensions and therefore the training complexity
of the classifier, meanwhile giving the highest accuracy. Using linear transformation, it is
able to preserve the calculations done in a vector containing the data and hence, lower the
size to a newer set of Principle Components [20]. This is used in the research to test the
accuracy of the classifier by lowering the number of features to enhance performance.

Grid Search– Grid Search allows multiple trained models of varying parameters to be
evaluated and provides the best parameters, or model with the highest accuracy based on
the data. Multiple classifiers are selected with their parameters (for instance using linear,
RBF and polynomial SVM with different C parameters) and then trained on the data. Then
these models will be evaluated using Grid Search which uses a cross validation method, to
highlight which parameters and model performed the best.

K-Fold Cross Validation – In conjunction with the Grid Search (which requires a cross
validation method), the K-Fold Cross Validation technique is applied. The algorithm is
simple: the data is randomly split and selected in a fixed range in K splits/observations. For
K splits, K-1 is used for training and the other is used as the test set. Depending on the
true and average error rate, the accuracy of each parameter is determined, up to K folds.
The best performing parameters are then showcased for use to get optimal accuracy. In our
comparative study, the Grid Search and K-Fold Cross Validation (CV) is used in an attempt
to identify such parameters for best results.
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System Design

As aforementioned, the aim of creating this system is to propose such a study through our
prototype that is able to identify potential threats and provide alerts in likely cases. Fig. 4.1
provides a comprehensive look at the overall working process of the proposed system. Firstly,
the voice call being held will be recorded in the telecommunication device and will be send
over to a server as soon as an internet connection is made; optionally it can be extracted
manually as well. The audio recording can now be simultaneously utilized in two ways:
first, using the IBM Watson service, the text can be reliably converted from the speech, with
its effective automatic speaker diarization and sentence separation. This can allow one to
understand the context of the conversation better, since the speaker are separated. Next,
this string is passed to the trigger word detection algorithm, which provides a few language
classifications, based on the words spoken – whether they are flagged as a threat, profane or
slang or just define as a negative sense of the given word (The workings, utility and results
algorithm are explained in Fig. 4.3 and further in Section 5).

On the other hand, the same audio file is utilized in the LibROSA library for feature
extraction and selection. For our highest achieved results, we have chosen to extract 20
MFCC features, which is normalized for optimal distribution of data and then scaled to
ensure an even range and minimize any outliers – exceptionally large or small values in the
data. Sequentially, the extracted features will be evaluated using a trained classifier algorithm
(in this case the SVM-RBF) to identify the emotion of the speech. Finally, the classified text
and the resulting emotion from the algorithm will allow one to evaluate whether there exists
any potential threat in the conversation. Overall, this system is designed with the focus to
aid in the investigations of such cases where there are suspicions of danger or threat. The
underlying principle of the system is that to correctly understand the message, one must
first accurately interpret what the other is specifically saying and how it is being conveyed.
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Thus, using the speech to text, the language processing and word filtering, the theme of
the conversation – particularly, the level of threat – can be understood, and the emotion
recognition can help estimate how were the words spoken. And what is the overall mood
of the conversation. Both the words and the mood can prove to be a better estimation tool
instead of working distinctly with either.

The work flow for an application of the system is shown in Fig. 4.2. The process for
the end-user is straight-forward: first, the application is downloaded and installed. Starting
the application enables the auto call recorder service which runs in the background until
the process is manually stopped or disabled. This also overrides the default voice recorder
through app permissions and after a voice call is recorded, it is sent to the storage, and
the processing server – as soon as an internet connection is made – for the voice input to
be analyzed. As proposed, it then goes through the Speech to Text service and the word
recognition algorithm, as well as the emotion recognition classification.
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Fig. 4.1 Work flow of the Overall System
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Fig. 4.2 End User Application Workflow

Fig. 4.3 Workings of the Trigger Word Detection Algorithm



Chapter 5

Implementation

5.1 Speech to Text Conversion

5.1.1 Testing the IBM Watson STT Accuracy

To make the program versatile, the data collected is accent group recognition oriented. Vocal
data from a wide variety of nationalities and dialects is sampled - both pre-recorded and
spoken – and implemented with the IBM speech service to convert the audio to text form.
This has led to a variety of results in terms of accuracy. The recorded data [31] consists of
over two thousand voice samples reciting a few sentences ( 67 words) in English:

“Please call Stella. Ask her to bring these things with her from the store: Six spoons of
fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob. We
also need a small plastic snake and a big toy frog for the kids. She can scoop these things
into three red bags, and we will go meet her Wednesday at the train station."

The ones chosen for the current experiment are one from the British and the local Bengali
dialects. However, it must be considered that there are numerous accent groups of the same
nationality with different backgrounds and proficiencies at the language spoken. These
are the results and their accuracy comparisons of the common accents of each nationality,
gathered from the IBM Watson Speech to Text service:

British: “Please call Stella ask you to bring these things with her from the store 6 spoons
of fresh snow peas 5 thick slabs of blue cheese and maybe a snack for her brother Bob. We
also need a small plastic snake in a big toy frog for the kids. She can scoop these things into
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3 red bags and we will go meet her Wednesday at the train station."

[ 65 out of approximately 67 words correct, an above 97% accuracy]

Bengali: “Please call Stella ask her to bring these things with her from the store. 6
bowls of fresh snow peas 5 big slabs of blue cheese and maybe a snack bar her brother Bob
we also need a small plastic snack and a big toy frog for the kids she can score these things
into 3 red backs and we will go meet her Wednesday at the train station.”

[ 62 out of approximately 67 words correct, an above 92% accuracy]

With this small comparison, it is shown that the IBM’s speech service alone enables users
to gather satisfactory results when converting from speech to text. This data will then be
extracted and implemented in an algorithm which will compare it with a set library of data to
detect words and patterns in the speech which can help determine the situation of a voice
conversation between people.

5.2 Trigger Word Detection

5.2.1 Neutrino API Implementation

During the implementation, one of the sample texts that obtained is being used from the
speech to text part and four samples are made from it, each with different attributes, as shown
in the table below. The samples derived from the speech to text conversion was implemented
in varying ways with the Neutrino Word Filter API. The first sample was the plain text
directly, without any modifications. As expected, this sample gave the least percentage error
as it did not have any spelling mistakes or grammatical errors. Also, the next sample which is
the spoken version of the plain text sample, almost gave the same results. But unfortunately,
the desired results were not achieved when we used the sample which had incomplete or
incorrect words, and the sample which had some of its characters replaced with some other
symbol, as both of these two samples gave the highest percentage error. If we do want to
incorporate this feature of detecting any sort of offensive word, it can be achieved quite easily
by updating the dictionary and keeping multiple instances of the same words, i.e. incomplete,
incorrect words or words with symbols replacing characters.
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Table 5.1 Computed Results of Profane Word Detection from Neutrino Word Filter API

Input Type Actual Result Experiment Result Percentage Error
Plain Text 11 9 18.181%

Spoken Text 11 8 27.272%

With Incomplete/
Incorrect Words

7 4 42.857%

With symbols
(*,!,#,$,&)

3 1 66.667%

5.2.2 Customized Word Detection Algorithm

The aim of the Trigger Word Detection is to detect trigger words from a string or a list of
strings. The strings are obtained from the speech to text part where each line spoken by
each speaker is classified as a string. The detection part is done by a brute force comparison
algorithm where each word in the string is compared with a list of words, also known as
dictionary, and the words that match between these two lists are listed together. This list of
words shows all the trigger words in the input string. Furthermore, with the help of specific
classifiers associated with each word in the trigger word dictionary, we are able to classify
each of the trigger words obtained from the trigger word detection algorithm accordingly.

For now, the trigger word list is based on three different types of words. Negative words
are those which have an overall negative meaning or effect, threatening words are words
usually used to cases of dealing with threats or verbally abusing someone or in regards to
something, and profane words are list of words which fall under the boundaries of profanity.
As it is a very basic program, so, we are using only three classes of words. But the program
can be made much better by using more than three classes of words. So, in order to make the
trigger word dictionary, we had to collect words based the three criteria mentioned above.
The trigger word dictionary was created and updated from multiple sources but we had to
clean it manually in order to remove redundant and misdirecting words. The original list
of words that he had collected was around six thousand and two hundred, in total, which
was then refined to around five thousand five hundred words. The program also displays the
percentage of threat and profanity, and an alert message based on estimation obtained from
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the percentage of threat, for example, ‘MEDIUM-HIGH THREAT’ for threats more than 20
percent.

Fig. 5.1 Workings of the Trigger Word Detection Algorithm

Refer to the algorithm given in Fig. 5.2. For the trigger word detection of the string or
list of strings collected from the Speech to Text part, we are following a simple brute force
comparison algorithm with a predefined set of dictionaries. The comparison is done with
the help of a default function in python, called intersection, which is a lambda expression.
The dictionaries consist of a list of words collected from multiple sources throughout the
internet based on the desired classes; for example, a list of negative words. After collecting
the lists of words, we had to refine the list from irrelevant and misleading words manually.
For now, we made three classifying lists of words or dictionaries, negative word list, to find
in general negative expressions; threat word list, for words that dictate actions, phrases or
nouns that – commonly or otherwise – indicate threat; and profane word list, to find swears,
slang and profanities. These lists of words are converted to lists of arrays, separately, at the
beginning of the algorithm. A single string is taken as input or from a list of strings and each
word is separated and stored into an array. This list is, then, first compared with the list of
negative words to find all the negative words within the string. This list of negative words
is then displayed with a count of the total number of negative words detected. The same
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process is done to the string word list with the threat word list and profane word list. The only
difference is that, for the threat word list, after displaying the list of threat words detected,
we calculate the percentage of threat words with respect to the total number of words in the
string. This percentage is then displayed as the percentage of threat followed by an alert,
which depends on the percentage of threat, where less than ten percent gives ‘Low threat’,
less than twenty percent gives ‘Medium threat’, less than thirty percent gives ‘Medium to
High threat’, and anything above that flags the result as ‘High threat’ alert message. The
percentage of profanity is also displayed after the list of profane words detected within the
word string list is displayed.

As mentioned before, the shift from a convenient and readily available program or API
such as the Neutrino Bad Word Filter API, was due to the lack of access to language. The
limitations to only profane words in the API led to the creation of a customized program
suitable for the research. In a similar way, the dictionary that has been manually gathered,
corrected for errors and organized, also falls short in regards to the ever-expanding database
of the English language. During the implementation, we had to come to the consideration,
that, despite collecting much of the commonly used words and words in phrases regarding
the subject, more and more different words and especially expressions are being brought up
every day as a form of communication, significantly so in the current generation of speakers.
This is one factor take account as currently, all forms of phrases and emotions through words
proves to be challenging to acquire more so than consider. Despite the difficulties, many
common and relevant words have been recorded in our dictionary which compliments well
with a simple, but effective way to filter out and give a statistical representation of the trigger
word detection.
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Fig. 5.2 Comprehensive Methodology of the Word Detection Algorithm
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5.3 Emotion Recognition

5.3.1 Feature Extraction

The following list consists of the many features selected and extracted using multiple li-
braries, PyAudioAnalysis and LibROSA. In this case, majority of the feature’s selection is
done through the pyAudioAnalysis library. However, as described further below, the MFCC
features from the LibROSA library proved to provide the most suitable dataset for the highest
accuracy.

•Zero Crossing Rate
• Energy and Energy Entropy
• Mel Frequency Cepstral Coefficient
• Spectral Centroid and Spread
• Spectral Entropy
• Spectral Flux and Roll off

Zero Crossing Rate – In signal processing and speech recognition, ZCR or Zero Crossing
Rate refers to the frequency at which the signal’s sign switches, i.e. the wave crosses zero or
the origin within a frame in the time domain. In the case where ZCR is high the wavelengths
are shorter with a higher frequency, thus indicating that there is little or no sound being
produced. On the other hand, a generally lower crossing rate produces longer waves and
determines the generation of sound in the audio segment. This is an essential feature in audio
processing as it serves the fundamental purpose of whether there is a sound being produced
or silence.

However, for specific purposes such as segmenting one type or noise to another or espe-
cially in speech recognition, its capabilities are only limited to that. It can distinguish between
noisy and silent environment but not whether the sound is a background or environment
noise or from a human speech. Thus, it always relies on other features, especially the energy
to obtain the end-point detection (to determine the end points of the unvoiced sound). The
concept in principle works as follows:
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Fig. 5.3 Simplified Description of the Zero Crossing Rate

The function to define Zero Crossing Rate is:

ZCR = W(N-t). L-1Et | (St -St-1) |

Where W(N) is the windowing function of N samples as W = 1/2N for 0<=n<=N-1, L is
the length of the signal, t is time in seconds and S(t) is the Signal at time t.
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Fig. 5.4 Side-by-side Analysis of Amplitude and ZCR Frequencies Extracted from Different
Audio.

Energy and Energy Entropy– Energy in signal processing simply refers to the displace-
ment of sound with the force exerted – the strength of the signal. It generates normalized
signal values and for a continuous signal, the energy can be defined as:

Where L is the signal length, x(t) is the signal function over time and E is the energy.

This feature is vital as it indicates the changes in amplitude when a voiced or unvoiced
segment is present during the audio processing. Therefore, as mentioned, it is used in con-
junction with the zero-crossing rate in order to distinguish between voice and background or
environment noise.

Energy Entropy can be defined as the quantitative dispersion of energy – from a signal in
this case. A given source of sound converted to digital signals may face disorders or energy
dispersal. This feature is imperative to segment and filter out noise as it can identify audio
jitters and indicate loss of sound information from the signal.
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MFCC – MFCC or Mel Frequency Cepstral Coefficients refers to the determining co-
efficients for the Mel Frequency Cepstrum. It has become one of the most widely and
commonly used features in audio processing and speech recognition. This is due to its ability
to identify and differentiate between logical and linguistic content between all the others
influencing factors in a speech such as noise, the speaker’s tone and emotions, background
sound information, etc. Commonly, MFCC features are calculated in the following steps and
as shown in Fig. 5.5:

1. Window or Segment the signal into smaller frames, ranging from 20-40ms per frame,
usually 25ms.

2. Apply Fast Fourier Transformation on each frame and take the logarithmic values (the
Quefrencies). This makes up the power spectrum needed for speech recognition

3. A process called ‘Warping’ is applied on the Mel frequency filter banks (Fig 5.7)
which passes through 26 filters in general. This means that the frequencies are distributed
linearly in the filter bank.

4. Inverse Discrete Cosine Transformation is Applied on each filter
5. Of these 26 filters, 13 MFCC values are hence produced.

Fig. 5.5 Process of MFCC Feature Extraction

Although 13 MFCC features are generally used and having extracted 13 features using
PyAudioAnalysis and 20 features using the LibROSA library, we found better results using
the latter.

Three fundamental concepts of this feature must be known to acknowledge the use and
functionalities of MFCC. These are:

1. Mel Scale: Used to derive the Mel or the Melody frequency, this concept explains the
perception of the pitch of the sound heard at distances equally apart from one another. This
helps to identify the lengths of each pitch increment. The frequency can hence be converted
to Mel by the following:
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m = 2595log10(1+f/700)

Where m is the mel and f the frequency. The diagram below shows the relation between
changes in mel to the frequency. Mel scale is therefore needed in our research to understand
the speaker’s pitch, especially in cases when he/she will be stressed. Since the emotions such
as anger, disgust, excitement or surprised, etc. portray their own patterns of pitch, this feature
becomes ideal to extract.

Fig. 5.6 Mel Scale to Frequency Distribution Chart

2. Cepstrum: Cepstrum is the product derived from the inverse Fourier transform of the
logarithm of a spectrum. Spectrum in audio is the scale of frequency measured in Hertz (Hz)
(and its discrete features extracted will be mentioned further). Cepstrum varies in multiple
forms such as the real, the complex, the phase cepstrum and the power cepstrum, but for
our research, the power cepstrum is to be considered since it deals with speech analysis
and recognition. The concepts of cepstrum follows an anagram pattern against spectrum in
terms of naming conventions – as the name itself suggests. Similarly, the measuring unit
in cepstrum graphs is known as quefrency and the filtering process is called liftering. The
cepstrum is then transformed via the Mel scale which results in the Mel Frequency Cep-
stral Coefficients which is extracted for the purpose of voice identification and pitch detection.

3. Filter Banks – As the name suggest, a filter bank contains a set of filters of various
passes that helps to obtain multiple spectral features from signals through audio decompo-
sition [27]. The operation of a bandpass filter is to filter the signal energy within a given
acceptable frequency range – known as a band – and reject all others outside the range.
The difference between the start and the end ‘edges’ of this frequency range is known as
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bandwidth, and its center the center frequency. Thus, from a given signal, a filter bank allows
for signals to be separated into frequency bands and each bandwidth are sequentially placed
with connected edges. Filter banks are commonly used to generate audio equalizers where
the low and high frequencies can be controlled.

Fig. 5.7 Triangular Mel Filter Banks

There are similarities in function between the MFCC and its features to Filter Banks and
the ways where extracting MFCC features could be complex and challenging and rather to
consider filter banks. Primarily due to the additional steps required to calculate the Cepstral
Coefficients using Discrete Cosine Transform (DCT) over the Fourier Transformation. More-
over, filter banks seem to have gathered data in the time domain (through speech signal and
its perception) and proved to be more useful when correlated inputs were not a significant
factor for the system to consider.

Spectrum – Spectrum in audio and signal processing refers to the scale of frequency and
the amplitude. Amplitude is the measurement of changes in the magnitude of the curve in a
given period of time. This is the most significant set of features needed to be extracted for
any voice or audio related tasks since it deals directly with the digitally defining unit of sound
(frequency in Hz). To analyze the frequencies, a spectrogram can be generated as such:
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Fig. 5.8 Spectrograms generated depicting the emotions of (Left) Anger and (Right) Fearful

Spectral Centroid and Spread – Spectral Centroid is the measurement of the ‘center of
mass’ of the spectrum and the brightness or harmonics of the sound which ranges from the
upper mid to higher frequency values. This provides a weighted average and median of the
amplitudes which can be derived by applying a Discrete Fourier Transform on the spectral
values:

Where F[k] is the amplitude values and k represent bins/intervals. This study visually
represents the spectral centroid and where it lies among the changing amplitude spectrum
and over time:
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Fig. 5.9 (Left) Represents the Centroid from the signal; (Right) Centroid from the signal over
time

Spectral Spread on the other hand provides the bandwidth of the signal via measuring
the average peaks and changes in the Spectral Centroid. This is a common feature used in
telecommunications since it creates a bandwidth greater than the frequency signal relaying
the information and produces “noise-like” signals which makes it difficult to trace the original
information and makes it resistant to outside noise and interference. Using the Centroid, the
spectral spread can be calculated using the following:

Where C is the Spectral Centroid, F[k] is the amplitude and k the intervals.

Spectral Entropy [23] – This refers to the peaks or the formants in the spectrum. Formants
are the acoustic energy distributed in frequency intervals in the signal. There are different fre-
quency levels of formants that determines different forms noises made. F1 formants (which
is used in the creating of the classification model for our system) identifies the frequencies
where vowels are uttered. Speech signals with narrow curves and higher peaks have lower
entropy, while flatter ones have high entropy. This is used to identify the tonal values in the
voiced portion of the signal and can be used to guess the tone of the speakers. The spectral
entropy can be derived from the spectrum through the following steps:
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1. Calculate spectrum S(ai) with ai amplitude
2. Calculate Power Spectrum by squaring the spectrum and averaging with number of

intervals N
PS = 1/N. (S(ai))2
3. Normalize 2 to define it within a range of values (Probability Density Function)
Pi = P(ai) / i P(ai)
4. This can be used to calculate entropy based on the above: E = - ni=1 Pi ln Pi

Spectral Flux and Roll off [24]– Spectral Flux shows the variation in the power spectrum
of a signal through comparison between each frame. The power spectrum is the concentra-
tion on energy in a signal in a given time frame. Spectral Roll off represents the range of
frequencies where 85-95 percent of the magnitude of a signal is concentrated. According to
the diagram the roll off point starts at the last few moments of the signal interval where the
magnitude begins ¬dips down or “rolls off” to 0.

Fig. 5.10 The Spectral Rolloff Point

5.3.2 Library Implementation

PyAudioAnalysis

A majority of our study have been based around the pyAudioAnalysis library which provides
more convenient solutions for audio analysis through various functionalities. Primarily, it
is utilized for the feature extraction tool. It can directly take an audio file (or multiple) as
input using the readAudioFile() method from the audioBasicIO.py, and then through the
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stFeatureExtraction() method, it extracts the default 34 selected features from the audio and
gives a CSV file the output which contains the feature vectors. The audio signal is framed
using a default value of 50ms for frame or window size and 25ms for step size or a hop length,
creating an overlap of 50%. Thus, for an exact 3 second audio clip, it extracts around 75
rows for each feature. This way, the entire 1440 clips from the RAVDESS database has been
extracted. The output is 1440 files containing 34 short term features and another 1440 files
consisting of 68 mid-term features - 34 mean and 34 standard deviation. Of the 34 features,
the first 21 are selected for the implementation since features 22 to 33 are the Chroma vector,
which represents pitch class of a particular genre of music and the 34th being its standard
deviation (Chroma Deviation). Since these deal with music, they are not utilized.

The library also aids in easily training, testing and classifying the data by multiple
classifier algorithms. For the study, the SVM and Random Forest has been chosen. After the
feature selection and extraction is done, the dataset is labeled accordingly to their emotions
and the featureAndTrain() method from the audioTrainTest package is used with the labeled
folders of data, the window and step sizes, the required classifier and the model name as
the parameters. This generates a model file in an Attribute-Relation File Format (ARFF)
file. The svm rbf, svm (linear), and randomforest are used to classify the data. During
the classification, the library automatically tests the data by tuning each classifier’s tuning
parameters and selects and highlights the best accuracy and parameters. For the SVM, the
optimal parameter is the soft margin C parameter which indicates the level of restriction
in the influence of the support vectors, and the number of trees N in the random forest
algorithm. The results shown contains both the confusion matrix, as well as the calculation
of the precision, recall and the f1 formant feature, from which an overall accuracy is drawn.

Table 5.2 showcases one of the resulting confusion matrices from training an SVM RBF
classifier. This was done on the RAVDESS dataset with all the included 8 emotions, with
parameters of a 50% overlap in window and step sizes. Calculating the truth values from
the confusion matrix and from Table 5.3, show that the accuracy achieved is over 64% and
the selected C parameter for the classifier is 20. The trained classifier can then be tested
directly on any other audio clip and the model will label the clip accordingly and as close to
the emotion as possible. In Table 5.4, a WAV audio file is tested on the trained model and
the results show that the emotion detected was 94% calm. Finally, the library also helps to
generate and visualize charts and spectrograms for each label and features; this is utilized as
well.
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Table 5.2 Confusion Matrix Generated from Training an SVM Classifier

Neutral Calm Happy Sad Angry Fearful Disgust Surprised
Neutral 4 1 0 1 0 0 0 0
Calm 1 10 0 1 0 0 0 0

Happy 1 0 7 1 1 2 1 1
Sad 1 1 1 7 1 2 0 0

Angry 0 0 1 0 10 0 1 1
Fearful 0 0 1 1 0 9 1 0
Disgust 0 0 1 1 1 1 8 1

Surprised 0 0 2 0 1 0 1 9
Accuracy: 64%

Table 5.3 Overall Accuracy, C parameter and F1 Score

Overall
C ACC F1

0.001 40.4 35.6
0.01 40.8 35.9
0.5 52 48.5
1 27.2 55.5
5 63.9 63.4
10 63.3 62.8
20 64.7 64.1

Table 5.4 Emotion Recognition Test Result from an Audio Clip

Class Probability
Calm 0.94
Happy 0.01

Sad 0.03
Angry 0.01
Fearful 0.01
Winner Class: CALM
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However, despite the ease and numerous audio analysis features provided in the pyAu-
dioAnalysis Library, the main feature extraction, training and classification did not provide
the best results for the study in comparison to the LibROSA library. After many changes
in parameters and variations in the extracted dataset, it can be assumed that this is due to
some outliers and deviations in the data values itself, as the pyAudioAnalysis handles feature
extraction based on the time in milliseconds and on the other hand, LibROSA performs this
using time in bits.

LibROSA

Initially we import all the important libraries needed to do the feature extraction process of
each audio sample from the dataset, most notably librosa. The first part of the program finds
the path to all the audio samples of a certain emotion from the dataset using the findfiles
operation from the librosa.util package and stores it in a string variable. The second part of
the program initializes the header for each column of each CSV files of the audio samples, in
this case, from ‘mfcc-1’, ‘mfcc-2’, and so on, till ‘mfcc-20’.

The third step uses the load operation from librosa.core package which loads the audio file
and decodes it into a time series variable, in this case, y. It is stored in y as a one-dimensional
NumPy floating list or array. The variable followed by y, in this case, sr, is used to store the
sample rate of y, which is the number of samples per second of the audio being processed.
As mentioned before, at load time, all the audio is resampled to 22050 Hz.

Using this variable y, in the fourth step, we extract the Mel-frequency cepstral coefficients,
which is said to be the short term power spectrum of a signal which is derived from the linear
cosine transformation of the log power spectrum on a non-linear Mel scale frequency, of
each audio sample from the dataset by the help of the mfcc operation from the librosa.feature
package. After running this operation, we are able to generate the mfcc of each audio sample
in matrix form, which is a numpy.ndarray of size (nmfcc, T), where the variable T is the
duration of each track in frames and the nmfcc is used to denote the number of mfccs to
be generated, which is set to 20 by default. We can easily change this value by assigning a
different number of not more than 40 to indicate the number of mfccs that we want. Two
important parameters here are hop length, which denotes the number of samples between
each frames of an audio sample, and the frame length or number of Fast Fourier transform,
which is the number of frames in an analysis window or frame. By default, nfft is set to 2048
and the value of hoplength is 512 bits per sample.

In step five, we scale each vectors of the matrix array of each audio sample to unit form
using the normalize operation, imported from the package of sklearn.processing, where
we provide the matrix and the axis at which it would be normalized. The definition of
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normalization states that it is the process of scaling each sample into unit form. It is a part of
the preprocessing part of data. As stated by the definition, data normalization is important so
that all data are in the same scale with each other.

Step six, is used to sort or arrange the matrix of each audio sample in such a way that
the columns represents each of the features whereas the rows represents each of the audio
samples of the entire set of a particular emotion in the dataset. We take the mean or average
of all the segmented samples of each audio for each feature. Similar to the pyAudioAnalysis
library, features such as the ZCR, spectral centroid and spectral bandwidth, LibROSA also
allows these features to be selected and extracted.

5.3.3 A Comparative Study

Throughout the research, during the implementation of the tools, libraries and algorithms,
many modifications have been made to each aspect of the study to achieve the optimum
results. Thus, in the process, many techniques were tried, tested and altered. This section
briefly enlists the adjustments and the gradual improvement made in various portions of
the system, be it the dataset and features, the algorithm and parameters, or the libraries
themselves.

Firstly, it is already mentioned that the study involved testing a couple of English lan-
guage databases for the emotion recognition. The RAVDESS database is selected over TESS
as it contains full sentences conveyed in one of eight different emotions, whereas the latter
contains a specific word in said emotion. For the feature extraction and selection from the
pyAudioAnalysis library, 34 short term features are generated in total for each audio clip.
From this data set, a multitude of possible data subsets were trained and tested. These also
include the utilization of manually normalizing and randomizing the data as well as the
Principle Component Analysis (PCA) for feature reduction:

• 80 and up to 400 Added mid-term features i.e. Mean values of 34 selected features
• 80 and up to 400 Added Mean values of 21 selected features excluding Chroma Vector and
Deviation
• 120 and up to 400 Added short-term features of the 21 selected features
• The entire database of 1440 audio files containing the short-term features using Linear
SVM
• The entire database of 1440 audio files containing the short-term features using RBF SVM
Kernel
• 1200 short term features using linear and RBF kernels and Random forest
• Normalized, randomized and added short-term 34 and 21 features
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• PCA ran on 13 MFCC features for feature reduction to 4 features
• PCA ran on 21 short-term features for feature reduction to 8 features

Feature combinations used in various studies [21,22] are also considered and trained,
which mostly revolves around the MFCC, ZCR and the Energy features. Unfortunately, all
these combination of datasets for 8 emotions, created by pyAudioAnalysis did not provide
the best results; a maximum of 64% could be achieved using the Radial Basis Kernel (19(i)).
Few possibilities were observed and considered for obtaining such results: At first, the
number of data used to train the classifier being too small, especially when the number of
outcome or dimensions is as high as 8 (1 for each emotion). It was discovered during the
implementation that higher train to test ratio gave slightly better results. However, the ratio
became too high to deem the algorithm efficient (95% and above was being required to be set
as the trained data). SVM provides the best results with a huge quantity of data. With high
number of features and dimensions and a comparatively small amount of data to work with,
the classifier is likely to predict incorrectly during the training. More so with the chances
of having outliers in the data i.e. exceptional cases, where all features are uniform but the
outcome is unexpected. In practical scenarios regarding emotion and moreover stress and
threat recognition, this is highly likely. It has been mentioned that many things factor the
behavior of a person during stress.

This called for a change in the dataset entirely. Thus, the LibROSA library is tested
next that has parameters for hop lengths and window sizes in bits, which, according to
assumption, is easily to compute rather than millisecond in time. Keeping complexity to
data size ratio in mind, this time only the first 20 MFCC features are selected and extracted
to be trained. The data is normalized and standardized as scale, and applied to the SVM,
Random Forest and Naïve Bayes algorithms and the results produces are greatly improved
(especially the SVM RBF kernel) and also in an acceptable 80%: 20% train to test ratio.
In order to achieve an even higher score, the algorithm parameters were evaluated (aside
from the base parameter of each algorithm). These additional parameters are listed as follows:

• Random State – Randomly selects and splits the train and test data sets. This ensures
that no two runtime results will be the same as the rows of data selected are randomized. If
the data is organized accordingly, the random state is set (as by default) to 0.
• Gamma – Gamma is an additional parameter that tunes the influence of each support vector
and hence, the bias and variance in the prediction. Higher gamma would mean a greater bias
to the selection of support vectors and so variance in data decreases. This is by default set to
1 divided by the number of features.
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Table 5.5 Test Results from LibROSA Feature Extraction

Neutral Calm Happy Sad Angry Fearful Disgust Surprised
Neutral 13 4 0 1 1 0 0 1
Calm 3 33 1 0 0 1 1 0

Happy 0 1 23 2 2 1 1 0
Sad 1 0 3 28 0 3 0 2

Angry 0 1 0 3 31 1 3 1
Fearful 0 0 4 9 0 31 0 1
Disgust 0 3 2 3 3 0 34 4

Surprised 1 0 3 1 1 3 0 19
Accuracy: 74%

• Criterion – This is a decision tree and random forest specific additional parameter that
controls the data split quality. It can be either Gini impurity or entropy information gain.
Table 5.3 shows the resulting accuracy from the confusion matrix. The model used is the
SVM RBF, with an 80:20 train test split, gamma set to 1 of 10 (0.1), C = 10 and random state
=1.

Further consideration to lower the complexity of the algorithm and raise the score led
to the reduction of the number of emotions to suit the needs of the research. To specifically
identify potential threat cases, and according to studies regarding speech under psychological
stress, the most influential emotions were chosen – Sadness or Anxiety, Anger and Fearful.
Besides these, the Calm and neutral emotions have been generalized to one and the Happy
emotion is also being considered. This is for the optimization of the overall program and
to identify and distinguish between cases where the threatening words may be spoken, but
the emotion of the conversation shows otherwise (words uttered in a mocking, joking or
light-hearted way). It ensures that the result from either word or emotion detection does not
lead to completely one-sided assumptions. Hence, the quantity of emotions is reduced from
8 to 5. This change led to a greater increase in accuracy scores as shown in Table 5.6. Again,
the RBF kernel with C=10 is used with a random state of 0 and a gamma of 0.1 or 1 of 10. It
gives an impressive 81% score.

[Figures and Tables in APPENDIX A and B, show the classifier test results on more
combinations of algorithms and emotions.]
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Table 5.6 Test Scores Using SVM RBF Classifier on 5 Emotions

Calm Happy Sad Angry Fearful
Calm 24 2 0 0 1

Happy 0 36 1 0 4
Sad 4 2 30 1 3

Angry 1 6 1 38 0
Fearful 3 2 4 2 27

Accuracy: 155/192 = 81%



Chapter 6

Experimental Results

To reiterate, the study proposes a prototype of a system that is divided in three parts: speech
to text, word recognition and emotion recognition. At the end of the research, from varieties
of options available in each part, the ones with the most accuracy, convenience and efficiency
has been used. For the speech to text, a readily available system such as the IBM Watson
Speech to Text Service proves to be sufficient, with as high as 95% accurate predictions of
words spoken. For the word recognition, a simple program is applied that uses the text from
the previous part, highlights the different criteria of words listed to be as the trigger words, as
well as provides a percentage of threatening or threat related words used in the conversation
and flags the level of threat. Results shown in Fig 6.1.

Fig. 6.1 Results Achieved from Trigger Word Detection
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For the emotion recognition, after numerous changes and modifications being made and
various tests of dataset combinations being conducted, we arrived at a high score of 84%
accuracy in the emotion recognition. In comparison to the Random Forest, Naïve Bayes,
Polynomial and Linear SVM classifiers, the Radial Basis Function (RBF) SVM performed
the best. This trained model can then be used on other audio recordings directly through
a library like pyAudioAnalysis to get the predicted emotion (Table 5.4), or broken down
into features and processed manually through the LibROSA library. Despite the ease of use
of the pyAudioAnalysis library, LibROSA provided the current high score from its feature
extraction. Of a wide variety of features tested on, the 20 MFCC features extracted by
LibROSA has given the best results. As such, the train-test split is a standard 80-20 and the
parameters tuned for the classification are: Gamma set to 0.2 or 1 of 5 features, C =10, and
random state set to 0. Therefore, of the 960 feature vectors from 5 emotions, 192 were tested
and 161 were correctly predicted (Table 6.1).

Table 6.1 Highest Accuracy Obtained for the Emotion Recognition

Calm Happy Sad Angry Fearful
Calm 23 0 0 0 4

Happy 0 34 1 2 4
Sad 2 1 35 0 2

Angry 1 5 0 39 1
Fearful 2 1 4 1 30

Accuracy: 161/192 = 84%
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Conclusion and Future Work

7.1 Conclusion

The level of criminal offences greatly rising and risking the lives and wealth of individual
nations as a whole could be cut down in great proportion if prior knowledge of such actions
can be recognized in advance. The use of this system can be of assistance in concluding
possible criminal activities in a shorter time period by recognizing threat possibilities. The
drawback of breaching personal privacy thus cannot limit the access of this system only to
the government or safety and defense sector where the risk of misuse of this information is
limited to the maximum. This line of work has been deeply considered in forms of human
emotions but has yet to be executed in identifying threat. The thesis here tries to find the
possible threat detection and also levels of threat to give an extra edge in deciding whether
the speaker has any motive in executing threatening activities.

Our work is a comparative study on multiple algorithms, from which the SVM Radial
Basis Function (RBF) produces the highest accuracy of 84 percent. The database used is
the RAVDESS (Ryerson Audio Vision Database for Emotion Speech and Song), and the
feature selection and extraction are done using LibROSA library in python. After training
and testing for the desired results, the model can then be utilized directly on audio files for
emotion recognition using the PyAudioAnalysis library. These are the steps taken to propose
such a system to analyze voice calls for potential threats. The studies mentioned above are
just a few sources for our claim to identify stress in emotion for the emotion recognition, and
along with the word recognition, classify the scenario as a potential threat.
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7.2 Future Work

There has been a lot of effort put in this thesis and has resulted a great deal of study. As
mentioned before the use of multiple libraries to get the features required and applying
different supervised classifying algorithms. There is still a large scope of improvement in
this work which includes increasing the level of accuracy using more features. The use of
LPCC a common audio feature that has been used in similar form of work and also other
features that has an effect in audio characteristics could be used to give better accuracy in our
work which we can apply in the future, better functioning of the system.

For the time being we are only considering the use of natural languages in the detection of
the emotions. There is a possibility of sarcasm in speech which is yet to consider. The use of
code languages is also very much possible which can also be included in our work, that would
be considered in the speech to text part where the code language can be translated into normal
language. There is also the scope of being able to incorporate the use of other languages
and deriving the emotions based on that. The thought of turning the work in multilingual
consideration would definitely make the system useable internationally. There have been
great limitations in dataset access that was able to be collected. The works that were remotely
close to this thesis had mostly used the EMO-DB which consists of German speeches and
in case of English speech SUSAS was used. These were beyond our access thus these
audio datasets might also give us greater accuracy. The way we have detected trigger words
was by brute force programming which required a dictionary. Thus, we require an updated
dictionary or if there is a specific category of words, then a new form of dictionary would be
needed to get matches for trigger words considered as threatening. When making the system
multilingual there would also be a requirement of dictionaries of different languages. The
tests were conducted based on separate sentences thus it would be necessary that speech of
each speaker is being recorded and divided accordingly into sentences.

The whole program is being executed separately. Thus, it would be very much convenient
if the entire program can be executed in real time with better accuracy. The recording in done
using a recording app that has already been described, which can be improved in this way.
There is a large scope of using more classifications algorithm which is yet to be tested on
such as XGboost algorithm which is a more improved version of gradient boosting algorithm.
It is also a form of ensemble learning and is well known for its performance and execution
speed. The use of gradient boosting and also decision tree gives the algorithm of executing
two very effective machine learning algorithm to get better results. There was also a need
to reduce the number of emotions that were considered thus reduces the number of classes.
Therefore, executing the same program with more emotions would give a larger scope of
classifying and making it even more accurate in distinguishing threat possibilities.
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