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  ABSTRACT 

Financial, educational and communal activities produce enormous amount of 

data. Automatic text classification has significant application in content organization, 

point of view extraction, evaluation analysis, spam filtering and sentiment analysis. 

Automatic classification of text documents requires information extraction, machine 

learning and Natural Language processing. We have proposed a probabilistic framework 

for text classification. Proposed classification model is composed of three major modules 

i.e. pre-processing of unstructured text, learning of probabilistic model and the 

classification of unseen data by using learned model. This framework is trained and tested 

by using “20 newsgroup” dataset containing twenty different news categories i.e. politics, 

sports, religions and pc hardware. We have used both supervised and unsupervised 

algorithms to get the full insight on the relationships among various text classification 

techniques. Highest accuracy of 84.51% was achieved for 4 categories by Naïve Bayes 

among the other Supervised Algorithms we used and 62.79% homogeneity was achieved 

for unsupervised algorithms for 4 categories which demonstrates the effectiveness score 

of proposed automatic text classification approach. 

Keywords: Text Classification, Machine learning, Pre-processing, Feature 

Extraction, Naïve Bayes, SVM, KNN, Decision Tree.  
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CHAPTER 1 

Introduction 

 
This chapter gives a general review of the purpose of this research work and an 

overview of the entire research. It also includes the basic idea of Machine learning (ML) 

data preprocessing and feature extraction. Machine learning algorithms allow the 

software applications to become more accurate in predicting outcomes without being 

explicitly programmed [1]. It focuses on the development of computer programs that can 

access the data and use it to learn by themselves. The basic premise of machine learning 

is to build algorithms that can receive raw input data, use statistical analysis to predict an 

output while updating itself and fetching new data for applying the learning. The process 

involved in machine learning are similar to the data mining and predictive modeling. Both 

require searching through data to look for patterns and adjusting program action 

accordingly [2].  

Nowadays, with the development of growing internet technology, more and more 

network information has been presented digitally, the number of text on the database have 

dramatically increased and is becoming scattered. The biggest problem of text 

classification is high dimension of feature space and text representation of sparse vectors 

[3]. In the past, people used the KNN algorithm, Naive Bayesian algorithm, Decision 

Tree algorithm, Rough Set algorithm and Support Vector Machine to classify text, but 

these methods were realized by single neural network, and did not understand really the 

importance of feature extraction [3]. Feature extraction is the process where the key 

features are extracted that help to classify the text. In recent years, researchers have begun 

to focus on the research that can reduce the dimensionality of text classification as well 

as improve text feature extraction algorithm. The two major considerations are how 

accurately the data is classified and overall system efficiency. Accuracy ensures that text 

is categorized in correct class i.e. sports data is classified in sports, fashion data in fashion 

and so on and the other factor is efficiency which ensures overall classification and 

model’s performance. The news classification has been in talks for last few years. 

Research on document level or large text classifications is now more popular compared 

to classifying short texts. The reason behind this is that the noisy data for short news 

classification, which does not actually support entire process resulting in considerable 

less inaccuracy as well as efficiency. Another fact is the learning process is short in large 
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text classification. Lots of researches have been carried out by the researchers on text 

classifications including news group classification producing sufficient outputs. There 

had been numerous findings in the past in the same area including emotions 

classifications, synonyms classifications, twitter news classifications, and so on. In all of 

these text classifications, it is proved that data is limited for classifying news texts 

performing metrics i.e. time, accuracy, efficiency, and many other related factors with 

great and improved results [6]. News classifications of short texts, which have taken place 

in past  include classifying emotions on basis of short news group, classifying short texts, 

classifying financial news, automated news classification, classifying news using N-gram 

and classifying news of social media i.e. Twitter are helping to grow the area of 

classifying the text. In addition to this, classifying full text news or document level news 

categorization is a vast area as compared to headlines classification or short text 

classification. The paper basically focuses at news type classification introducing a 

probabilistic approach for classifying news type where each of the news type is 

categorized into its defined class respectively i.e. system will read the description and it 

will categorizes it into suitable category i.e. sports, entertainment, fashion, and others. 

The classes are self-defined in the training data set and the two data sets have been 

prepared explicitly for this purpose including training and test dataset. 

1.1 Motivation 

Machine learning evolves from artificial intelligence and study of pattern 

recognition. Digitization has changed the way we process and analyze information. Now 

a days, a lots of data are being digitized every day. Modern machine learning now have 

the accuracy to categorize any kind of information and deliver us the content we need. 

Daily Newspaper is such a sector where a lot of data are updated daily, and if anyone 

want to find any specific information about a topic he/she has to go through every paper 

which is almost not possible. Here comes the need of text classification, where we can 

generate any kind of class of our interest and get the data easily.  The text classification 

has been adopted by a growing number of organization to effectively manage the ever 

growing inflow of unstructured information. The core purpose of the text classification 

is to increase the discoverability of information and to serve those kinds of knowledge 

which will help us to make strategic decision. Text classification is mostly needed when 

the task involves business-specific context that are very complex which is done by 
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manual text classification. Manual text classification takes a lot of time (depends on the 

dataset) but it is highly detailed and accurate.  

1.2 Objective 

The main objectives of this research are following: 

 Categorize all text of news paper 

 Search faster and smarter  

1.3 Methodology 

In this research, we build a model to classify the “20 Newsgroup” dataset using 

Unsupervised and Supervised approach. Firstly, the loaded dataset will be preprocessed. 

Then we applied feature extraction process where we extract those key words that we 

were going to use for prediction of the selected topic. After that we used machine learning 

algorithms in different parameters to bring out the best result in a given parameter. In 

supervised process the data set has labeled information which include numeric value and 

categorical value. In unsupervised learning process the test data will not have any 

classification or labeled information. In this learning system our prediction will be based 

on clustering. Clustering finds pattern and groups the unlabeled data.   

1.4 Thesis Overview 

Chapter 1 is the introduction of our research work. We also have mentioned our 

motivation and objective to do this research as well as short overview of the methodology 

we followed. 

Chapter 2 consists of the literature review where we have demonstrated the 

background study that we have done for this thesis 

Chapter 3 consists of workflow, dataset cleaning algorithms and feature extraction.  

Chapter 4 is the section where we have presented algorithms and implementation 

of the overall research. 

Chapter 5 contains the conclusion and future possibilities and planning of this 

research. 



 
 

4 
 

CHAPTER 2 

Literature Review 

 
This chapter contains the background study required for this research work. Our 

findings include understanding about Machine Learning (ML) Algorithms, Pre-

processing, feature extraction, Text selection and text segmentation. This chapter also 

refers to related works and their accuracy. Machine Learning is paradigm that may refer 

to leaning form past experience (Which in this case previous data) to improve future 

performance [17]. Its main focus is to learn automatically and also modify and improve 

of algorithms based on past experience without any external assistance from human. Text 

classification is the process of defining a label for a previous unseen documents [19]. It 

is an active and important area where machine learning algorithms are used frequently. 

Automated text classification has always been an important research sector since 

the implementation of digital document [21]. The necessity of text classification is very 

high because we have to deal with large amount of text which are being digitized every 

day.       

2.1 Machine Learning 

We will discuss about the rear history required for our research paper in this 

section. Our work covers understanding of Machine Learning Algorithm, Data Pre-

processing, feature selection, feature extraction and Text classification methods. Machine 

Learning is a group of algorithm that enables software application to generate probably 

the highest accurate in calculating outcomes without being explicitly programmed [1]. 

The common proposition of machine learning is to create or develop algorithms that 

receive input data and make statistical analysis for predicting an output. Machine 

Learning programs are also built to learn and improve over time whenever new data 

become available. We use machine learning techniques for automated text classification. 

It has many application such as self-driving cars, spam filtering, web search, graphic 

recognition system, identification of document genre, authorship attribution, automated 

essay grading, classification of news articles etc. [2][4]. 

2.1.1 Machine Learning Algorithms 

The imminent need to access the rising availability of documents in digital form, 

the content-based document management tasks have earned a remarkable status in the 
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information systems area. Text classification also known as text categorization is the 

job of allocating predefined classes to free-text documents. Machine Learning is an 

inductive process which builds automated text classifier by learning from a set of pre-

classified documents. This process has an advantage over knowledge engineers or 

domain experts for the structure of the classifier as it has highest accuracy comparable 

to that gained by human experts [3]. So, machine learning techniques have the 

advantage for better understanding in every aspects from theoretical point of view and 

performance surety in parameter guidance. 

2.1.2 Supervised Learning Algorithms 

In this paper we have discussed three categories supervised learning, 

unsupervised learning and semi-supervised learning for approaching text classification 

techniques [4]. Under supervised learning a program is trained on pre-defined dataset. It 

analyzes training data and gives a suppositional function and the function will be used to 

calculate output from a given input. Those who do not give desired output will be 

calculated from a given new data. For example to train a spam classifier algorithm, a 

training dataset of human tagged spam or non-spam emails is used and then uses the 

algorithm to classify whether a new email without tag is spam or not [2]. For text 

classification each document is leveled by zero or more categories and new text will be 

classified by learning a classifier. Documents which are labeled will be considered as 

positive and others as a negative example. The task is to find a weight vector for a text 

classifier which classifies new text documents. K-Nearest Neighbor classifier, Naïve 

Bayes, Decision Trees, Support Vector Machines, and Decision Rules Classification 

includes in supervised learning algorithms [4]. We will take a look of these classifier 

algorithms in this paper. 

K-Nearest Neighbor 

K-NN is an excellent supervised learning algorithm which stores all the cases and 

based on similarity measurement it classifies new cases. It works on an assumption that 

documents which are closed in the space belong to the same class [5]. By using some 

similarity measure such as Euclidean distance measure etc., the weight of the categories 

of the neighbor document can be found for a fix amount of the nearest neighbors for all 

training samples. 
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Figure 2.1.2 K Nearest Neighbor. [7] 

     𝐷𝑖𝑠(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)^2𝑑
𝑖=1 …………………………. (i) 

This method is effective and easy to implement but it becomes slow when it uses all 

features in computing distance as the irrelevant features declines its accuracy. 

Naïve Bayes 

Naïve Bayes s one of the most basic text classification techniques with different 

applications in email spam detection, document categorization, documents 

categorization, language detection etc. It is a probabilistic method based on Bayes 

Theorem that makes independence assumptions. By using Bayes Theorem it predicts the 

following probabilities by reading a set of examples in attribute value representation. The 

feature order and presence of one feature does not affect each other because of its 
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independent assumption in classification task [4]. The only drawbacks of this method is, 

when dependencies arises it does not perform and give low performance. 

Support Vector Machine 

Support Vector Machine is one of the most powerful tools for text classification. 

The algorithm addresses the common problem of learning to differentiate the positive and 

negative attributes of a given class which is achieved by a linear or non-linear separating 

surface in the input space of the dataset. It is based on the Structural Risk Minimization 

principle [9]. The ability to learn independently of the feature space makes SVM really 

suitable for text classification. The major advantage of SVM is it remains unchanged 

when documents that do not belong to the support vectors are removed from the training 

dataset but this is relatively more complex than other algorithm where it also requires 

high time and memory consumptions [4]. 

Decision Tree 

When decision tree is used for text classification, the internal nodes are considered 

as tests and leaf nodes as categories. As long as it reaches a certain leaf which represents 

the goal for the classification, the tree is exploring the structure from the root node [5]. 

The every internal node and branch from a node test one attribute and one value 

respectively. The goal attribute is not defined as a result we use the attribute which gives 

the maximum information and the leaf node predicts the class or category for the 

classification. 

 

Figure 2.1.2 Decision Tree [8] 
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The above example shows the attribute person is the root node and the instances 

are spilt based on their values it take for the root node. The instance which gives the 

maximum information for the root attribute person is chosen as the decision and so we 

can say selecting person gives the highest information at that level. The edges 

represents values and the instances are divided according to each child nodes [6]. 

Though this approach has been successful over the past but due to swapping of training 

tuples it becomes ineffective as many training data do not fit in memory decision tree 

construction [5]. 

Table 2.1.2.1 Pros and Cons of different text classification algorithms 

Classification 
Algorithm 

Pros cons 

 

KNN 

 

 Effective 
 Non-parametric 
 Easy to implement 

 Time consumption 
 Not ideal based on accuracy 

 

Naïve Bayes 

 

 Easy to implement 
compared to other 

 Work well on small 
amount of data 

 Perform poorly when 
dependencies arises 

 

SVM 

 Large spaces of 
feature 

 Work well on multi-
label classification 

 Work for linear and 
non-linear data 

 Not perform well for highly 
co-related data 

 

Decision 
Tree 

 Easy to understand 
 Easy to generate 

 Training time is costly 
 Need human experts to 

construct or update rules 

 

2.1.3 Unsupervised Learning Algorithms 
The Unsupervised learning is a method that is used to classify unsorted 

information even there is no categories provided. Basically, it means to expose the 

machine to large volume of varied data and allow it to learn and infer from data. 

Unsupervised learning algorithms can perform more difficult procedures than 

supervised learning. Hierarchical Clustering Techniques, Partitional Clustering 



 
 

9 
 

Techniques, Kohonen’s Self organizing Network etc. some clustering methods used for 

unsupervised learning. 

Hierarchical Clustering 

In this process, the two most similar clusters are joined and continue to put 

together until all the objects are in the same cluster. Hierarchical clustering algorithms 

make a cluster hierarchical in the form of tree structure called dendrogram [4]. We can 

pick any number form this tree in terms of output. Starting with N cluster where one 

for each data point, we have N-1 clusters when we merge the two clusters that are 

closest to each other. Then we calculate the distances between clusters by considering 

the distance between two clusters and the average distance between all their respective 

members. This process will be repeated until we get one cluster of N data points 

(dendrogram). Generally, the number of clusters is equal to the number of intersection 

points of the horizontal line with the vertical lines in the dendrogram [10]. This process 

have two subtypes: Divisive Hierarchical and Agglomerative Hierarchical Clustering. 

Divisive hierarchical is used by grouping all the information into one cluster and 

successively splitting these clusters. Besides, agglomerative works by sequentially 

merging similar clusters.  

Partitional Clustering Techniques 

In partitional clustering, each object belongs in exactly one cluster. Each cluster 

can be represented by a cluster representative. Here, an initial partition is constructed 

belong to n objects and partition these objects into k clusters and then clustering 

solution is reformed iteratively by moving documents from one cluster to another [4]. 

This method can be implemented by K-means clustering where we cluster our data into 

k groups and assign each data point to one of the nearest centroid’s cluster. The distance 

of nearness is calculated often by Euclidean distance formula. After that we move the 

centroids to the center of their clusters [10]. Iteration will be continued until a stopping 

criterion is achieved. There is another process called Bisecting K-means which achieves 

a hierarchy of clusters by repeatedly applying K-means algorithm. A cluster is selected 

and the selected cluster is split into two for k=2 where the cluster with less similarity 

or that containing the maximum number of documents can be chosen to split. 
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Kohonen’s Self Organizing Network 

Kohonen’s self-organizing network is a special type of neural network. In this 

process, an input vector represents to the network and the output is compared with the 

target vector. After that it checks whether they are differ and if so then the weights of the 

network are slightly switched to reduce the error in the output. Until the network gives 

the desired output the process will be repeated many times and with many sets of vector 

pairs [11]. These are used in the application for visualization aid. Though Kohonen’s 

SOM are more complex and outstretched but able to make it easy for humans to explore 

relationships between huge amount of data [4]. 

2.1.4 Semi-supervised Learning Algorithms 

Semi-supervised learning is in between of supervised and unsupervised learning. 

It is a class of supervised learning. Unlabeled data and labeled data are used by these 

algorithms to classify new unlabeled text document. The earliest idea of using unlabeled 

data was self-learning or self-training [13].Semi-supervised algorithm uses small amount 

of labeled data and a large amount of unlabeled data typically. They use labeled data to 

help to identify the specific group of web page types. Then the algorithm is trained on 

unlabeled data to define the boundaries of those web page types [12]. 

Co Training 

This machine learning algorithm used when there are only small amounts of 

labeled data and large amounts of unlabeled data. This algorithm trains two classifiers 

separately on two sufficient and unnecessary views. As an example, two attributes 

which are sufficient for learning and independent to the other given class label uses the 

prediction of each classifier on unlabeled examples of the other. 

  An example of co-training algorithm can be COREG algorithm. It uses two k-

nearest neighbor regressions with different distance metrics. Coreg can be effective to 

exploit unlabeled data to improve regression estimates [14]. 

EM Based 

 It is Expectation- Maximization algorithm. By estimating of a generative model 

through iterative Expectation- Maximization, these algorithms are used to train 

classifiers. Based on multinomial, text documents are represented with a bag of words 

model [4]. The theoretical basis for Expectation- Maximization shows that with 

sufficiently large amounts of unlabeled data generated by the model will lead to more 
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probable model. This approach rests on the assumption that the generative model is 

correct [15].This model is much simplistic to represent. But it has a problem of local 

maxima. 

Graph Based 

It is the theory that study graph models. Graphs are the mathematical structures 

used to describe the pairwise relations between objects [16].Graph based methods are 

generally non-parametric. It works on a closed data set and at the time of training, test 

set is relevant. It is assumed that the data is embedded within a low-dimensional 

numerous by a graph. Within a weighted graph, each data sample is represented by 

vertex [4]. 

2.2 Text Categorization  

Text categorization is the process of assigning predefined categories of previously 

unseen documents [24]. Main purpose of text categorization is to include processing 

features, extracting irrelevant features against the feature in database and categorize a set 

of documents into predefined categories [25]. The categorization of texts helps to 

understand and creates opportunities to make more specific category for that raw data. 

The purpose is to run faster and efficiently. Text categorization helps Machine learning 

algorithms to run smoother and in more controlled way possible. 

2.2.1 Pre-Processing 

Data preprocessing is the process where processing algorithms are applied on raw 

data for future processing procedure. Data preprocessing transforms the data into a format 

where it will be more effectively and easily processed for the later ML algorithms. Main 

goal is to represent each data as a feature vector and separate the raw text individually 

[25]. It is important to select the proper words that will hold the proper value and meaning 

which will have some weight after the applied of the algorithms. There are a lot of 

preprocessing tools and methods are available like stop word removal,sampling, 

transformation, denoising, normalizing etc[26]. Sampling is a method where a 

representative subset is created form a large number of raw data. Transformation is a 

process where the raw data is manipulated to produce a single data. Denoising is the way 

to remove the noise from the data. Normalization is to organize data in more efficient 

way. But the most important sector is stop word removal.  
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2.2.2 Feature Selection 

Feature subset selection is the process where we remove irrelevant and redundant 

features as much as possible [29]. This reduces the length of dataset and enables the 

learning algorithms work faster. Feature selection generally have two parts [29]: a 

selection algorithm that help to generate from the given subset which tries to find an 

optimal subset; and another one is evaluation algorithms that evaluate how suitable the 

proposed dataset is. However without the suitable stopping criteria the feature selection 

process will not work perfectly. There are generally three types of feature selection 

methods: wrapper method, filter method, embedded methods. Wrapper method is the way 

where different combination are prepared, evaluated and compare to other combination, 

where it selects the section of set of features as a search problem. A predictive model is 

used to score based on the model accuracy. This search process may be methodical where 

it can use best-first search. An example is the feature elimination algorithm.   

Filter, feature selection methods are used to apply scoring to each feature. The 

highest scored features are selected for the used features or selected to remover from the 

main dataset. Some examples of some filter methods include Chi square test, information 

gain and correlation scores. Embedded methods learn while the model is being created it 

tracks those features which has a great contribute to the good accuracy. Regularization is 

the most common embedded feature selection method. Examples of embedded methods 

are LASSO, Elastic Net and Ridge Regression. 

2.2.3 Advantages of Feature Selection 

We have used feature methods for following reasons: 

 Unnecessary features and low sample features have noise in their data, in this 

situation, classification will remove these noises and help to generate a good 

performance. 

 Complete control of how many and what type of features will generate the    

algorithms. 

  Helps to set minimum set of features to generate output. 

  Easy to understand the generated output. 

Preprocessing steps includes Stop Word Removal, Stemming, and Document 

Indexing. 
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Stop Word Removal  

       Stop word removal is one of the most commonly used processing technique 

right now. Search engines used this process to ignore all those words or character that has 

no value or less value in the time of generating accuracy form the dataset. At the time of 

creating the index, most engines are programmed to remove some certain words that has 

less weight. Mainly the list of words or characters that are not added to the final data set 

is called the stop word list. This saves both time and space as it removes the words at 

indexing time and ignored at searching time. We remove these set of words as they carry 

no information [23] (i.e. pronoun, preposition, conjunctions). In English language there 

are about 400-500 stop words [23]. These are some examples of stop words which helps 

us to build the system. 

         

Figure 2.2.1 Stop Words 

By removing stop words from the dataset we get high quality language model which 

is preferred for machine learning algorithms [30]. There are many hypothesis about stop 

word removal. These can appear at the time of model training [30]: 

   1. Stop words can herm inference, means noise from frequent words prevents 

algorithms to reorganizing in content bearing words. By this the pattern of sentence could 

be changed as well as the meaning. 

2.  Noise from frequent words does not alter on non-stop words, means no effect 

on inference. 
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3. Stop words can improve inference, means it do not herm the pattern of the main 

meaning of the sentence. 

Stemming 

Stemming is the process to reduce a bunch of similar words and give them a 

root word. Stemming is including word and giving a set of words same type of meaning 

[23]. Here root word is called lemma. Stemming is very important in natural language 

processing (NLP). In a very big data set a lot of word can be similar, if we can remove 

the similar meaning words the size of our dataset will reduce and it will reduce run 

time. When we found a similar type of word we give a particular weight to it for 

measuring [23]. When a new word is found it is selected as a new type. To get the best 

result the process of lemma is used. To find lemma, stemming is performed by different 

machine learning algorithms. Some algorithms will simply strip recognized prefix and 

suffix. But these type of implementation creates a lot of error which is not suitable for 

learning algorithms. For an example ‘responsively’ can be reduced to a word like 

‘respon’. In suffix stripping the algorithms knows the suffix words and removes the 

suffix. Another one is Lemmatization. Here the algorithm breaks down the word to its 

root directory. Then it categorize the word type according to rules of grammar. Another 

type is Stochastic, it gets the form of how the root words could be inflected and it 

removes the infected forms of words.        

2.2.4 Feature Extraction 

Feature extraction is the process to pull out specified data that is significant for 

particular process. It is used to extract a subset of new features from original feature 

set, by means of some functional mapping and keeping data Information as much as 

possible [27]. Most popular feature extraction technique is Principle Component 

Analysis. In this method it extracts the lower dimension space by analyzing the 

covariance structure of multivariate statistical observations [28]. Another one is Linear 

Discriminant Analysis. Here it projects high-dimensional data into lower dimensional 

space [28]. Variable by variable data cleaning is straight forward filter approach. There 

are many authors’ focuses on duplication of data, which reduce the run time of 

algorithms. 

Filter evaluation is the process to data reduction, it does not consider the activities. 

The values that are suspicious due to their relationship to a specific probability 
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distribution, say a normal distribution with a mean id of 5, a standard deviation of 3 and 

a suspicious value of 10[29]. Table 1 shows some examples of how this metadata can 

help on detecting a number of possible of data quality problems. 

Table 2.2.4.1 Types of values to filter 

Problems Metadata Examples/Heuristics 

 

 
Illegal values 

Cardinality e.g., cardinality (gender)> 2 

indicates problem 

max, min max, min should not be 

outside of permissible 

range 

variance, deviation variance, deviation of 

statistical values should not 

be higher than threshold 

Misspellings feature values sorting on values often 

brings misspelled values 

next to correct values 

 

Incomplete data is a big problem while dealing with the raw datasets. There can 

be many factors for this incompletion of data. The common problem occurs because of 

“unknownness”. Data can be missing because of the value is forgotten or lost. Similarly 

data can be unknown in result because of certain features is not applicable for it or the 

value that is in don’t care mode [29]. To recover these values or to work with the data 

set we need to handle the missing data. Many methods are available such as method of 

ignoring instance with unknown feature values, most common feature values, mean 

substitution, regression or classification methods hot deck input, method of treating 

missing feature values as special values etc. Method of ignoring instance with unknown 

feature values is one of the simplest methods. Here it ignores values which have at least 

one unknown feature. Another one is the concept about the most common feature. In 

the dataset which occurs on same class is selected as the value of the unknown feature. 
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Next one is the mean substitution, here it substitutes a features mean value to fill in 

missing data values on remaining cases. Another one is the regression or classification 

methods. It is based on complete case data for a given feature. Hot deck imputation is 

similar case with the missing value and substitute with the most similar cases. In method 

treating missing feature value, it treats itself unknown and make new value for the 

future. 

2.2.5 Bag of words 

Bag of words is a segment that treats every word a feature. It is widely used in text 

classification area. This is a way of modeling data with machine learning. The main 

idea is to categorize data, analyze and classify different bag of words. When we try to 

model the text it become more difficult as it has a lot of noise inside it. So to make a 

category out of these messy data, bag of word comes up. It tries to segment a set of data 

which will be the representation of a feature. This set will be the core thing to select 

other similar items [32]. It tries to find the occurrence of words in the document but it 

is not concern where the words occur in the document. It represents the text that 

describes the occurrence of text in the dataset. It consist of two things one is vocabulary 

of known things and another one is measure of presence of words [31].  First step is to 

collect the data and in our case here is the dataset. Then it designs the vocabulary, means 

it finds the unique words and create document vector. In case of document vector the 

words are converted into binary vector where it puts a value for each unique word [31]. 

For example, if we consider 2 text samples:  

1. “the fifa 2018 world cup has become the most exciting world cup ever”  

2. “the fifa 2018 world cup is becoming the most viewed world cup”. 

Here the text sample is the form of a dictionary where vectors are formed to 

represent the count of each word in every sentence. 
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Figure 2.2.5 Distributed value for each  

In figure 2.2.5, we have 12 unique words which do not overlap with each other. 

For this each text sample will generate 12 element vectors. Which will indicate the 

occurrence of the words in the sentence. 

 

Figure 2.2.5 Weight of each word per line 

In figure 2.2.5, each element represents the number of words that are present in 

the sentences. For the first row the word “the” comes first and the occurrence of it is 

twice in the first sentence. That’s why it is marked as 2 and next word is “fifa” which 

occurs two times in the same sentence. For the first sentence the word “viewed” do not 

appear so it is not valued as 0. Similarly all other words are taken into this process [33].  

There are some problems in scoring of words, one of the main reason is the high 

frequency words dominate the document. But this may not contain much important 

information [31]. For an example, the word “the”, this word can stand almost in front 

of anything, but do not contain much information to separate from other. One approach 

is to rescale the frequency of the word of how often they appear in the data. And another 

concern is to differentiate between two almost similar sentences. To solve this problem 

TF-IDF come forward. This scoring approach is called Term Frequency – Inverse 

Document Frequency.  
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CHAPTER 3 

Workflow and Feature Extraction   

 
3.1 Workflow 

 

Figure 3.1 Proposed System 
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This chapter will shed light on the process which we followed. We started by 

loading the dataset. Then we split the dataset to train and test. We cleaned the test and 

train set using several pre-processing methods such as stemming, lemmatization and 

removing stop words and we also removed headers, footers and quotes. Following, we 

extracted features using bag of words representation. Now the features are ready for 

supervised algorithms. We have used 4 supervised algorithms: Naïve Bayes, Support 

Vector Machine, K-Nearest Neighbor and Decision Tree. At last, we plotted the 

accuracy of the classifiers tested by the test set. For unsupervised algorithm we have 

used the whole dataset and vectorize the dataset. For fitting the unsupervised 

algorithms, we normalized the dataset using dimensionality reduction. We have used 

K-means and Mini Batch K-means for clustering. We then plotted the homogeneity 

scores of unsupervised algorithms. 

3.1.1 20 Newsgroup Dataset 

The 20 Newsgroups dataset is commonly used for text mining applications. It 

was collected by Ken Lang. The 20 Newsgroups data set is a test collection of 

approximately 20,000 newsgroups documents that 1000 documents were taken from 

each of the newsgroups. It is divided across 20 different newsgroups. The category 

topics are related to computers, politics, religion, sports, and science. Each document 

belongs to exactly one newsgroup, but there is a small fraction of the articles belong to 

more than one category. The data collection is the well-known 20-Newsgroups (20NG) 

dataset. 

Table 3.1.1.1: 20 Newsgroups Categories 

comp.graphics 

comp.os.ms-

windows.misc 

comp.sys.ibm.pc.hardware 

comp.sys.mac.hardware 

comp.windows.x 

rec.autos 

rec.motorcycles 

rec.sport.baseball 

rec.sport.hockey 

sci.crypt 

sci.electronics 

sci.med 

sci.space 
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misc.forsale 

talk.politics.misc 

talk.politics.guns 

talk.politics.mideast 

talk.religion.misc 

alt.atheism 

soc.religion.christian 

 

Table 3.1.1.2: Documents in 20 Newsgroups 

Topics # 

Documents 

in testing 

# Documents in 

training 

# Documents 

alt.atheism 

 comp.graphics 

 comp.os.ms-

windows.misc 

comp.sys.ibm.pc.hardware 

 comp.sys.mac.hardware 

 comp.windows.x 

 misc.forsale 

 rec.autos 

 rec.motorcycles 

 rec.sport.baseball 

 rec.sport.hockey 

 sci.crypt 

 sci.electronics 

 sci.med 

 sci.space 

 soc.religion.christian 

 talk.politics.guns 

 talk.politics.mideast 

 talk.politics.misc 

 talk.religion.misc 

 

319 

389 

394 

392 

385 

395 

390 

396 

398 

397 

399 

396 

393 

396 

394 

398 

310 

364 

376 

251 

480 

584 

591 

590 

578 

593 

585 

594 

598 

597 

600 

595 

591 

594 

593 

599 

465 

546 

564 

377 

799 

973 

985 

982 

963 

988 

975 

990 

996 

994 

999 

991 

984 

990 

987 

997 

775 

910 

940 

628 
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Total 7532 11314 18846 

 

The categories of the dataset are shown in Table 3.1.1.1 some news-groups, for 

example, the category “comp.sys.ibm.pc.hardware” and “comp.sys.mac.hardware” are 

very similar to each other. An example of the 20 newsgroups dataset document shown 

in Fig 1. From the document example, it contains more than headers such as subject 

and from. Subject header holds the title of document and from header holds the email 

address for the sender.  

Moreover, there are different versions of the dataset. The first version known as 

original dataset contained 19997 documents. The second version that shows in Table 

3.1.1.2 contains 18846 documents. It’s called “bydate” version. Another version is 

18828 version which is more cleaned and has 18828 documents. We used the "bydate" 

version since cross-experiment comparison is easier (no randomness in train/test set 

selection), newsgroup-identifying information has been removed and it's more realistic 

because the train and test sets are separated in time. For the purpose of testing the 

dataset by supervised algorithms we have split the dataset into 80% training and 20% 

test data.  

3.2 Applied Methods For Cleaning 

The Main challenge of working with text data is cleaning. For our thesis we tried to 

clean the data to some extent so that the data would be more realistic and would generalize 

to other documents that aren’t from this window of time. 
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Figure 3.2 Dataset Sample 
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Figure 3.2 shows a sample document. Here we can see some noises. Noisy text 

does not comply with rules basic program uses to identify and categorize words, phrases 

and clauses in a particular language. Poor spelling and punctuation, typographical errors 

noises the data. For cleaning the data first while loading the data we will not include 

headers, footers, quotes. Headers, footers, quotes are irrelevant for categorization. The 

function that load 20 newsgroup data provide a parameter called remove telling it what 

kind of information to strip out of each file. The next step we used was to remove special 

characters such as “#”, “@” and “/”. In this stage we used python Scikit-learn module to 

load the dataset and then regex module to replace all these special characters as “ “ 

(space). The regex expression we used: “ |(\\(.*?){)|}|[!$%^&*#()_+|~\-

={}\[\]:\";'<>?,.\/\\]|[0-9]|[@] ”. We also used regex to remove extra space. Then we have 

done stemming. Stemming is a part of linguistic studies in morphology and artificial 

intelligence information retrieval and extraction. Stemming extract meaningful 

information from vast sources. 

Recognizing, searching and retrieving more forms of words returns more results. 

When a form of a word is recognized it can make it possible to return search results that 

otherwise might have been missed. That additional information retrieved is why we use 

stemming in our data pre-processing phase. Often, the best results can be attained by 

using the basic morphological form of the word: the lemma. To find the lemma, stemming 

is performed by an individual or an algorithm. Stemming uses a number of approaches to 

reduce a word to its base from whatever inflected form is encountered. 

It can be simple to develop a stemming algorithm. Some simple algorithms will 

simply strip recognized prefixes and suffixes. A stemmer for English operating on the 

stem ‘cat” should identify such strings as “cats”, “catlike”, and “catty”. A stemming 

algorithm might also reduce the words “fishing”, “fished”, and “fisher” to the stem “fish”. 

The stem need not be a word, however. The most popular stemming algorithm is “Porter 

stemmer”. However, we used “Snowball stemmer” instead of “Porter stemmer”. 

“Snowball stemmer” is also called “Porter2” stemming algorithm.  Porter stemmer stem 

aggressively and error prone. On the other hand, Snowball stemmer can handle many 

words nicely. For a simple comparison we give these words as inputs to both the 

stemmers: "python", "pythoner", "pythoning", "pythoned", "pythonly". 
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Table 3.2.1: Differences between types of Stemmer 

Porter Stemmer Snowball Stemmer 

>>python 

>>python 

>>python 

>>python 

>>pythonli 

>>python 

>>python 

>>python 

>>python 

>>python 

 

Table 3.2.1 shows a better view of the differences.  Algorithm used in Snowball 

Stemmer provides a significant reduction in the complexity of the rules associated with. 

For the next phase we have used “Lemmatizing”.  The goal of both stemming 

and lemmatization is to reduce inflectional forms and sometimes derivationally related 

forms of a word to a common base form.  

However, the two words differ in their flavor. Stemming usually refers to a crude 

heuristic process that chops off the ends of words in the hope of achieving this goal 

correctly most of the time, and often includes the removal of derivational affixes. 

Lemmatization usually refers to doing things properly with the use of a vocabulary and 

morphological analysis of words, normally aiming to remove inflectional endings only 

and to return the base or dictionary form of a word, which is known as the lemma. 

Stemming increases recall while harming precision. As an example of what can go 

wrong, note that the Porter stemmer stems all of the following words: “operate”, 

“operating”, “operates “, “operation”, “operative”, “operatives”, “operational” to 

“oper”. However, since “operate” in its various forms is a common verb, we would 

expect to lose considerable precision on queries. The word "better" has "good" as its 

lemma. This link is missed by stemming, as it requires a dictionary look-up. In terms 

of implementation, lemmatization is usually more sophisticated. We implemented it by 

using python NLTK module “lemmatizer”. At the end of the pre-processing phase we 

have blocked all the stop words. "stop words" usually refers to the most common words 

in a language. These are some of the most common, short function words, such as “a”, 

“the”, “is”, “at”, “which” etc.  Removing these stop words will result in less term 

frequencies and more realistic data. 
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3.2.1 Feature Extraction Process 

Feature extraction involves reducing the amount of resources required to describe 

a large set of data. When performing analysis of complex data one of the major 

problems stems from the number of variables involved. Analysis with a large number 

of variables generally requires a large amount of memory and computation power, also 

it may cause a classification algorithm to overfit to training samples and generalize 

poorly to new samples. Feature extraction is a general term for methods of constructing 

combinations of the variables to get around these problems while still describing the 

data with sufficient accuracy. There are many feature extraction methods. Most famous 

is “Bag of Words” which is also known as “Tf-Idf Vectorizer”. TF-IDF reflect the 

context of the sample better than other [33]”. Tf-Idf (Term Frequency – Inverse 

Document Frequency) reflect the context of the sample better than other [33]. There is 

another method of feature extraction called “Hashing Vectorizer” which only uses TF 

(Term Frequency) for extracting features. TF-IDF consists of two values. One of them 

is Term Frequency (TF) and other one is Inverse Document Frequency (IDF). The 

common way to determine TF is to taking the raw frequency of a term and divide by 

the maximum frequency of any term in the document [33]. 

          𝑇𝐹 =  0.5 + 0.5 ∗ 𝑓𝑟𝑒𝑞(𝑙)/max (𝑓𝑟𝑒𝑞(𝑘)) ………………………….. (ii) 

Here, k=all words in document and l= tram in document. And another one is to take the 

log of the inverse of the proportion of documents c obtaining the term. 

IDF = log (𝑚/𝑙𝑒𝑛(𝑛))  …………………………………… (iii) 

Here m= 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑐𝑜𝑢𝑛𝑡 and n= 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 

Table 3.2.1.1 Process of TF-IDF 

Unique 

Words 

TF 
IDF 

TF-IDF 

A B A B 

I 1 1 Log(2/2) 0 0 

Am 1 1 Log(2/2) 0 0 

fine 1 1 Log(2/2) 0 0 
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not 0 1 Log(2/1) 0 1 

 

Here we can see that we have two sample dataset as D1 and D2. Here we the 

separated unique words are taken into consideration. The first line is set as true and the 

second line is set as false. And the difference of these two sentence is just “not”. If we 

do not use TF-IDF here our program will just ignore the value of “not” as it will not 

contain much value. So after applying TF-IDF we can see the combined result which is 

almost same for two sentences except one. Which is the negative symbol to separate 

the two sentences. So in this process we can differentiate between two similar types of 

data. 

Before cleaning and fitting the vectorizer the shape of train and test set was 

(15076, 20823) (3770, 20823). After cleaning and fitting the vectorizer the dataset the 

shape of train and test set was (15076, 13116) (3770, 13116). So we can clearly see 

cleaning the dataset has reduced the term frequencies of the dataset.  
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CHAPTER 4 

Implementation and Results 

 
4.1 Supervised Algorithms 

After cleaning and feature extraction the documents can be easily represented in 

a form that can be used by a ML algorithm. Many text classifiers have been proposed in 

the literature using machine learning techniques, probabilistic models, etc. We have used 

four of the most used machine learning algorithms for text classification: Naïve Bayes, 

Support Vector Machine, K-Nearest Neighbors and Decision Tree. 

4.1.1 Naive Bayes 

Naive Bayes is often used in text classification applications and experiments 

because of its simplicity and effectiveness. Naive Bayes is a kind of classifier which uses 

the Bayes Theorem. Bayes theorem named after Rev. Thomas Bayes 

[https://en.wikipedia.org/wiki/Thomas_Bayes]. It works on conditional probability. 

Conditional probability is the probability that something will happen, given that 

something else has already occurred. For a document d and a class c, and using Bayes’ 

rule, 

𝑝(𝑐|𝑑) = [𝑝(𝑑|𝑐) ∗ 𝑝(𝑐)]/𝑝(𝑑)] ………………………… (iv) 

Here, classes are the categories the documents belong. P(c) is the total probability 

of a class. We have used Multinomial Naïve Bayes rather than Gaussian Naïve Bayes 

algorithm. Multinomial Naïve Bayes works well for data which can easily be turned into 

counts, such as word counts in text. Here simply the documents are represented as a set 

of features (x1, x2, x3, …). We have set the parameters of Multinomial Naïve Bayes as 

“alpha=.01”, “prior=false”. Here “alpha=.01” counter the problem with maximum 

likelihood which is if any document didn’t match any classes Naïve Bayes will mark it 

as 0 probability.  Zero probabili1es cannot be conditioned away. By “alpha=.01” we have 

done Laplace smoothing (add-.01). By giving “prior=false” We ensured that every 

document consist a uniform prior 
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4.1.2 K nearest Neighbors  

K nearest Neighbors classifier is based on the assumption that the classification 

of an instance is most similar to the classification of other instances that are nearby in the 

vector space. Compared to other text categorization methods such as Bayesian 

classifier, KNN does not rely on prior probabilities, and it is computationally efficient. 

The main computation is the sorting of training documents in order to find the knearest 

neighbors for the test document. The number of k determines how many neighbor it will 

take and measure the similarity.  

 

 

Figure 4.1.2 Basic KNN example [20] 

To classify a class-unknown document X, the k-Nearest Neighbor classifier 

algorithm ranks the document's neighbors among the training document vectors and uses 

the class labels of the k most similar neighbors to predict the class of the new document. 

The classes of these neighbors are weighted using the similarity of each neighbor to X, 

where similarity is measured by Euclidean distance or the cosine value between two 

document vectors. The cosine similarity is defined as follows:  

                                                    𝑠𝑖𝑚(𝑋, 𝐷𝑗) =     
∑ 𝑋ₐ∗𝑑ₐₑ𝑡ₐ∈(𝑋∩𝐷ₑ) ) 

||𝑋||₂∗ ||Dₑ||₂
   …………………………... (v) 
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Where X is the test document, represented as a vector; De is the eth training 

document; ta is a word shared by X and De; Xa is the weight of word ta in X; dae is the 

weight of word ta in document De; ||𝑋||₂ =  √𝑥₁2 + 𝑥₂2 + 𝑥₃2 + ⋯  is the norm of X, 

and ||De||2 is the norm of De.  Here we have used k = square root of training samples. 

Using square root of training samples is the thumb rule of getting optimal value.  

4.1.3 Decision Tree 

Decision Tree creates a training model which can used to predict class or value 

of target variables by learning decision rules inferred from training data. The Decision 

tree algorithm tries to solve the problem, by using tree representation. Each internal 

node of the tree corresponds to an attribute, and each leaf node corresponds to a class 

label. Decision Tree is based on the strategy of divide and conquer.  

        

Figure 4.1.3 Decision Tree [22] 

In general, this philosophy is based on the successive division of the problem into 

several sub problems with a smaller number of dimensions, until a solution for each of 

the simpler problems can be found. While implementing we have set the parameters as 

“criterion=gini", “splitter=best”. Here criterion measure the quality of a split. To measure 
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the quality, we have used Gini Impurity. Gini impurity is a measure of how often a 

randomly chosen element from the set would be incorrectly labeled if it was randomly 

labeled according to the distribution of labels in the subset [22]. At each node while the 

tree splits, we chose the “best” parameter to choose the best split it possibly can. 

4.1.4 Support Vector Machine 

Support Vector Machine focus only on the points that are the most difficult to tell 

apart, whereas other classifiers pay attention to all of the points. The intuition behind the 

support vector machine approach is that if a classifier is good at the most challenging 

comparisons then the classifier will be even better at the easy comparisons. Basically, the 

goal of the support vector machine to design a hyperplane that classifies all training 

vectors in two classes. The best choice will be the hyperplane that leaves the maximum 

margin from both classes.  

 

Figure 4.1.4 Basic SVM Diagram [18] 

 We have used LinearSVC of python module to implement Support Vector 

Machine. LinearSVC is implemented in terms of liblinear. Liblinear is a linear classifier 

for data with millons of instances and features.The parameter we have given was: 

“loss=hinge”, “penalty=l2”, “tol=1e-2”, “max_iter=100”, “random_state=50”. 

“Loss=hinge” gives a linear SVM and penalty is a regularization term which is set to l2 

implementing l2 regularization. The regularization parameter serves as a degree of 

importance that is given to miss-classifications. Here “tol” value is a constant that 
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multiplies the regularization term. “max-iter” represents the number of passes over the 

training data. We have run 100 epoches by “max_iter=100” parameter. Lastly 

classification scores depend on “random_state”. It is the seed of the pseudo random 

number generator to use when shuffling the data.  

4.2 Unsupervised Algorithms 

K-means clustering is a type of unsupervised learning, which is used when you 

have unlabeled data (i.e., data without defined categories or groups). The goal of this 

algorithm is to find groups in the data, with the number of groups represented by the 

variable K. The algorithm works iteratively to assign each data point to one of K groups 

based on the features that are provided. Data points are clustered based on feature 

similarity. Each centroid of a cluster is a collection of feature values which define the 

resulting groups. Examining the centroid feature weights can be used to qualitatively 

interpret what kind of group each cluster represents.  

                                            𝑗 = ∑ ∑ ||𝑥ᵢ(ᴶ) −  𝐶ᴊ||2𝑛
𝑖=1

𝑘
𝑗=1  ……………………………… (vi) 

Here, k=number of cluster, j=objective function, n=number of cases, Cj=centroid 

for cluster j, Xi = case i .We have used kmeans clustering with the same 20 newsgroup 

dataset and with k = number of categories. Before training we used SVD (Singular Value 

decomposition) to reduce the dimensionality. As the dimensionality of data increases, the 

volume of the space increases, in a sense the data becomes more and more sparse 

(scattered). The parameters we have used: “init=k-means++”, “max_iter=100”, 

“n_init=1”. Here “init=k-means++” selects initial cluster centers for k-mean clustering in 

a smart way to speed up convergence. We have run the k-means algorithm with 100 

iterations at a time with the “max_iter=100” parameter.  “n_init=10” function determines 

10 times the k-means algorithm will be run with different centroid seeds. The final results 

will be the best output of n_init consecutive runs in terms of inertia.  

4.2.1 MiniBatch Kmeans 

MiniBatchKmeans is a modified version of kmeans clustering. Time complexity 

of kmeans clustering is O(n*K*I*f), where n is the number of documents, K is the 

number of clusters we want, I is the number of iterations and f is the number of features 

in a particular record. It can be clearly seen that this will take a lifetime for the original 

algorithm to cluster data. On the other hand, MiniBatchKMeans algorithm takes small 

batches (randomly chosen) of the dataset for each iteration. It then assigns a cluster to 

each data point in the batch, depending on the previous locations of the cluster 
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centroids. It then updates the locations of cluster centroids based on the new points from 

the batch. The update is a gradient descent update, which is significantly faster than a 

normal Batch K-Means. 

4.3 Result  

For evaluating scores, we have measured F1-scores. F1-scores is a measure of 

a test's accuracy. It considers both the precision p and the recall r of the test to compute 

the score: p is the % of selected items that are correct, and r is the % of correct items 

that are selected. The F1 score can be interpreted as a weighted average of the precision 

and recall, where an F1 score reaches its best value at 1 and worst at 0. 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ……………………................….(vii) 

 We have run our classifiers for 3 different length of categories: 20, 10 and 4. 

The more categories the less accurate result and more time needed to fit the classifiers.   

 

 Figure 4.3.1 Decision Tree 

Decision tree creates nodes of the tests and create subgroups until each of the 

set addressing one class. However, Decision tree creates biased trees if some classes 
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have more features from others thus lead to misclassification. Again, a small change 

can cause the tree to change its path so it is unstable. Here, we can see decision tree has 

a low f1 score of 49.2% when we used the full dataset and 68.44% when we used only 

the 4 categories. Since we have some categories which are really close like 

'comp.sys.ibm.pc.hardware’, 'comp.sys.mac.hardware'. This causes the tree to 

misclassify. Our data includes categorical variables with different number of 

levels, information gain so decision trees is biased in favor of those attributes with more 

levels.  

 

 Figure 4.3.2 KNN 

KNN works based on minimum distance from the query instance to the training 

samples to determine the k-nearest neighbors. After we gather k nearest neighbors, we 

take simple majority of these k-nearest to be the prediction of the query instance. 

However, KNN doesn’t handle categorical variable very well. It uses the class labels of 

nearest neighbors to determine the class label of unknown record. We had to determine 

the k for the best result because, if k is too small it is sensitive to noisy points and if k 

is too large neighborhood may include points from other classes. Here, while 
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categorizing for 20 categories KNN’s accuracy is degraded to 62.71% because there 

are many features and every feature have weights and determining classes using only 

distance caused misclassifying as there can be many irrelevant features. For a small 

amount of data like for only 4 categories KNN shows a prediction of 69.17%.  

 

 Figure 4.3.3 Naïve Bayes 

Naïve Bayes classifier is suitable for classification with discrete features like 

word counts for text classification. Naïve Bayes use probability to predict classes. We 

can see that while predicting for 4 categories it scored 84.51%. While classifying Naïve 

Bayes ranks the features in terms of frequency. This sometimes degrade performance. 

Again, Naïve Bayes classifier makes a very strong assumption on the shape of data 

distribution like any two features are independent given the output class. Due to this, 

accuracy got lower while categorizing 20 categories that is 76.13%.  
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 Figure 4.3.4 SVM 

SVM (support vector machine) doesn’t depend on the number of features. All 

features ranked according to their binary information gain. Naïve Bayes classifier is 

trained using only those features which is high ranked. However, features ranked lowest 

still contain considerable information and are somewhat relevant. SVM use these 

features to predict. SVM creates a hyperplane which is as far away from the data as 

possible. Thus, it gives good accuracy by considering the low ranked features. We can 

see for 4 categories the f1 score is 84.22%. However, we have used bag of words 

representation which loses sequantiality information and leads to performance degrade. 

That’s why when we try to categories for 20 groups accuracy degraded to 75.86% 

because there are many features and bag of words representation describes every word 

independently.  

Since there are no labels in unsupervised learning, it’s near impossible to get a 

reasonably objective measure of how accurate your algorithm is. We have evaluated 

our unsupervised algorithm by the homogeneity. Homogeneity means all of the 

observations with the same class label are in the same cluster. There is another 



 
 

36 
 

measurement for accuracy called Completeness. It means all members of the same class 

are in the same cluster. There is no such declaration of best results between k-means 

clustering and minibatch kmeans because unsupervised algorithms improve their result 

over time and give different result at different time. However, we have run both the 

classifiers 100 times and saved the scores for plotting.  

 

Figure 4.3.5 K-Means 

We are using features and every feature have weight it will try to cluster features 

into a number of mutually exclusive clusters. In figure 4.3.5, we see k means clustering 

algorithms has a homogeneity of 44.2% for 20 categories and 40.72% for 10 categories 

and 62.79% for 4 categories. This is the result after 100 iterations. Results vary because 

unsupervised algorithms learn from the environment, the more time it takes to run the 

more accuracy it will get. 
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Figure 4.3.6 Min Batch K-means 

Mini Batch K-means is faster while clustering 20 categories because it works in 

batches. It divides the whole samples in some batches for each iteration and then cluster 

centroids based on the new points from the batch. K-means and Mini Batch K-means 

differs only on this matter. We can see that in Figure 4.3.6 for 20 categories results have 

improved because of the batching process. For 20, 10 and 4 categories Mini Batch K-

means has homogeneity of 46.99%, 42.54% and 62.22%.  
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Figure 4.3.7 Comparison of Supervised Algorithms for 4 categories  

 
Figure 4.3.8 Comparison of Supervised Algorithms for 20 categories 

In figure 4.3.7 and figure 4.3.8 we have compared f1 score of support vector 

Machine, Naïve Bayes, K-nearest Neighbor and Decision Tree for 20 and 4 categories. 

We can see that Naïve Bayes gives the best result. SVM is pretty close with Naïve 
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Bayes. The reason behind such result is that he naive Bayes classifier makes two bold 

assumptions: 

 The probability of occurrence of any word given the class label, is independent of 

the probability of occurrence of any other word, given that label. 

 The probability of occurrence of a word in a document, is independent of the 

location of that word within the document. 

When these two works together it's called a bag-of-words model, each document 

then is literally just a bunch of words thrown together. Support Vector Machine uses 

features ranked lowest to determine the class. This method also gives good result. But 

like Naïve Bayes it doesn’t use probability of given class and doesn’t consider best 

features. Moreover, SVM doesn’t handle bag of words representation very well. This 

causes the classifier to be less accurate than Naive Bayes. KNN and Decision tree gave 

very poor scores because of their incompatibility with the given data. For Decision Tree 

any small change causes the tree to change the path and misclassify. There are many 

classes which has close features. This cause Decision Tree to give such poor result than 

other classifier. K-nearest Neighbor doesn’t handle categorical data very well. KNN 

works based on minimum distance from the query instance to the training samples to 

determine the k-nearest neighbors and every feature have weights and determining 

classes using only distance caused misclassifying as there can be many irrelevant 

features. 

 
Figure 4.3.9 Comparison of Unsupervised Algorithms for 20 categories 
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 Figure 4.3.10 Comparison of Unsupervised Algorithms for 4 categories 

In figure 4.3.9 and figure 4.3.10, we have compared homogeneity scores of K-

means clustering algorithm and Mini Batch K-means algorithm for 20 and 4 categories. 

Here we can see for 20 categories Mini Batch K-means scored better than K-means. 

This is because Mini Batch handle large amount of data by batching process thus this 

is faster and give better result than k-means. However, for 4 categories we see K-means 

and Mini Batch K-means scored almost same because 4 categories consist small amount 

of data and doesn’t necessarily need batching. This result will vary every time we run 

the classifiers because unsupervised algorithms doesn’t cluster the same away every 

time. Different initial cluster can result in different final clusters.  
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CHAPTER 5 

Conclusions 

 
This chapter consists of a brief summary of this research and demonstrates the 

future aspects and possibilities. We presented an extensive comparative study of text 

classification using machine learning algorithms which are KNN, SVM, Naïve Bayes and 

Decision Tree algorithms. All these algorithms helped us to improve the accuracy to 

predict the result. The preprocessing is a very important part for the prediction accuracy 

so we cleaned the dataset with Lemmatizing and stemming algorithms. Due to the 

digitization of text a lot of data are being stored easily, text classification is the process 

where we categorize the text and machine learning helps us to make the process superfast, 

smarter and efficient. 

 In our study we have found many great works in text categorization. These works 

helped us to guide us. Here we tried to collaborate different algorithms which fetched 

only one dataset. This help us to train the data more accurately. But we were unable to 

get high accuracy for huge amount of data. Low powered pc and less refine data could be 

one of the issues for getting less accuracy for big amount of data processing. Another 

concern our unsupervised algorithm is slow because of the time to train the system. We 

have made the prediction according to a fix dataset so it is very difficult to say that we 

will get the same amount of accuracy in real life uses. Since the English language 

sentence structure and use of word is changing very frequently. So we need a live 

dictionary tool that would make the rules and structure of the present time language. So 

we propose to make such kind of dictionary with the public accessibility. 

  

5.1 Future Possibilities 

Text classification with the help of machine learning system has a lot of 

opportunities to improve. The world is changing very fast and the way of solving 

problems are becoming smarter and more efficient. To cope with the need of vast people 

everything need to be updated. As we are working with text we could make more accurate 

result by setting the uses of one word on different situation and by focusing on its type. 

It means how many type of uses of a single word depending on the position of the word 
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in the sentence.  This would help to select which sentence will be on which categories as 

a result it will help to classify the text. Another thing is to make good accuracy for the 

large amount of data processing, for this we could use different machine learning 

algorithms and compare the results between them. In many cases hybrid algorithms 

output is more accurate and working time is much less.  

In our work Decision tree have less accurate result. To overcome this problem our 

future work will be applying Radom Forest, as it operate by constructing a multitude of 

Decision trees at running time and outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the individual trees. In the future we 

will be working with semi-supervised learning algorithms. However to get this good 

amount of accuracy we need to get more generalized text and the text classification will 

have to be more efficiently used. But the main approach should be towards the semi-

supervised learning algorithms as new document can be assigned to more relevant 

category.   
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