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Abstract

In this thesis, Exact Solutions of fractional differential equations by using (G’/G)-
Expansion Method the nonlinear partial fractional differential equations are renewed
to the nonlinear ordinary differential equations by using the fractional complex trans-
formation. We apply the extended (G′/G)-expansion method to generate travelling
wave solutions to the time and space fractional derivative nonlinear KdV equation.
The obtained solutions reveal that the extended (G′/G)-expansion method is very
efficient and competent mathematical tool for generating abundant solutions and
can be used world class of nonlinear evolution fractional order equations.
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Chapter 1

INTRODUCTION

1.1 Mathematical Introduction

The affair of differential equation constructs a comprehensive and very significant
wing of modern mathematics. Form the preceding days of calculus the subject has
been a sector of innumerous hypothetical analysis and applied implementations.
Leibnez and Newton[26,27] were the first Scientist and Mathematician who first
commenced with the invention of calculus. In the year 1671 English physicist, New-
ton had listed three types of differential equations which were published in the year
1736, they are:

dy

dx
= f(x) (1.1)

dy

dx
= f(x, y) (1.2)

and

x1
δy

δx1

+ x2
δy

δx2

= y. (1.3)

In 1676 Newton solved the equations mentioned above and others affixed to these
by utilizing infinite series and calculated about the non-uniqueness of the results.
Jacob Bernoulli proposed the Bernoulli differential equation in 1695 which was an
ordinary differential equation(ODE)[28] mentioned in the following structure:

p′ + A(x)p = B(x)pn. (1.4)

In the following year Leibneiz gathered solutions by simplifying (1.4).

1.1.1 Differential Equation

One of the most incomparable successes of calculus is its ability to capture contin-
uous motion mathematically and giving us the opportunity to analyze that motion
instantaneously[9]. A prodigious volume of real world event involving moving quan-
tities like the speed of a missile[1], the floating exchange rate [2], the voltage of
an electrical signal[3-5], the intensity of an earthquake[6], the growth rate of pop-
ulation of species[7], the number of bacterial growth in a medium[8] and many
more.Differential equations infiltrate the science and let us use it as a tool by which
we can try to bring out the laws of motion of nature in an abridged mathematical
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language. We have heard a lot about differential equation for radioactive decay in
nuclear physics[10-11] but there are also many other numerous differential equations
like Newton’s law of cooling in thermodynamics[12], the Navier-Stokes equations in
general relativity[13-14], the Blacke-Scloles equation in finance[15], the heat equation
in thermodynamics[16-17], the Cauchy-Riemann equations in complex analysis[18-
19], Schdinger equation in quantum mechanics[20], the wave equation[21], the Lotka-
Volterra equation in population dynamics[22], Maxwell’s equations in electromag-
netism [23], Laplace’s equation and Poisson’s equation[24], Einstein’s field equation
in general relativity[25] and many more.

Differential equation: When derivatives of one or more dependent variable
with respect to one or more dependent variable in any equation is defined as differ-
ential equation (DE). For example, an expression as follows -

d

dx
(ab) =

da

dx
+
db

dx
= 0 (1.5)

The equation 1.5 is an example of differential equation.

1.1.2 Classifications of Differential Equation

Differential equation is classified into two forms, such as Ordinary Differential
Equations (ODEs)and Partial Differential Equation (PDEs).

Ordinary Partial Differential Equations (ODE) - When ordinary deriva-
tives of one or more dependent variable with respect to only one independent vari-
able in any differential equation is called ordinary differential equation (ODE). For
example, such an expression given below -

dz

dx
+
dp

dx
= 0 (1.6)

The equation 1.6 is one of the form of ordinary differential equation where, for
example: y = x+ cosx and z = x3 + 5x.

Partial Differential Equation (PDE) -When one or more partial derivatives
of one or more dependent variable with respect to more than one independent vari-
able in any differential equation is called partial differential equation (PDE). For
example, an expression given below -

dp

dx
+
dp

dy
= 0 (1.7)

The equation 1.7 is one of the form of partial differential equation where, for example
z = y6 + sinx.

In this thesis we will deal with the section of partial differential equation, over
here we will be talking about the catagorizations of the partial differential equations
only. Partial differential equation is classified into two forms such as, Linear Par-
tial Differential Equations (LPDEs) and Non-Linear Partial Differential
Equations (NLPDEs).

8 Chapter1 Humayra Shafia
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Linear Partial Differential Equations (LPDEs) - When the power of the
dependent variable and each partial derivative contained in the equation is one, and
the coefficients of each variable as well as the coefficients of each partial derivative
are constants or independent variables in partial differential equation is said to be
linear partial differential equation. For example, an expression as follows -

ym + bm−1(x)ym−1 + ...+ b1(x)y′ + b0(x)y = 0 (1.8)

The equation 1.8 is the one of the form of a linear partial differential equation.

Non-Linear Partial Differential Equations (NLPDEs) - When any of the
condition for being linear is not satisfied then the equation is called non-linear. An
expression is giveb below-

dp

dt
= F (p) (1.9)

The equation 1.9 is an example of non-linear partial differential equation.

Homogeneous Partial Differential Equations (HPDEs) - If all the term
of the P.D.E. consists the dependent variable x or one of its derivatives then only it
is known as homogeneous partial differential equation. to support the definition, an
expression is given below-

ym + bm−1(x)ym−1 + ...+ b1(x)y′ + b0(x)y = 0 (1.10)

The equation 1.10 is a type of homogeneous partial differential equation.

Non-homogeneous Partial Differential Equations (IPDEs) - If any of the
condition for being homogeneous is not satisfied in a differential equation it is said
to be non-homogeneous. To support the definition, an expression is given below –

ym + bm−1(x)y(m−1) + ...+ b1(x)y′ + b0(x)y = c (1.11)

The equation 1.11 is the form of non-homogeneous partial differential equation.

Non-linear Evolution Equations (NLEEs) - A NLPDE, as a single inde-
pendent variable such as time t expressed in terms of space variable l(x, t)is called
nonlinear evolution equation (NLEE). For example: the KdV equation .

Fractional differential equations (FDEs) – There are three important def-
initions of fractional differential equations, they are the Riemann-Liouville, the
Grunwald-Letnikove and the M. Caputo definition. In this work we will use the
Riemann-Liouville definition.
The Riemann–Liouville type fractional derivative of order β > 0 of a function
g : (0,∞)→ R is defined by

Dβg(t) =
dm

dtm
1

Γ(m− β)

∫ t

0
(t− τ)m−β−1g(τ)dτ (1.12)

Chapter1 Humayra Shafia 9
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where m = [β] + 1 and [β] is the integer part of β.

In this paper we will be talking about the analytical solution of the non-linear
KdV equation with time space fractional derivatives.

1.2 Waves

According to physics, waves are a disturbances that propagate energy through a
medium. the energy propagation depends on the synergy between the particles that
make up the medium. Although there is no net motion of particles, particles move
as the waves pass. This means, once a wave has passed the particles return to their
original position. As a result, energy, not matter, is propagated by waves. There
are three main types of waves they are Mechanical wave, Electromagnetic wave and
Matter wave. Mechanical Waves act as the propagation of a disturbance through a
material medium due to the repeated periodic motion of the particles of the medium
about their mean positions, the disturbance being handed over from one particle to
the next. Electromagnetic Waves are the disturbance, which does not require any
material medium for its propagation and can travel even through vacuum. They are
caused due to varying electric and magnetic fields, and lastly Matter Waves are the
waves produced in electrons and particles.

The fairest wave generation equation could be written in the following form:

ltt = k2lxx (1.13)

where the amplitude of the wave is represented by l(x, t) , and k represents the speed
of the wave. This equation has the general d’Alembert’ solution and that is -
l(x, t) = p(x− kt) + q(x− kt) where p and q are arbitrary constraints denoting the
right and left propagation accordingly and these two individual waves move without
changing their oneness.

1.3 Dispersion

Dispersion of water waves generally refers to frequency dispersion, which means that
waves of different wavelengths travel at different phase speeds. Wave dispersion in
water waves refers to the property that longer waves have lower frequencies and
travel faster. The dispersive waves are waves in which the wave velocity varies
with the wave number. Dispersive effects usually give a relationship between the
frequency and the wave speed. If wave speed varies with wave number, in which
case the different wave number components will have different speeds, then the
phenomenon known as wave dispersion. Therefore, the way they interfere with one
another will change with time. So the shape of the disturbance will change.

1.4 Dissipation

A wave that loses amplitude, due to loss of energy over time, is called a dissipative
wave.

10 Chapter1 Humayra Shafia
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1.5 Travelling waves

When a vibrating source disturbs the atoms wave formed or particles of medium
(water, air, spring, string etc.) that travels continuously along the direction of wave
motion with speed and without altering its shape is called traveling waves. Particles
get displaced from their rest position temporarily but there is a force that acts on the
particle when the medium is disturbed , causing them to get back to its original form
or position. Without any net motion in the medium this disturbance travels down
through the system and through this disturbance energy and momentum is shifed
from one end to another . To understand the occurrence of travelling wave solutions,
mathematical dealings have been used to describe the travelling wave function in
the form of l(x, t) = f(x−kt) where l(x, t) represents the wave distressed movement
along the direction of x when k > 0or k < 0 accordingly. These are obtained when
a NLEE is reduced to ODE, taking l(x, t) = l(ξ) where ξ = x − kt and k is the
speed of the wave where they can be solved by using suitable method. There has
been a lot of development for obtaining travelling wave solutions during the past
few decades and they appear in various forms and few of them are:

1.5.1 Soliton

According to Wazwaz[29],property with elastic scattering are called Solitons which
are a form of solitary waves. Even after colliding with each other they tend to keep
their original form and speed. they are seen in various physical phenomena and
have been appeared as the results of a extensive group of weakly nonlinear dispersive
partial differential equations describing systems of physic. The dissimilarity between
solitary waves and solitons has become obfuscated in physical term. Soliton-like
solutions of nonlinear evolution equations are Solitary waves that explains wave
processes in dissipative and dispersive environment. It is usually called as single
soliton solution like solitary wave, but when more than one soliton appear in a
solution they are called solitons. A nonlinear partial differential equation that shows
the following possessions are solutions of a soliton :
(i) the solution should substantiate a wave of stable form;
(ii) the solution either decays exponentially to zero like the solitons provided by the
KdV equation, or converges to a constant at infinity such as the solitons given by
the Sine-Gordon equation, meaning the solution is localized;
(iii) by holding its own character the soliton intercats with different solitons. One
basic expression of a solitary wave solution is of the form-

l(x, t) = f(x− kt), (1.14)

where k is the speed of wave circulation. The wave travels in the negative direction
for k < 0 and For k > 0, the wave travels in the positive direction. The solutions of
nonlinear equations can be in the form of sech2, sech, arctan expα(x−kt) functions.
Different methods had been introduced to acquire solitons.

1.5.2 Solitary Waves

Solitary waves were first seedn by John Scott Russell in the year 1834. He observed
a large projection of water slowly traveling on the Edinburgh-Glasgow canal (Scot-
land) without any change of its shape. He named he bulge of water as “great wave

Chapter1 Humayra Shafia 11
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of translation”, and it was traveling along the channel of water for a long period of
time while still preserving its shape. The finding is described here in Scott Russell’s
own words: “I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped not so the
mass of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long and a foot to a foot
and a half in height. Its height gradually diminished, and after a chase of one or
two miles I lost it in the windings of the channel. Such in the month of August
1834, was my first chance interview with that singular and beautiful phenomenon
which I have called Wave of translation.” [29, 30]. Russel got inspired from this
surprising discovery to conduct physical laboratory experiments so that he could
highlight his observance and study those solitary waves. He empirically derived the
relation in the following form: k2 = g(p+h) where k is the solitary wave speed, h is
the maximum amplitude above the water surface, p is the finite depth and g is the
acceleration of the gravity. This single humped wave of bulge of water is now called
solitary waves or solitons. The solitons–localized, highly stable waves that retain
its identity (shape and speed), upon interaction–was discovered experimentally by
Russell[29].

A solitary wave is a localized wave which propagates without any temporal evo-
lution in shape or size when viewed in the reference frame.The envelope of the wave
has one global peak and decays far away from the peak. These waves arise in many
circumstances, including the elevation of the surface of water and the intensity of
light in optical fibers. They have finite amplitude and propagate with constant
speed and constant shape.

12 Chapter1 Humayra Shafia



Chapter 2

LITERATURE SURVEY

2.1 Analytical Methods for linear and non-linear

fractional differential equations

The area of differential equation is vast enough to discuss about. The fractional
calculus is a current research topic in applied sciences such as applied mathemat-
ics, physics, mathematical biology, economy, demography, engineering, geophysics,
medicine, bio-engineering and mathematical biology all from the sources [49-68].
The rule of fractional derivative is not unique till date. The definition of fractional
derivative is given by many authors. The commonly used definition is the Riemann-
Liouvellie (R-L) definition [31]. Other useful definition includes Caputo definition
of fractional derivative(1967) [32]. The solution and its interpretation of the frac-
tional differential equations is a rising field of Applied Mathematics. Mathematical
perspectivs of fractional differential equations and methods of their results were dis-
cussed by many authors: Iteration method[42], the series method[43], the Fourier
transform technique in [44, 45]. To solve the linear and non-linear differential equa-
tions recently used methods are Adomain decomposition method [34-36], Variational
Iteration Method [47], Differential transform method [41], Homotopy Perturbation
Method [37-40], Predictor-Corrector method [48], Jumarie’s left handed modifica-
tion of R-L fractional derivative is useful to avoid non-zero fractional derivative of
a constant functions [33] and Jumarie Derivative in Term of Mittag-Leffler Func-
tion[46].

2.2 Expansion Method

Over the last few decades, an extensive research has been going on to find dis-
tinctive solutions of NLEEs which are used as representations in order to describe
many salient and tricky physical phenomena in diverse fields of science. Some exact
solution of NLEEs by using huge range of upgraded and productive methods were
introduced by different group of scientists who has fabricated , for example, the exp-
function method [76],inverse scattering transformation [73], the sub-ODE method
[74,75] etc. For creating more new applications of it in furtherance to understand
the nonlinear phenomena better. as prescribed beforehand , no such united method
have yet been manifested to work out with this type of NLEEs. The (G’/G) Ex-
pansion method, originated by Wang is one of the strongest and finest methods to
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solve nonlinear problems. To demonstrate and construct travelling wave solutions of
non-identical type of NLEEs.Differential equation is executed in (G’/G) expansion
method where a second order linear ordinary that is

G′′ +G′λ+Gµ = 0 (2.1)

where λ and µare arbitrary constants. To show the usefulness of the (G’/G) ex-
pansion method many researchers have carried out several investigations i.e. Zhang
has extended the (G’/G) expansion method and named it improved (G’/G) expan-
sion method. The difference between the original and extended (G’/G) expansion
method is that, In original method-

l(ξ) =
m∑
j=0

aj(G
′/G)j (2.2)

where am 6= 0, on the other hand
In Zhang’s method-

l(ξ) =
m∑

j=−m
aj(G

′/G)j (2.3)

where am 6= 0 or a−m 6= 0 but both cannot be zero simultaneously.
The extended (G’/G) expansion method to achieve travelling wave solution of the
Whithsm Broer-Kaup-like method and couple Hirota-Satsuma KdV equations are
acquainted with Guo and Zhou in the form

l(ξ) =
m∑
j=1

{aj(G′/G)j + bj(G
′/G)j−1

√
σ(1 +

1

µ
(G′/G)2} (2.4)

Here we are going to explain the basic (G’/G) expansion method to find travelling
wave solutions of nonlinear evolution equation. Assumimmg that the nonlinear
equation in two independent variables are x and t, is in the form of-

P = (l, lt, lx, ltt, lxt, lxt, ... = 0) (2.5)

P is a polynomial in l = l(x, t) and its several partial derivatives in which the highest
order derivatives and nonlinear terms are affiliated. In the following steps we will
show the main steps of the (G’/G) expansion method.
Step-1: By connecting the independent variables x and t into one variable ξ = x−kt
we presume that

l(x, t) = l(ξ), ξ = x− kt (2.6)

The travelling wave variable (2.2) let us insert eq. (2.1) to an ODE for l = l(ξ

P (l,−kl′, l′, k2l′′,−kl′′, l′′, ...) = 0 (2.7)

Step-2: Supposing that the solution of ODE (2.3) could be shown by a polynomial
in (G’/G) as below:

l(ξ) = βm

(
G′

G

)m
+ ... (2.8)
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Where G = G(ξ) convinces the second order LODE in the form

G′′ + λG′ + µG = 0, (2.9)

am, ..., λ are constants to be determined later,βm 6= 0, the unwritten part in (2.4)
is also a polynomial in (G

′

G
), the degree of which is generally equal to or less than

m− 1, but the positive integer m can be seen by considering the homogeneous bal-
ance between the highest order derivatives and nonlinear terms in ODE (2.3).
Step-3: By replacing (2.4) into Eq. (2.3) and using second order LODE(2.5), gath-
ering every terms with the same order of (G

′

G
) altogether, the left hand side of Eq.

(2.3) is changed into another polynomial in (G
′

G
). Calculating each co-efficient of

this polynomial to zero, produces a set of algebraic equations for βm, ..., k, λ and µ.
Step-4: Supposing that the constraints βm, ..., k, λ and µ can be obtained by equat-
ing the algebraic equations in Step 3, general results of the second order LODE(2.5)
are in the mean time have been recognized for us, then substituting αm, ..., k and the
normal solutions of Eq.(2.5) into Eq.(2.4) we will get more travelling wave solutions
of the nonlinear evolution equation (2.1).

Chapter2 Humayra Shafia 15



Chapter 3

METHODOLOGY

3.1 New Generalized (G’/G) Expansion Method

with Non-Linear Auxiliary Equation:

As it is known that (G’/G) -expansion method is one of the simplest and most
powerful method for obtaining travelling wave solutions of NLFDEs and so far its
application have been used in various ways to solve nonlinear evolution problems.
By considering the following nonlinear partial fractional differential equation:

P (l, Dα
1 l, D

β
x l, D

γ
y l, D

δ
zl, D

α
t D

α
t l, D

α
t D

β
x l, D

β
xD

β
x l, D

β
xD

γ
y l, D

γ
yD

γ
y l, ... = 0, 0 < α, β, γ, δ < 1),

(3.1)
Where l is an unknown function, P is a polynomial of l and its partial fractional
derivatives in which the highest order derivatives and nonlinear terms are involved.
The most important algorithms of the method as below:

Step 1. Li and He [19, 20] proposed a fractional complex transform to convert
fractional differential equations into an ordinary differential equations (ODEs) so all
analytical methods which are devoted to the advanced calculus can be can be easily
applied to the fractional calculus. By using the traveling wave variable

l(x, y, z, t) = l(ξ), ξ =
Kxβ

Γ(β + 1)
+

Nyγ

Γ(γ + 1)
+

Mzδ

Γ(δ + 1)
+

Ltα

Γ(α + 1)
, (3.2)

where K, L, M and N are nonzero arbitrary constants and we can rewrite Eq.3.1
into an ODE of l = l(ξ) in the form:

Q(l, l′, l′′, l′′′, ...) = 0. (3.3)

If possible, we should integrate Eq.(3.3) term by term one or more times. The
integral constant may be zero, for simplicity.

Step 2. Suppose that the travelling wave solution of Eq. (3.3) can be expressed
as follows:

l(ξ) =
m∑
j=0

aj[Ψ(ξ)]j +
m∑
j−1

bj[Ψ(ξ)]−j, (3.4)
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where Ψ(ξ) = [d+ ϕ(ξ)] and ϕ(ξ) is:

ϕ(ξ) = (G′(ξ)/G(ξ)). (3.5)

Here am or bm may be zero, but both of them cannot be zero at the same time, aj(j =
0, 1, 2, ...,m), bj(j = 1, 2, ...,m) and d are arbitrary constants to be determined later
and G = G(ξ) satisfies the second order nonlinear ODE:

AGG′′ −BGG′ − C(G′)2 − EG2 = 0, (3.6)

where A, B, C and E are real parameters.

Step 3. To determine the positive integer m, taking the homogeneous balance
between the highest order nonlinear terms and the highest order derivatives appear-
ing in Eq.3.3.

Step 4. Substituting Eq.(3.4) and Eq.(3.6) along with Eq.(3.5) and Eq.(3.3)
with the value of m obtained in Step 3 and yields polynomials in (d + ϕ(ξ))m

where (m = 0, 1, 2, ...) and (d + ϕ(ξ))−m (m = 1, 2, 3, ...). Then, each coeffi-
cient of the resulted polynomials to be zero, yields a set of algebraic equations
for aj(j = 0, 1, 2, ...,m), bj(j = 1, 2, ...,m), K, L,Mand d.

Step 5. Suppose that the value of the constants can be found by solving the
algebraic equations which are obtained in step 5. Substituting the values of d and
the general solution of Eq.(3.6) into Eq.(3.4). We can obtain a variety of exact
travelling wave solutions of Eq.(3.1).

Step 6. From the general solution of Eq. (3.6), we find the following form,

Family 1. Hyperbolic function:

When B 6= 0, λ = A−C and Ω = B2 + 4E(A−C) > 0, and C1, C2 are arbitrary
constants.

Φ(ξ) = (
G′

G
) =

B

λ
+

√
Ω

2λ

C1sinh(
√

Ω
2λ
ξ) + C2cosh(

√
Ω

2λ
ξ)

C1cosh(
√

Ω
2λ
ξ) + C2sinh(

√
Ω

2λ
ξ)

(3.7)

Family 2. Trigonometric function:

When B 6= 0, λ = A−C and Ω = B2 + 4E(A−C) < 0, and C1, C2 are arbitrary
constants.
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Φ(ξ) = (
G′

G
) =

B

λ
+

√
−Ω

2λ

C1sinh(
√
−Ω
2λ

ξ) + C2cosh(
√
−Ω
2λ

ξ)

C1cosh(
√
−Ω
2λ

ξ) + C2sinh(
√
−Ω
2λ

ξ)
(3.8)

Family 3. Rational form:

When B 6= 0, λ = A−C and Ω = B2 + 4E(A−C) = 0, and C1, C2 are arbitrary
constants.

Φ(ξ) = (
G′

G
) =

B

λ
+

C2

C1 + C2ξ
(3.9)

Family 4. Hyperbolic form:

When B = 0, λ = A− C and ∆ = λE > 0, and C1, C2 are arbitrary constants.

Φ(ξ) = (
G′

G
) =

√
∆

λ

C1sinh(
√

∆
λ
ξ) + C2cosh(

√
∆
λ
ξ)

C1cosh(
√

∆
λ
ξ) + C2sinh(

√
∆
λ
ξ)

(3.10)

Family 5. Trigonometric form:

When B = 0, λ = A− C and ∆ = λE < 0, and C1, C2 are arbitrary constants.

Φ(ξ) = (
G′

G
) =

√
−∆

λ

−C1sinh(
√
−∆
λ
ξ) + C2cosh(

√
−∆
λ
ξ)

C1cosh(
√
−∆
λ
ξ) + C2sinh(

√
−∆
λ
ξ)

(3.11)
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Chapter 4

Application

4.1 Nonlinear Korteweg-de Vries(KdV) equation

with time and space fractional derivatives

4.1.1 Kdv Equation:

Complicated Nonlinear features are generally acquired by the physical phenomena
and processes that take place in nature.For the real processes this leads to nonlinear
mathematical models . There is much interest in the practical issues involved, as well
as the development of methods to investigate the associated nonlinear mathematical
problems including nonlinear wave propagation. The development of the inverse
scattering method for the Korteweg-de Vries (KdV) equation and the subsequent
interest in soliton theory is an early example of the latter. Now a days soliton
theory has been applied in many wings of science. The ubiquitous KdV equation in
dimensionless variables reads

lt + nllx + lxxx = 0. (4.1)

Korteweg de Vries derived the KdV equation to describe shallow water waves of
long wavelength and small amplitude. It is a nonlinear evolution equation that
represents a various of important finite amplitude dispersive wave occurence. This
equation has also been used to describe a number of important physical phenomena
such as acoustic waves in a harmonic crystal and ion-acoustic waves in plasmas. As
mentioned earlier, this equation is the easiest nonlinear equation embodying two
effects: nonlinearity represented by llx, and linear dispersion represented by lxxx.
Nonlinearity of llx tends to localize the wave whereas dispersion spreads the wave
out. The fine balance between the weak nonlinearity of llx and the linear dispersion
of lxxx defines the formulation of solitons consisting of single bulged waves. Result
of the fine balance between the two effects of nonlinearity and dispersion is the
stability of solitons. This equation is the pioneer of model equations that gives
soliton solutions which characterize solitary waves that decrease monotonically at
infinity.
This equation models a variety of nonlinear wave phenomena such as shallow water
waves, acoustic waves in a harmonic crystal, and ion-acoustic waves in plasmas. The
KdV equation is completely integrable and gives rise to multiple soliton solutions.
The inverse scattering method and the Backlund transformation method and various
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other methods were used as well were studied The KdV equation has beed stuied
by these.
We have substituted the wave variable ξ = x − kt, k is the speed of wave into
Eq.(4.1) and integrating once to obtain

−kl +
n

2
l2 + l′′ = 0. (4.2)

4.1.2 Application method

Let us consider the non-linear Korteweg-de-Vries(KdV) equation with time and
space fractional derivatives[77]:

δαl

δtα
+ al

δβl

δxβ
+
δ3βl

δx3β
= 0, t > 0, 0 < α, β ≤ 1. (4.3)

By using the complex transformation Eq.(3.2), Eq.(4.3) transformed into an ordinary
differential equation. Then integrating twice, we obtain:

1

2
Ll2 +

a

6
Kl3 +

K3

2
(l′)2 + p1l + p2 = 0 (4.4)

where p1 and p2 are integral constants. Considering the homogeneous balance be-
tween the highest order non-linear terms and the highest order derivatives in Eq.(4.4)
we have,

l(ξ) = a0 + a1Ψ(ξ) + a2[Ψ(ξ)]2 + b1[Ψ(ξ)]−1 + b2[Ψ(ξ)]−2. (4.5)

4.2 System of equations

(G
′

G
+ d)6 :

12K3a2
2C

2 + 12K3a2
2A

2 + αKA2a2
3 − 24K3a2

2CA = 0

(G
′

G
+ d)5 :

96K3a2
2AdC−24K3a2

2AB+12K3a2A
2a1−48K3a2

2C
2d−48K3a2

2A
2d+24K3a2

2CB+
3αKA2a1a

2
2 − 24K3a2Ca1A+ 12K3a2C

2a1 = 0

(G
′

G
+ d)4 :

−48K3a2A
2da1 + 12K3a2

2B
2 + 3K3a2

1C
2 + 3LA2a2

2 + 72K3a2
2AdB − 72K3a2

2CdB +
3αKA2a2

1a2 +72K3a2
2C

2d2 +3αKA2a0a
2
2−24K3a2

2AE+3K3a2
1A

2 +96K3a2Ada1C−
48K3a2C

2da1−24K3a2Aa1B−6K3a2
1CA−144K3a2

2Ad
2C+24K3a2

2CE+72K3a2
2A

2d2+
24K3a2Ca1B = 0

(G
′

G
+ d)3 :

6LA2a1a2 + αKA2a3
1 − 48K3a2

2A
2d3 − 48K3a2

2C
2d3 − 24K3a2

2B
2d − 12K3a2

1A
2d −

12K3a2
1C

2d−12K3a2C
2b1−12K3a2A

2b1 +24K3a2
2BE+12K3a2B

2a1 +6K3a2
1CB−

6K3a2
1AB+3αKA2a2

2b1+96K3a2
2Ad

3C−72K3a2
2Ad

2B+72K3a2A
2d2a1+48K3a2

2AdE+
72K3a2

2Cd
2B + 72K3a2C

2d2a1 − 48K3a2
2CdE + 24K3a2

1AdC + 6αKA2a0a1a2

−144K3a2Ad
2a1C+72K3a2Ada1B−72K3a2Cda1B+24K3a2Ca1E+24K3a2Cb1A−

24K3a2Aa1E = 0
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(G
′

G
+ d)2 :

12K3a2
2E

2+6p1A
2a2+3K3a2

1B
2+3LA2a2

1+6LA2a0a2+12K3a2
2C

2d4+12K3a2
2B

2d2+
12K3a2

2A
2d4+18K3a2

1A
2d2+18K3a2

1C
2d2−24K3a2C

2b2−24K3a2A
2b2+6K3a2

1CE−
6K3a1C

2b1 − 6K3a2
1AE − 6K3a1A

2b1 + 3αKA2a2
0a2 + 3αKA2a0a

2
1 + 3αKA2a2

2b2 −
48K3a2A

2d3a1 + 48K3a2A
2db1 − 48K3a2C

2d3a1 + 48K3a2C
2db1 − 24K3a2

2Cd
3B −

24K3a2
2Cd

4A+ 24K3a2
2Cd

2E + 24K3a2
2Bd

3A− 24K3a2
2BdE − 24K3a2B

2da1

− 24K3a2
2Ad

2E − 36K3a2
1Ad

2C + 18K3a2
1AdB − 18K3a2

1CdB + 6αKA2a1a2b1

+96K3a2Ad
3a1C−72K3a2Ad

2a1B+48K3a2Ada1E−96K3a2Adb1C+72K3a2Cd
2a1B−

48K3a2Cda1E + 12K3a1Cb1A− 24K3a2Cb1B + 48K3a2Cb2A
+ 24K3a2Ab1B + 24K3a2Ba1E = 0

(G
′

G
+ d)1 :

6p1A
2a1 + 6LA2a0a1 + 6LA2a2b1 − 12K3a2

1A
2d3 − 12K3a2

1C
2d3 − 6K3a2

1B
2d

−12K3a2B
2b1−12K3a1c

2b2−12K3a1A
2b2+12K63a2E

2a1+6K3a2
1BE+3αKA2a2

0a1+
3αKA2a2

1b1 − 72K3a2A
2d2b1 + 96K3a2A

2db2 − 72K3a2C
2d2b1 + 96K3a2C

2db2

+12K3a2C
2d4a1 +12K3a2B

2d2a1 +12K3a2A
2d4a1 +24K3a2

1Ad
3C−18K3a2

1Ad
2B+

12K3a1AdE + 24K3a1A
2db1 + 18K3a2

1Cd
2B − 12K3a2

1CdE + 24K3a1C
2db1

+6αKA2a0a2b1+6αKA2a1a2b2+144K3a2Ad
2b1C−72K3a2Ab1B−192K3a2Adb2C+

72K3a2Bd
3a1A−24k3a2Cd

3a1B−24K3a2Cd
4a1A+24K3a2Cd

2a1E+24K3a2Bd
3a1A−

24K3a2Bda1E − 24K3a2Ad
2a1E − 48K3a1Adb1C − 12K3a1Cb1B + 24K3a1Cb2A+

12K3a1Ab1B − 24K3a2Cb1E − 48K3a2Cb2B + 24K3a2Ab1E + 48K3a2Ab2B = 0

(G
′

G
+ d)0 :

6p1A
2a0 + 3K3a2

1E
2 + 3LA2a2

0 + 3K3b2
1C

2 + 3K3b2
1A

2 + 6LA2a1b1 + 6LA2a2b2 +
αKA2a3

0 + 3K3a2
1C

2d4 + 3K3a2
1B

2d2 + 3K3a2
1A

2d4 − 24K3a2B
2b2 − 6K3a1B

2b1 −
6K3b2

1CA+3αKA2a2
1b2+3αKA2a2b

2
1+48K3a2A

2d3b1−144K3a2A
2d2b2+48K3a2C

2d3b1

−144K3a2C
2d2b2 +24K3a2B

2db1−36K3a1A
2d2b1 +48K3a1A

2db2−36K3a1C
2d2b1 +

48K3a1C
2db2−6K3a2

1Cd
3B−6K3a2

1Cd
4A+6K3a2

1Cd
2E+6K3a2

1Bd
3A−6K3a2

1BdE−
6K3a2

1Ad
2E+6p2A

2+6αKA2a0a1b1+6αKA2a0a2b2−96K3a2Ad
3b1C+72K3a2Ad

2b1B+
288K3a2Ad

2b2C−48K3a2Adb1E−144K3a2Adb2B−72K3a2Cd
2b1B+48K3a2Cdb1E+

144K3a2Cdb2B+72K3a1Ad
2b1C−36K3a1Adb1B−96K3a1Adb2C−12K3a1Cb1E−

24K3a1Cb2B + 12K3a1Ab1E + 24K3a1Ab2B − 48K3a2Cb2E + 48K3a2Ab2E
− 24K3a2Bb1E + 36K3a1Cdb1B = 0

(G
′

G
+ d)−1 :

6p1A
2b1+6LA2a0b1+6LA2a1b2−12K3b2

1A
2d−12K3b2

1C
2d−12K3a2E

2b1−12K3a1b2+
6K3b2

1CB + 12K3b1C
2b2 − 6K3b2

1AB + 12K3b1A
2b2 + 3αKA2a2

0b1 + 3αKA2a1b
2
1 +

96K3a2A
2d3b2 + 96K3a2C

2d3b2 − 12K3a2C
2d4b1 − 12K3a2B

2d2b1 + 48K3a2B
2db2 −

12K3a2A
2d4b1 + 24K3a1A

2d3b1− 72K3a1A
2d2b2 + 24K3a1C

2d3b1− 72K3a1C
2d2b2 +

12K3a1B
2db1 + 24K3b2

1AdC + 6αKA2a0a1b2 + 6αKA2a2b1b2 − 192K3a2Ad
3b2C +

144K3a2Ad
2b2B−96K3a2Adb2E−144K3a2Cd

2b2B+96K3a2Cdb2E+24K3a2Cd
3b1B+

24K3a2Cd
4b1A−24K3a2Cd

2b1E−24K3a2Bd
3b1A+24K3a2Bdb1E+24K3a2Ad

2b1E−
48K3a1Ad

3b1C+36K3a1Ad
2b1B+144K3a1Ad

2b2C−24K3a1Adb1E−72K3a1Adb2B−
24K3a1Cb2E + 2424K3aAb2E − 12K3a1Bb1E − 24K3b1Cb2A− 48K3a2Bb2E
− 36K3a1Cd

2b1B + 24K3a1Cdb1E + 72K3a1Cdb2B = 0

(G
′

G
+ d)−2 :

(12K3b2
2C

2 + 12K3b2
2A

2 + 3K3b2
1A

2 + 3K3b2
1 + 6p1A

2b2 + 6LA2a0b2 + 18K3b2
1A

2d2 +
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18K3b2
1C

2d2 − 24K3a2E
2b2 − 6K3a1E

2b1 + 6K3b2
1CE − 6K3b2

1AE − 24K3b2
2CA +

3αKA2a2
0b2+3αKA2a0b

2
1+3αKA2a2b

2
2−24K3a2C

2d4b2−24K3a2B
2d2b2−24K3a2A

2d4b2+
48K3a1A

2d3b2 + 48K3a1C
2d3b2 − 6K3a1C

2d4b1 − 6K3a1B
2d2b1 + 24K3a1B

2db2 −
6K3a1A

2d4b1−36K3b2
1Ad

2C+18K3b2
1AdB−48K3b1A

2db2−18K3b2
1CdB−48K3b1C

2db2+
6αKA2a1b1b2+48K3a2Cd

3b2B+48K3a2Cd
4b2A−48K3a2Cd

2b2E−48K3a2Bd
3b2A+

48K3a2Bdb2E+48K3a2Ad
2b2E−96K3a1Ad

3b2C+72K3a1Ad
2b2B−24K3a1Bb2E+

24K3b1Cb2B − 24K3b1Ab2B − 48K3a1Adb2E − 72K3a1Cd
2b2B + 48K3a1Cdb2E +

12K3a1Cd
3b1B+12K3a1Cd

4b1A−12K3a1Cd
2b1E−12K3a1Bd

3b1A+12K3a1Bdb1E+
12K3a1Ad

2b1E + 96K3b1Adb2C = 0

(G
′

G
+ d)−3 :

6LA2b1b2+αKA2b3
1−12K3b2

1A
2d3−12K3b2

1C
2d3−6K3b2

1B
2d−48K3b2

2A
2d−48K3b2

2C
2d−

12K3a1E
2b2 + 6K3b2

1BE + 12K3b1B
2b2 + 24K3b2

2CB − 24K3b2
2AB + 3αKA2a1b

2
2 +

96K3b2
2AdC − 12K3a1C

2d4b2 − 12K3a1B
2d2b2 − 12K3a1A

2d4b2 + 24K3b2
1Ad

3C −
18K3b2

1Ad
2B+72K3b1A

d2b2+12K3b2
1AdE+18K3b2

1Cd
2B+72K2b1C

2d2b2−12K3b2
1CdE+

6αKA2a0b1b2 + 24K3b1Cb2E − 24K3b1b2E + 24K3a1Cd
3b2B + 24K3a1Cd

4b2A −
24K3a1Cd

2b2E−24K3a1Bd
3b2A+24K3a1Bdb2E+24K3a1Ad

2b2E−144K3b1Ad
2b2C+

72K3b1Adb2B − 72K3b1Cdb2B = 0

(G
′

G
+ d)−4 :

3K3b2
1E

2+12K3b2
2B

2+3LA2b2
2+3K3b2

1C
2d4+3K3b2

1B
2d2+3K3b2

1A
2d4+72K3b2

2A
2d2+

72K3b2
2C

2d2 + 24K3b2
2CE− 24K3b2

2AE+ 3αKA2a0b
2
2 + 3αKA2b2

1b2− 72K3b2
2CdB−

6K3b2
1Ad

2E−144K3b2
2Ad

2C+72K3b2
2AdB−48K3b1A

2d3b2−48K3b1C
2d3b2−6K3b2

1Cd
3B−

6K3b2
1Cd

4A+6K3b2
1Cd

2E+6K3b2
1Bd

3A−6K3b2
1BdE−24K3b1B

2db2+24K3b1Bb2E+
96K3b1Ad

3b2C−72K3b1Ad
2b2B+48K3b1Adb2E+72K3b1Cd

2b2B−48K3b1Cdb2E =
0

(G
′

G
+ d)−5 :

−24K3b2
2B

2d+12K3b1A
2d4b2+12K3b1E

2b2+72K3b2
2Cd

2B+12K3b1C
2d4b2+96K3b2

2Ad
3C−

48K3b2
2A

2d3 + 3αKA2b1b
2
2 + 24K3b1Bd

3b2A − 24K3b1Ad
2b2E − 24K3b1Cd

4b2A +
24K3b2

2BE − 48K3b2
2CdE − 24K3b1Cd

3b2B + 12K3b1B
2d2b2 + 24K3b1Cd

2b2E −
48K3b2

2C
2d3 − 24K3b1Bdb2E + 48K3b2

2AdE − 72K3b2
2Ad

2B = 0

(G
′

G
+ d)−6 :

−24K3b2
2BdE−24K3b2

2Ad
2E−24K3b2

2Cd
3B+12K3b2

2E
2+αKA2b3

2+24K3b2
2Bd

3A+
12K3b2

2A
2d4 − 24K3b2

2Cd
4A+ 24K3b2

2Cd
2E + 12K3b2

2B
2d2 + 12K3b2

2C
2d4 = 0

4.3 Cases of equations

Case 1

L =
−K
A2
{12K2d2λ2 + 12K2Bdλ− 8K2Eλ+ a0aA

2 +K2B2},

a1 =
12K2

aA2
(2dλ2 +Bλ),
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d = d,

a2 =
−12K2λ2

aA2
,

b1 = 0,

b2 = 0,

p1 =
K

2aA4
(F1 + ...+ F6),

p2 =
−K

6a2A6
(S1 + ...S16),

λ = A− C,

F1 = 144K4d4(A4 + C4) + a2a2
0A

4 + aa0K
2A2(16CE + 24C2d2 − 48ACd2),

F2 = 576K4d2ACE(A− C)− 24K4B2E(A− C)− 96K4ACE2 + 24aa0dK
2A3B,

F3 = 2aa0K
2A2B2−864K4d3ABC(A−C)−192dK4BE(A2−C2)−336d2K4AB2C,

F4 = 24aa0d
2K2A4−576K4d4AC(A2−C2)−192d2K4A3E−288d3K4BC3+864d4K4A2C2,

F5 = 24dK4B3(A− C) + 168K4d2B2(A2 + C2) + 192d2K4C3E + 228d3K4BA3,

F6 = 384dK4ABCE − 16aa0K
2A3E + 48K4E2(A2 + C2)− 24aa0dK

2A2BC,

S1 = 432K6B2C2E2+a3a3
0A

6+432d4K4A2C2−−288aa0K
4A3CE2−72aa0K

3A3CE2

−72aa0K
4A3B2E − 576aa0K

4A3B2E,

S2 = 2592aa0d
4K4A4C2−1728aa0d

4K4A3C(A2+C2)+846aa0d
3K4A5B+504aa0d

2K4A4B2

+36a2a2
0d

2K2A4C2,

S3 = 72aa0dK
4A3B3+24a2a2

0K
2A4CE−72a2a2

0d
2K2A5C+36a2a2

0dK
2A5B+144aa0K

4A2C2E2,

S4 = 1152aa0dK
4A3BCE− 576aa0dK

4A62BC2E+ 432aa0d
4K4a6 + 36a2a2

0d
2K2A6

−24a2a2
0K

2A5E + 3a2a2
0K

2A4B2,

S5 = 144aa0K
4A4E2+12960d2K6AB2CE(A−C)−41472d3K6A2BC2E+5184dK6ABC2E2

+27648d3K6ABC3E,
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S6 = 27648d3K6A3BCE−518dK6A2BCE2 +1728dK6A2BCE2 +4320d2K6B2C3E

−6912dK6BC4E − 1728dK6BC3E2,

S7 = 34560d4K6A2C3E−17280d4K6AC4E−6912d2K6AC3E2−22464d4K6AB2C3

−864dK6B3C2E − 51840d5K6A2BC3,

S8 = 25920d5K6ABC4−34560d4K6A3C2E+10368d2K6A2C2E2+33696d4K6A2B2C2

+7776d3K6AB3C2 + 51840d5K6A3BC2,

S9 = 17280d4K6A4CE − 6912d2K6A3CE2 − 864d2K6AB4C − 22464d4K6A3B2C

−7776d3K6A2B3C − 864K6AB2CE2,

S10 = 1728dK6A3BE2−25920d5K6BC−4320d2K6A3B2−6912d3K6A4BE−864dK6A2B3E

+5616d4K6B2C4,

S11 = 3456d4K6C5E−25920d3K6B3C3−5184d5K6BC5+1728d2K6C4E2+25920d6K6A4C2

−10368d6K6AC5,

S12 = 432d2K6B4C2+25920d6K6A2C4−34560d6K6A3C3−10368d6K6A5C−3456d4K6A5E

+1728d2K6A4E2,

S13 = 432d2K6A2B4+5616d4K6A4B2+2592d3K6A3B3+432K6A2B2E2+5184d5K6A5B

+1728d6K6C6,

S14 = 1728d6K6A6+72aa0K
4A2B2CE+1728aa0d

2K4A3CE(A−C)+2592aa0d
3K4A3BC2

−2592aa0d
3K4A4BC,

S15 = 567aa0d
2K4A2C3E−576aa0dK

4A4BE−1008aa0d
2K4A3B2C−864aa0d

3K4A2BC3,

S16 = 504aa0d
2K4A2B2C272aa0dK

4A2B3C − 36a2a2
0dK

2A4BC

Where,
Ψ(ξ) = d+ φ(ξ)

andA,B,C, d, E are free constraints. (4.6)
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Case 2

L =
−K
A2
{12K2d2(A− C)2 + 12K2Bd(A− C)− 8K2E(A− C) + a0aA

2 +K2B2},

a1 = 0,

d = d,

a2 = 0,

b1 =
12K2

aA2
{2d3(A− C)2 + 3d2B(A− C)− 2dE(A− C) + dB2 −BE},

b2 =
−12K2

aA2
{d4(A− C)2 + 2d3B(A− C)− 2d2E(A− C) + d2B2 − 2dBE + E2},

p1 =
K

2aA4
(q1 + ...+ q6),

p2 =
−K

6a2A6
(h1 + ...h15),

q1 = 144K4d4(A4 + C4) + a2a2
0A

4 + aa0K
2A2(16CE + 24C2d2 − 48ACd2),

q2 = 24aa0K
2dA3B − 96K4ACE2 − 24K4B2E(A− C) + 576d2K4ACE(A− C),

q3 = 2aa0K
2A2B2−864d3K4ABC(A−C)−192dK4BE(A2 +C2)−336d2K4AB2C,

q4 = 24aa0d
2K2A4−192d3K4A3E−228d3K4BC3+864d4K4A2C2−576d4K4AC(A2+C2),

q5 = 192d2K4C3E + 288d3K4BA3 + 168d2K4B2(A2 + C2) + 24dK4B3(A− C),

q6 = 384dK4ABCE − 16aa0K
2A3E + 48K4E2(A2 + C2)− 24aa0K

2A2BC,

h1 = 432K6B2C2E2 + a3a3
0A

6 + 432aa0d
2K4A2C4 − aa0K

4A3E(228EC + 72B2)

−576a0d
2K4A5E,

h2 = aa0d
4K4A3C{2592AC − 1728C(C2 + A2)}+ aa0d

2K4A4B(864dA+ 504AB)

+36a2a2
0d

2K2A4C2,

h3 = 72aa0dK
4A3B3+a2a2

0K
2A4(24CE−72d2AC+36dAB)+aa0K

4A2EC(144EC+1152dAB),

h4 = aa0K
4A4(144E2+432d4A2)−576aa0dK

4A2BC2E+a2a2
0K

2A4(36d2A2−24AE+3B2),

h5 = d2K6A2BCE(27648dA+12960B−41472dC)+dK6ABC2E(27648d2C+5184E−12960dB),

Chapter4 Humayra Shafia 25



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

h6 = dK6ABCE(1728B2−5184AE)−d3K6C4E(6912B+17280dA)+dK6BC3E(4320dB−1728E),

h7 = d4K6AC3(34560AE−22464B2−51840dAB+25920d2BC)−dK6C2E(6912dACE−864B3),

h8 = d4K6A2C(33696B2C+51840dABC+17280A2E)+d2K6AC2(10368AE2+7776ddB3

−34560d2A2E),

h9 = −d4K6A3BC(22464B+25920dA)−d2K6AC(6912A2E2+864B4+7776dAB3)−864K6AB2CE2,

h10 = d3K6B2C3(5616dC+2592B)−d2K6A3BE(4320B+6912dA)+dK6A2BE(1728AE−864B2),

h11 = d6K6AC(25920A3C−10368C4)+d4K6C5(3456E−5184dB)+d2K6C2(1728C2E2+432B4),

h12 = d2K6A2(1728A2E2+432B4)−d6K6A3C(34560C2+10368A2)+d4K6A2(25920C4E2

−3456A3E),

h13 = 1728d6K6(A6+C6)+d3K6A3B(5616AB+2592B2+5184d2A2)+432K6A2B2E2,

h14 = 72aa0K
4A2B2CE+ 1728aa0d

2K4A3CE(A−C)−2592aa0d
3K4A3BC(A−C)

−576aa0dK
4A4BE,

h15 = 576aa0d
2K4A2C3E−1008aa0d

2K4A3B2C−864aa0d
3K4A2BC3+504aa0d

2K4A2B2C2

−72aa0dK
4A2B3C − 36a2a2

0dKA
4BC.

Where,
Ψ(ξ) = d+ φ(ξ)

andA,B,C, d, E are free constraints. (4.7)

Case 3

L =
−K
A2
{aa0A

2 − 2K2B2 − 8K2E(A− C)}

,

a1 = 0,

d =
−B

2(A− C)
,
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a2 =
−12K2(A− C)2

aA2
,

b1 = 0,

b2 =
−3K2{16E2(A− C) + 8B2E}

4aA2(A− C)
,

p1 =
K

2aA4
(m1 +m2),

p2 =
−K

6a2A6
(n1 + n2 + n3),

m1 = a2a2
0A

4 − 16aa0K
2A2E(A− C)− 96K4B2E(A− C),

m2 = 384K2ACE2 − 192K4A2E2 − 4aa0K
2A2B2 − 12K4B4 − 192K4C2E2,

n1 = a3a3
0A

6 − 24a2a2
0K

2A4E(A− C)− 576aa0K
4A2E2(A− C)2 − 6a2a2

0K
2A4B2,

n2 = 13824K6E2(A− C)3 − 288aa0K
4A2B2E(A− C)− 36aa0K

4A2B4,

n3 = 10368K6B2E2(A− C)2 − 2592K6B4E(A− C) + 216K6B6

Where,
Ψ(ξ) = d+ φ(ξ)

andA,B,C, d, E are free constraints. (4.8)

Case 4

L =
−K
A2
{aa0A

2 − 8K2E(A− C)2 − 2K2B2},

a1 = 0,

d =
−B

2(A− C)
,

a2 = 0,

b1 = 0,

b2 =
−3K2{16E2(A− C) + 8B2E(A− C) +B4}

4aA2(A− C)2
,

p1 =
K

2aA4
(48K4E2(A−C)2 + 24K4B2E(A−C)− 16a0aK

2A2E(A−C) + 3K4B4

+a2a2
0A

4 − 4a0aK
2A2B2),

p2 =
−a0K

6aA4
(144K4E2(A− C)2 + 72K4B2E(A− C)

−24a0aK
2A2E(A− C) + 9K4B4 + a2a2

0A
4 − 6a0aK

2A2B2),

Where,
Ψ(ξ) = d+ φ(ξ)

andA,B,C, d, E are free constraints. (4.9)
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4.4 Solutions of equations

By using the above results of the KdV Equation we have found out the
following wave solutions of the KdV Equation :

Hyperbolic form of the wave solutions:

Substituting Eq.(4.6) and Eq.(3.7) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l1110 = a0+
12K2(2dλ2+Bλ)(d+ 1

2
B
λ

+ 1
2

√
ΩC2 coth( 1

2

√
Ω
λ
ξ)

λ
)

aA2 −12K2λ2(d+ 1
2
B
λ

+ 1
2

√
ΩC2 coth( 1

2

√
Ω
λ
ξ)

λ
)

2

aA2

If C1 6= 0 and C2 = 0

l1120 = a0+
12K2(2dλ2+Bλ)(d+ 1

2
B
λ

+ 1
2

√
ΩC1 tanh( 1

2

√
Ω
λ
ξ)

λ
)

aA2 −12K2λ2(d+ 1
2
B
λ

+ 1
2

√
ΩC1 tanh( 1

2

√
Ω
λ
ξ)

λ
)

2

aA2

Substituting Eq.(4.7) and Eq.(3.7) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l1210 = a0+
12K2{2d3λ2+3Bd2λ+B2d−2Edλ−BE}
aA2(d+ 1

2
B
λ

+ 1
2

√
ΩC2 coth( 1

2

√
Ω
λ
ξ)

λ
)
−12K2{d4λ2+2Bd3λ+B2d2−2Ed2λ−2BEd+E2}

aA2(d+ 1
2
B
λ

+ 1
2

√
ΩC2 coth( 1

2

√
Ω
λ
ξ)

λ
)

If C1 6= 0 and C2 = 0

l1220 = a0+
12K2{2d3λ2+3Bd2λ+B2d−2Edλ−BE}
aA2(d+ 1

2
B
λ

+ 1
2

√
ΩC1 tanh( 1

2

√
Ω
λ
ξ)

λ
)
−12K2{d4λ2+2Bd3λ+B2d2−2Ed2λ−2BEd+E2}

aA2(d+ 1
2
B
λ

+ 1
2

√
ΩC1 tanh( 1

2

√
Ω
λ
ξ)

λ
)

Substituting Eq.(4.8) and Eq.(3.7) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l1310 = a0 −
3K2ΩC2

2 coth ( 1
2

√
Ω
λ
ξ)

2

aA2 +
3K2{8B2E+16Eλ}λ
aA2ΩC2

2 coth ( 1
2

√
Ω
λ
ξ)

2

If C1 6= 0 and C2 = 0

l1320 = a0 −
3K2ΩC2

1 tanh ( 1
2

√
Ω
λ
ξ)

2

aA2 +
3K2{8B2E+16Eλ}λ
aA2ΩC2

1 tanh ( 1
2

√
Ω
λ
ξ)

2

Substituting Eq.(4.9) and Eq.(3.7) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0
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l1410 = a0 −
3K2{B4+8B2Eλ+16E2λ2}
aA2ΩC2

2 coth ( 1
2

√
Ω
λ
ξ)

2

If C1 6= 0 and C2 = 0

l1420 = a0 −
3K2{B4+8B2Eλ+16E2λ2}
aA2ΩC1

2 tanh ( 1
2

√
Ω
λ
ξ)

2

Trigonometric form of the wave solutions:

Substituting Eq.(4.6) and Eq.(3.8) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l2110 = a0 +
12K2(2dλ2+Bλ)(d+ 1

2
B
λ

+ 1
2

C2 coth( 1
2λ
ξ)

λ
)

aA2 − 12K2λ2(d+ 1
2
B
λ

+ 1
2

C2 coth( 1
2λ
ξ)

λ
)

2

aA2

If C1 6= 0 and C2 = 0

l2120 = a0 +
12K2(2dλ2+Bλ)(d+ 1

2
B
λ

+ 1
2

C1 tanh( 1
2λ
ξ)

λ
)

aA2 − 12K2λ2(d+ 1
2
B
λ

+ 1
2

C1 tanh( 1
2λ
ξ)

λ
)

2

aA2

Substituting Eq.(4.7) and Eq.(3.8) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l2210 = a0+
12K2{2d3λ2+3Bd2λ+B2d−2Edλ−BE}
aA2(d+ 1

2
B
λ

+ 1
2

√
ΩC2 coth( 1

2

√
Ω
λ
ξ)

λ
)
−12K2{d4λ2+2Bd3λ+B2d2−2Ed2λ−2BEd+E2}

aA2(d+ 1
2
B
λ

+ 1
2

√
ΩC2 coth( 1

2

√
Ω
λ
ξ)

λ
)

2

If C1 6= 0 and C2 = 0

l2220 = a0+
12K2{2d3λ2+3Bd2λ+B2d−2Edλ−BE}
aA2(d+ 1

2
B
λ

+ 1
2

√
ΩC1 tanh( 1

2

√
Ω
λ
ξ)

λ
)
−12K2{d4λ2+2Bd3λ+B2d2−2Ed2λ−2BEd+E2}

aA2(d+ 1
2
B
λ

+ 1
2

√
ΩC1 tanh( 1

2

√
Ω
λ
ξ)

λ
)

2

Substituting Eq.(4.8) and Eq.(3.8) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l2310 = a0 −
3K2ΩC2

2 coth ( 1
2

√
Ω
λ
ξ)

2

aA2 +
3K2{8B2E+16Eλ}λ
aA2ΩC2

2 coth ( 1
2

√
Ω
λ
ξ)

2

If C1 6= 0 and C2 = 0

l2320 = a0 −
3K2ΩC2

1 tanh ( 1
2

√
Ω
λ
ξ)

2

aA2 +
3K2{8B2E+16Eλ}λ
aA2ΩC2

1 tanh ( 1
2

√
Ω
λ
ξ)

2

Substituting Eq.(4.9) and Eq.(3.8) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:
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If C1 = 0 and C2 6= 0

l2410 = a0 −
3K2{8B2Eλ+16E2λ2+B4}
aA2ΩC2

2 coth ( 1
2

√
Ω
λ
ξ)

2

If C1 6= 0 and C2 = 0

l2420 = a0 −
3K2{8B2Eλ+16E2λ2+B4}
aA2ΩC2

1 tanh ( 1
2

√
Ω
λ
ξ)

2

Rational form of the wave solutions:

Substituting Eq.(4.6) and Eq.(3.9) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l3110 = a0 +
12K2(2dλ2+Bλ)(d+ 1

2
B
λ

+
C2
C2ξ

)
aA2 −

12K2λ2(d+ 1
2
B
λ

+ 1
2

C2
C2ξ

)
2

aA2

If C1 6= 0 and C2 = 0

l3120 = a0 +
12K2(2dλ2+Bλ)(d+ 1

2
B
λ
)

aA2 − 12K2λ2(d+ 1
2
B
λ
)

2

aA2

Substituting Eq.(4.7) and Eq.(3.9) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l3210 = a0+
12K2{2d3λ2+3Bd2λ+B2d−2Edλ−BE}

aA2(d+ 1
2
B
λ

+
C2
C2ξ

)
−12K2{d4λ2+2Bd3λ+B2d2−2Ed2λ−2BEd+E2}

aA2(d+ 1
2
B
λ

+
C2
C2ξ

)
2

If C1 6= 0 and C2 = 0

l3220 = a0+
12K2{2d3λ2+3Bd2λ+B2d−2Edλ−BE}

aA2(d+ 1
2
B
λ
)

−12K2{d4λ2+2Bd3λ+B2d2−2Ed2λ−2BEd+E2}
aA2(d+ 1

2
B
λ
)

2

Substituting Eq.(4.8) and Eq.(3.9) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l3310 = a0 − 12K2λ2C2
2

aA2C2
2ξ

+ 3
4

K2{8B2E+16Eλ}C2
2ξ

aA2λC2
2

If C1 6= 0 and C2 = 0

l3320 = does not exist

Substituting Eq.(4.9) and Eq.(3.9) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:
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If C1 = 0 and C2 6= 0

l3410 = a0 − 3
4

K2{16E2λ2+8B2Eλ+B4}C2
2ξ

aA2C2
2

If C1 6= 0 and C2 = 0

l3420 = does not exist

Hyperbolic form of the wave solutions:

Substituting Eq.(4.6) and Eq.(3.10) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l4110 = a0 +
24K2dλ2(d+

√
∆C2 coth( 1

2

√
∆
λ
ξ)

λ
)

aA2 − 12K2λ2(d+

√
∆C2 coth( 1

2

√
∆
λ
ξ)

λ
)

2

aA2

If C1 6= 0 and C2 = 0

l4120 = a0 +
24K2dλ2(d+

√
∆C1 tanh( 1

2

√
∆
λ
ξ)

λ
)

aA2 − 12K2λ2(d+

√
∆C1 tanh( 1

2

√
∆
λ
ξ)

λ
)

2

aA2

Substituting Eq.(4.7) and Eq.(3.10) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l4210 = a0 +
12K2{2d3λ2−2Edλ}

aA2(d+

√
∆C2 coth(

√
∆
λ
ξ)

λ
)
− 12K2{d4λ2−2Ed2λ+E2}

aA2(d+

√
∆C2 coth(

√
∆
λ
ξ)

λ
)

2

If C1 6= 0 and C2 = 0

l4220 = a0 +
12K2{2d3λ2−2Edλ}

aA2(d+

√
∆C1 tanh(

√
∆
λ
ξ)

λ
)
− 12K2{d4λ2−2Ed2λ+E2}

aA2(d+

√
∆C1 tanh(

√
∆
λ
ξ)

λ
)

2

Substituting Eq.(4.8) and Eq.(3.10) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l4310 = a0 +
12K2∆C2

2 coth (
√

∆
λ
ξ)

2

aA2 − 3
4

K2{16Eλ}λ
aA2∆C2

2 coth (
√

∆
λ
ξ)

2

If C1 6= 0 and C2 = 0

l4320 = a0 +
12K2∆C1

2 tanh (
√

∆
λ
ξ)

2

aA2 − 3
4

K2{16Eλ}λ
aA2∆C1

2 tanh (
√

∆
λ
ξ)

2

Substituting Eq.(4.9) and Eq.(3.10) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

Chapter4 Humayra Shafia 31



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

If C1 = 0 and C2 6= 0

l4410 = a0 − 3
4

K2{16E2λ2}
aA2∆C2

2 coth ( 1
2

√
∆
λ
ξ)

2

If C1 6= 0 and C2 = 0

l4420 = a0 − 3
4

K2{16E2λ2}
aA2∆C1

2 tanh ( 1
2

√
∆
λ
ξ)

2

Substituting Eq.(4.6) and Eq.(3.11) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l5110 = a0 +
24K2dλ2(d+

√
∆C2 coth(

√
∆
λ
ξ)

λ
)

aA2 − 12K2λ2(d+

√
∆C2 coth(

√
∆
λ
ξ)

λ
)

2

aA2

If C1 6= 0 and C2 = 0

l5120 = a0 +
24K2dλ2(d+

√
∆C1 tanh(

√
∆
λ
ξ)

λ
)

aA2 − 12K2λ2(d+

√
∆C1 tanh(

√
∆
λ
ξ)

λ
)

2

aA2

Substituting Eq.(4.7) and Eq.(3.11) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l5210 = a0 +
12K2{2d3λ2−2Edλ}

aA2(d+

√
∆C2 coth(

√
∆
λ
ξ)

λ
)
− 12K2{d4λ2−2Ed2λ+E2}

aA2(d+

√
∆C2 coth(

√
∆
λ
ξ)

λ
)

2

If C1 6= 0 and C2 = 0

l5220 = a0 +
12K2{2d3λ2−2Edλ}

aA2(d+

√
∆C1 tanh(

√
∆
λ
ξ)

λ
)
− 12K2{d4λ2−2Ed2λ+E2}

aA2(d+

√
∆C1 tanh(

√
∆
λ
ξ)

λ
)

2

Substituting Eq.(4.8) and Eq.(3.11) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:

If C1 = 0 and C2 6= 0

l5310 = a0 −
12K2∆C2

2 coth (
√

∆
λ
ξ)

2

aA2 − 3
4

K2{16Eλ}λ
aA2∆C2

2 coth (
√

∆
λ
ξ)

2

If C1 6= 0 and C2 = 0

l5320 = a0 −
12K2∆C1

2 tanh (
√

∆
λ
ξ)

2

aA2 − 3
4

K2{16Eλ}λ
aA2∆C1

2 tanh (
√

∆
λ
ξ)

2

Substituting Eq.(4.9) and Eq.(3.11) into Eq.(4.5) and simplifying, we get follow-
ing travelling wave solutions:
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If C1 = 0 and C2 6= 0

l5410 = a0 − 3
4

K2{16E2λ2}
aA2∆C2

2 coth ( 1
2

√
∆
λ
ξ)

2

If C1 6= 0 and C2 = 0

l5420 = a0 − 3
4

K2{16E2λ2}
aA2∆C1

2 tanh ( 1
2

√
∆
λ
ξ)

2

4.5 Graphical Illustrations of KdV Equation:

We have taken some different values of constraints A,B,C,d,E,C1 and C2 for finding
out the values of u and have found the graphical presentation of u in maple. For
different types of family we have found different types of graph and we have found
difference between the two graphs for the same equation when we have change the
values of the arbitrary constants. With the help of computational software, Maple,
we have plotted graphs of some traveling waves solutions listed below:

Considering the values of A = 0.9, B = 0.8, C = 0.7, d = 0.6, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 1: 3D graph of equation l1110
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Considering the values of A = 1.0, B = 0.8, C = 0.7, d = 0.6, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 2: 3D graph of equation l120

Considering the values of A = 0.9, B = 0.8, C = 0.7, d = 0.6, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 3: 3D graph of equation l1210
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Considering the values of A = 1.0, B = 0.8, C = 0.7, d = 0.6, E = 0.5, k = −5√
6
,

x = −5..5, t = −5..5 and ξ = x− kt, we get the following figure:

figure 4: 3D graph of equation l1220

Considering the values of A = 1.0, B = 0.8, C = 0.7, d = −B
2(A−C)

, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 5: 3D graph of equation l1320
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Considering the values of A = 1.0, B = 0.8, C = .7, d = −B
2(A−C)

, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 6: 3D graph of equation l1420

Considering the values of A = 1.0, B = 0.8, C = 5, d = 0.6, E = 0.5, k = −1√
6
,

and ξ = x− kt, we get the following figure:

figure 7: 3D graph of equation l2110
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Considering the values of A = 1.0, B = 0.8, k = 0.7, d = 0.6, E = 0.5, k = −5√
6
,

x = −5..5, t = −5..5 and ξ = x− kt, we get the following figure:

figure 8: 3D graph of equation l2120

Considering the values of A = 1.0, B = 0.8, C = 5, d = −B
2(A−C)

, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 9: 3D graph of equation l2410
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Considering the values of A = 2.0, B = 2.0, C = 1.0, d = 0.6, E = −1, k = 9.0,
x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 10: 3D graph of equation l3110

Considering the values of A = 2.0, B = 2.0, C = 1.0, d = 0.6, E = −1.0, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 11: 3D graph of equation l3110
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Considering the values of A = 1.0, B = 0.0, C = 0.7, d = 0.0, E = 0.5, k = −5√
6
,

x = −5..5, t = −5..5 and ξ = x− kt, we get the following figure:

figure 12: 3D graph of equation l4420

Considering the values of A = 1.0, B = 0.0, C = 0.7, d = 0.6, E = 0.5, k = −5√
6
,

x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 13: 3D graph of equation l5120

Chapter4 Humayra Shafia 39



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

Considering the values of A = 1.0, B = 0.0, C = 0.7, d = 0.0, E = 0.5, k = −0.5,
x = −25..25, t = −25..25 and ξ = x− kt, we get the following figure:

figure 14: 3D graph of equation l5310

Considering the values of A = 1.0, B = 0.0, C = 0.7, d = 0.0, E = 0.5, k = −0.5,
x = −5..5, t = −5..5 and ξ = x− kt, we get the following figure:

figure 15: 3D graph of equation l5320
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Considering the values of A = 1.0, B = 0.0, C = 0.7, d = 0.0, E = 0.5, k = −0.5,
x = −5..5, t = −5..5 and ξ = x− kt, we get the following figure:

figure 16: 3D graph of equation l5420
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Chapter 5

Conclusion

In this thesis, to find the travelling wave solutins for the KdV equation we suc-
cessfully used the (G′/G)-expansion method to solve fractional nonlinear partial
differential equations. This method is dependable and efficient also provides new
solutions. Now, briefly summarizing the results in this thesis. First of all, for solv-
ing nonlinear fractional differential equations the fractional complex transform is
extremely simple but effective. Secondly, the (G′/G)-expansion method for nonlin-
ear fractional differential equations has its own pros: direct, fundamental, succinct;
and it can be used for many other nonlinear equations. The auxiliary equation used
in the method, which involves many arbitrary parameters can take any real values
and then the nonlinear P.D.E. produces various new solutions. By using this method
we have successfully found five types of solutions in terms of hyperbolic, trigono-
metric and rational functions.To smooth the computation of the complex systems
of algebraic equations the solutions can be investigated with the help of symbolic
computational software like the Maple or Matlab .
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Chapter 6

Future Work

With many real parameters, which are straightforward and precise the method used
in this thesis provides many new and more plentiful general and explicit travelling
wave solutions . Simultaneously it also discloses more of the important insight mech-
anism of the complex physical phenomena of NLFDEs.This method could be used
to solve different and all sorts of NLFDEs that arises frequently in mathematical
physics, engineering sciences and in many scientific real time application fields. Ad-
ditionally the solutions that we have found from the given results can be used for
solving purpose in the application of plasma physics such as tsunami, typhoon or
cyclones that include water bodies where nonlinear problems are involved.

43



References

[1] Adler, F. P. (1956). Missile Guidance by Three-Dimensional Proportional Navi-
gation. Journal of Applied Physics, 27(5), 500-507.

[2] Frankel, J. A. (1979). On the mark: A theory of floating exchange rates based
on real interest differentials. The American Economic Review, 69(4), 610-622.

[3] Gao, L., Chen, L., Fan, Y., Ma, H. (1992). A nonlinear control design for
power systems. Automatica, 28(5), 975-979.

[4] Abdel-Rahim, N. M., Quaicoe, J. E. (1996). Analysis and design of a multiple
feedback loop control strategy for single-phase voltage-source UPS inverters. IEEE
Transactions on power electronics, 11(4), 532-541.

[5] Kuroda, T., Suzuki, K., Mita, S., Fujita, T., Yamane, F., Sano, F., ... Saku-
rai, T. (1998). Variable supply-voltage scheme for low-power high-speed CMOS
digital design. IEEE Journal of Solid-State Circuits, 33(3), 454-462.

[6] Park, Y. J., Wen, Y. K., Ang, A. (1986). Random vibration of hysteretic
systems under bi-directional ground motions. Earthquake engineering structural
dynamics, 14(4), 543-557.

[7] Kuang, Y. (Ed.). (1993). Delay differential equations: with applications in
population dynamics (Vol. 191). Academic Press.

[8] Baranyi, J., Roberts, T. A., McClure, P. (1993). A non-autonomous differ-
ential equation to model bacterial growth. Food microbiology, 10(1), 43-59.

[9] Mao, X. (2007). Stochastic differential equations and applications. Elsevier.

[10] Krane, K. S., Halliday, D. (1988). Introductory nuclear physics (Vol. 465).
New York: Wiley.

[11]Thompson, I. J. (1988). Coupled reaction channels calculations in nuclear
physics. Computer Physics Reports, 7(4), 167-212. Kotikov, A. V. (1991). Differ-
ential equations method. New technique for massive Feynman diagram calculation.
Physics Letters B, 254(1-2), 158-164.

[12] Vollmer, M. (2009). Newton’s law of cooling revisited. European Journal of
Physics, 30(5), 1063.

[13] Beam, R. M., Warming, R. (1978). An implicit factored scheme for the
compressible Navier-Stokes equations. AIAA journal, 16(4), 393-402

[14] Temam, R. (1995). Navier-Stokes equations and nonlinear functional anal-
ysis (Vol. 66). Siam.

[15] Kangro, R., Nicolaides, R. (2000). Far Field Boundary Conditions for
Black–Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368.

[16] Favini, A., Goldstein, G. R., Goldstein, J. A., Romanelli, S. (2002). The
heat equation with generalized Wentzell boundary condition. Journal of evolution
equations, 2(1), 1-19.

[17] 5. Luikov, A. V. (1975). Systems of differential equations of heat and mass

44



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

transfer in capillary-porous bodies. International Journal of Heat and mass transfer,
18(1), 1-14.

[18] Harvey, R., Polking, J. (1979). Fundamental solutions in complex analysis
Part I. The Cauchy Riemann operator. Duke Math. J, 46(2), 253-300.

[19] Chen, S. C., Shaw, M. C. (2001). Partial differential equations in several
complex variables (Vol. 19). American Mathematical Society.

[20] Namias, V. (1980). The fractional order Fourier transform and its applica-
tion to quantum mechanics. IMA Journal of Applied Mathematics, 25(3), 241-265.

[21] Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., Morris, H. C. (1982). Solitons
and nonlinear wave equations.

[22] Mao, X., Yuan, C., Zou, J. (2005). Stochastic differential delay equations of
population dynamics. Journal of Mathematical Analysis and Applications, 304(1),
296-320

[23] Yee, K. (1966). Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media. IEEE Transactions on antennas and
propagation, 14(3), 302-307.

[24] 11. Gilbarg, D., Trudinger, N. S. (2015). Elliptic partial differential equa-
tions of second order. Springer

[25] Einstein, A., Rosen, N. (1935). The particle problem in the general theory
of relativity. Physical Review, 48(1), 73.

[26] Cajori, Florian. (1928). “The Early History of Partial Differential Equations
and of Partial Differentiation and Integration” (abs), The American Mathematical
Monthly, 35(9):459-.

[27] Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The
Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I.
p. 66].

[28] Tibell, Gunnar. (2008). “The Bernoulli Brothers”, Uppsala University.

[29] Wazwaz, A. M. (2010). Partial differential equations and solitary waves
theory. Springer Science Business Media.

[30] Eilbeck, Chris(2013). John Scott Russell and the solitary wave.
Retrieved from: http://www.macs.hw.ac.uk/ chris/scottrussell.html K. S. Miller, B.
RoWiley Sons, New York, NY, USA; 1993.

[31] Mehdi Ganjiani,Solution of nonlinear fractional differential equations us-
ing homotopy analysis method,Applied Mathematical Modelling,Volume 34, Issue
6,2010,Pages 1634-1641, ISSN 0307-904X, https://doi.org/10.1016/j.apm.2009.09.011.
(http://www.sciencedirect.com/science/article/pii/S0307904X09002893) Keywords:
Homotopy analysis method; Nonlinear differential equations; Fractional order

[32] M. Caputo, Elasticit‘a e Dissipazione, Zanichelli, Bologna, 1965.

[33] G. Jumarie. Modified Riemann-Liouville derivative and fractional Taylor
series of non-differentiable functions Further results, Computers and Mathematics
with Applications, 2006. (51), 1367- 1376.

[34] S. Das. Functional Fractional Calculus 2nd Edition, SpringerVerlag 2011.

Chapter6 Humayra Shafia 45



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

[35] Y. Hua, Y. Luoa, Z. Lu, Analytical solution of the linear fractional differ-
ential equation by Adomian decomposition method. Journal of Computational and
Applied Mathematics. 215 (2008) 220-229.

[36] S. S. Ray, R.K. Bera. An approximate solution of a nonlinear fractional dif-
ferential equation by Adomian decomposition method. Applied Mathematics and
Computation. 167 (2005) 561- 571.

[37] Shaher Momani, Zaid Odibat,Homotopy perturbation method for nonlinear
partial differential equations of fractional order, Physics Letters A,Volume 365, Is-
sues 5–6, 2007, Pages 345-350, ISSN 0375-9601, https://doi.org/10.1016/j.physleta.2007.01.046.
(http://www.sciencedirect.com/science/article/pii/S0375960107001831)

[38] Zaid Odibat, Shaher Momani, Modified homotopy perturbation method:
Application to quadratic Riccati differential equation of fractional order, Chaos, Soli-
tons Fractals, Volume 36, Issue 1, 2008, Pages 167-174, ISSN 0960-0779, https://doi.org/10.1016/j.chaos.2006.06.041.
(http://www.sciencedirect.com/science/article/pii/S0960077906005972)

[39] Shaher Momani, Zaid Odibat, Comparison between the homotopy perturba-
tion method and the variational iteration method for linear fractional partial differ-
ential equations, Computers Mathematics with Applications, Volume 54, Issues 7–8,
2007, Pages 910-919, ISSN 0898-1221, https://doi.org/10.1016/j.camwa.2006.12.037.
(http://www.sciencedirect.com/science/article/pii/S0898122107002520)

[40] O. Abdulaziz, I. Hashim, S. Momani, Application of homotopyperturbation
method to fractional IVPs, J. Comput. Appl. Math. 216 (2008) 574-584

[41] V.S. Ertürk, S. Momani. Solving systems of fractional differential equations
using differential transform method. Journal of Computational and Applied Math-
ematics 215 (2008) 142-151.

[42] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and
Derivatives: Theory and Applications, Gordon and Breach Science Publishers, New
York, NY, USA, 1993.

[43] H. Beyer and S. Kempfle, “Definition of physically consistent damping laws
with fractional derivatives,” Journal of Applied Mathematics and Mechanics, vol.
75, pp. 623–635, 1995.

[44] S. Kempfle and H. Beyer, “Global and causal solutions of fractional differ-
ential equations,” in Proceedings of the 2nd International Workshop on Transform
Methods and Special Functions, pp. 210–216, Science Culture Technology Publish-
ing, Varna, Bulgaria, 1996.

[45] R. L. Bagley, “On the fractional order initial value problem and its engineer-
ing applications,” in Fractional Calculus and Its Applications, K. Nishimoto, Ed.,
pp. 12–20, College of Engineering, Nihon University, Tokyo, Japan, 1990.

46 Chapter6 Humayra Shafia



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

[46] G. Jumarie. Modified Riemann-Liouville derivative and fractional Taylor
series of non-differentiable functions Further results, Computers and Mathematics
with Applications, 2006. (51), 1367- 1376.

[47] R. Yulita Molliq, M.S.M. Noorani, I. Hashim, R.R. Ahmad. Approximate
solutions of fractional Zakharov–Kuznetsov equations by VIM. Journal of Compu-
tational and Applied Mathematics. 233(2). 2009. 103-108

[48] K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach
for the numerical solution of fractional differential equations, Nonlinear Dynamics,
29, 3-22, 2002.

[49] Y. I. Babenko, Heat and Mass Transfer, Chemia, Leningrad, Germany, 1986.

[50] M. Caputo and F. Mainardi, “Linear models of dissipation in anelastic
solids,” La Rivista del Nuovo Cimento, vol. 1, no. 2, pp. 161–198, 1971.

[51] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential
equations of fractional order,” in Fractals Fractional Calculus in Continuum Me-
chanics, A. Carpinteri and F. Mainar, Eds., pp. 223–276, Springer, New York, NY,
USA, 1997.

[52] R. Gorenflo and R. Rutman, “On ultraslow and intermediate processes,” in
Transform Methods and Special Functions, P. Rusev, I. Dimovski, and V. Kiryakova,
Eds., pp. 61–81, Science Culture Technology Publishing, Singapore, 1995.

[53] F. Mainardi, “Fractional relaxation and fractional diffusion equations, math-
ematical aspects,” in Proceedings of the 12th IMACS World Congress, W. F. Ames,
Ed., vol. 1, pp. 329–332, Georgia Tech Atlanta, 1994.

[54] F. Mainardi, “Fractional calculus: some basic problems in continuum and
statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics,
A. Carpinteri and F. Mainardi, Eds., pp. 291–348, Springer, New York, NY, USA,
1997.

[55] N. Laskin Fractional Schrodinger equation, Phys. Rev. E 66, 056108 (2002).

[56] M. Naber Time fractional Schrodinger equation, J. Math. Phys. 45(8),
3339-3352 (2004).

[57] D. Baleanu, A. K. Golmankhaneh and A. K. Golmankhaneh, The dual actio-
nand fractional multi time Hamilton equations, Int. J.Theor. Phys. 48, 2558-2569
(2009).

[58] P. Zavada, Relativistic wave equations with fractional derivatives and pseu-
dodifferential operators, J. Appl. Math. 2(4), 163-197 (2002).

[59] D. Baleanu, A.K. Golmankhaneh,A.K. Golmankhaneh and R.R. Nigmat-
ullin, Newtonian law with memory, Nonlinear Dyn. 60, 81-86 (2010).

Chapter6 Humayra Shafia 47



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

[60] M.Caputo and M. Fabrizio M., Damage and fatigue described by a fractional
derivative model, in press, J. Comput. Phys.,(2014)

[61] M. Caputo, C. Cametti and V. Ruggiero, Time and spatial concentration pro-
file inside a membrane by means of a memory formalism, Physica A 387, 2010–2018
(2007).

[62] F. Cesarone, M. Caputo and C. Cametti, Memory formalism in the passive
diffusion across a biological membrane, J. Membrane Sci. 250, 79-84 (2004).

[63] M. Caputo and C. Cametti, Memory diffusion in two cases of biological in-
terest, J. Theor. Biol. 254,697-703 (2008).

[64] M. Caputo, Modeling social and economic cycles, in Alternative Public Eco-
nomics, Forte F., Navarra P., Mudambi R.( Eds.), Elgar, Cheltenham, 2014.

[65] G. Jumarie, New stochastic fractional models of the Malthusian growth, the
Poissonian birth process and optimal management of populations, Math. Comput.
Modell. 44, 231-254 (2006).

[66] G. Iaffaldano, M. Caputo and S. Martino, Experimental and theoretical
memory diffusion of water in sand, Hydrology and Earth System Sciences, 10, 93–100
(2006).

[67] M. El Shaed, A Fractional Calculus Model of Semilunar Heart Valve Vibra-
tions, 2003 International Mathematica Symposium, London, 2003.

[68] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Inc.Publishers,
2006.

[69]Naher, H., Abdullah, F. A. (2012). The Improved (G’/G)-Expansion Method
for the (2. Journal of Applied Mathematics, 2012. 79.

[70]Naher, H., Abdullah, F. A. (2012). Some new solutions of the combined
KdV-MKdV equation by using the improved G/G-expansion method. World Ap-
plied Sciences Journal, 16(11), 1559-1570.

[71]Naher, H., Abdullah, F. A. (2013). New approach of (G/G)-expansion
method and new approach of generalized (G/G)-expansion method for nonlinear
evolution equation. AIP Advances, 3(3), 032116. 71. Naher, H. (2015).

[72]New approach of (G/G)-expansion method and new approach of generalized
(G/G)-expansion method for ZKBBM equation. Journal of the Egyptian Mathe-
matical Society, 23(1), 42-48.

[73]Ablowitz, M. J., Clarkson, P. A. (1991). Solitons, nonlinear evolution equa-
tions and inverse scattering (Vol. 149). Cambridge university press.

48 Chapter6 Humayra Shafia



Exact solutions of fractional differential equations by using New Generalized
(G’/G)-Expansion Method

[74]Zhang, J. L., Wang, M. L., Li, X. Z. (2006). The subsidiary ordinary dif-
ferential equations and the exact solutions of the higher order dispersive nonlinear
Schrödinger equation. Physics Letters A, 357(3), 188-195.

[75]Wang, M., Li, X., Zhang, J. (2007). Various exact solutions of nonlinear
Schrödinger equation with two nonlinear terms. Chaos, Solitons Fractals, 31(3),
594-601.

[76]He, J. H., Wu, X. H. (2006). Exp-function method for nonlinear wave equa-
tions. Chaos, Solitons Fractals, 30(3), 700-708.

[77]Momani, S., Odibat, Z., Alawneh, A. (2008). Variational iteration method
for solving the space-and time-fractional KdV equation. Numerical Methods for
Partial Differentiatial Equations, 24(1), 262-271.

Chapter6 Humayra Shafia 49


