

TEXT CLASSIFICATION USING MACHINE
LEARNING ALGORITHMS

SUBMISSION DATE: AUGUST 2, 2018

Fahim Hasnat (14101043)
Md. Mazidul Hasan (14301104)

Nayeem Hasan Khan (14301113)
Asif Ali (12201068)

Department of Computer Science and Engineering

Supervisor:

Amitabha Chakrabarty, Ph.D

Assistant Professor

Department of Computer Science and Engineering

 SUBMITTED BY:

Declaration

We, hereby declare that this thesis is based on results we have found ourselves. Materials of

work from researchers conducted by others are mentioned in references.

Signature of Supervisor

Amitabha Chakrabarty, Ph.D.

Assistant Professor

Department of Computer Science and

Engineering

BRAC University

 Signature of Authors

Fahim Hasnat (14101043)

Md. Mazidul Hasan (14301104)

Nayeem Hasan Khan (14301113)

Asif Ali (12201068)

i

 ABSTRACT

Financial, educational and communal activities produce enormous amount of

data. Automatic text classification has significant application in content organization,

point of view extraction, evaluation analysis, spam filtering and sentiment analysis.

Automatic classification of text documents requires information extraction, machine

learning and Natural Language processing. We have proposed a probabilistic framework

for text classification. Proposed classification model is composed of three major modules

i.e. pre-processing of unstructured text, learning of probabilistic model and the

classification of unseen data by using learned model. This framework is trained and tested

by using “20 newsgroup” dataset containing twenty different news categories i.e. politics,

sports, religions and pc hardware. We have used both supervised and unsupervised

algorithms to get the full insight on the relationships among various text classification

techniques. Highest accuracy of 84.51% was achieved for 4 categories by Naïve Bayes

among the other Supervised Algorithms we used and 62.79% homogeneity was achieved

for unsupervised algorithms for 4 categories which demonstrates the effectiveness score

of proposed automatic text classification approach.

Keywords: Text Classification, Machine learning, Pre-processing, Feature

Extraction, Naïve Bayes, SVM, KNN, Decision Tree.

ii

Acknowledgement

At first, we would like to express our deepest gratitude to Almighty Allah for

keeping us safe and sound for putting our best effort and successfully complete research

work. Secondly, we would like to thank and show our respect to our honorable Supervisor

Dr. Amitabha Chakrabarty, for his experience, assistance, guidance and patience in

conducting research work and preparing this report. We are very thankful and humbled

to have him as our supervisor. His tireless support and supervision ensure our progress

towards the completion of this thesis work. We thank our parents and our beloved friends

for the support, moral help and aids. They help us a lot with their direct or indirect

participation by giving us suggestion which give us courage to face all kinds of

difficulties. Our profound gratitude to Tasnia Ashrafi Heya, research assistant of

Department of Computer Science and Engineering, BRAC University for her excellent

support and guidance regarding the research and preparation of this report. Last but not

the least, we would like to thank specially our very own BRAC University for providing

us the opportunity to support and help us to conduct this research work.

iii

TABLE OF CONTENTS

LIST OF FIGURES .. v

LIST OF TABLES ... vi

CHAPTER 1 Introduction ... 1

1.1 Motivation ... 2

1.2 Objective ... 3

1.3 Methodology ... 3

1.4 Thesis Overview ... 3

CHAPTER 2 Literature Review .. 4

2.1 Machine Learning .. 4

2.1.1 Machine Learning Algorithms .. 4

2.1.2 Supervised Learning Algorithms .. 5

2.1.3 Unsupervised Learning Algorithms .. 8

2.1.4 Semi-supervised Learning Algorithms ... 10

2.2 Text Categorization ... 11

2.2.1 Pre-Processing .. 11

2.2.2 Feature Selection .. 12

2.2.3 Advantages of Feature Selection ... 12

2.2.4 Feature Extraction ... 14

2.2.5 Bag of words .. 16

CHAPTER 3 Workflow and Feature Extraction ... 18

iv

3.1 Workflow .. 18

3.1.1 20 Newsgroup Dataset .. 19

3.2 Applied Methods For Cleaning... 21

3.2.1 Feature Extraction Process .. 25

CHAPTER 4 Implementation and Results ... 27

4.1 Supervised Algorithms .. 27

4.1.1 Naive Bayes ... 27

4.1.2 K nearest Neighbors ... 28

4.1.3 Decision Tree ... 29

4.1.4 Support Vector Machine .. 30

4.2 Unsupervised Algorithms .. 31

4.2.1 MiniBatch Kmeans ... 31

4.3 Result ... 32

CHAPTER 5 Conclusions .. 41

5.1 Future Possibilities ... 41

REFERENCES .. 43

v

LIST OF FIGURES

Figure 2.1.2 K-Nearest Neighbor ... 6

Figure 2.1.2 Decision Tree .. 7

Figure 2.2.1 Stop Words ... 13

Figure 2.2.5 Distributed value for each ... 17

Figure 2.2.5 Weight of each word per line .. 17

Figure 3.1 Proposed System ... 18

Figure 3.2 Dataset Sample .. 22

Figure 4.1.2 Basic KNN example ... 28

Figure 4.1.3 Basic Decision Tree .. 29

Figure 4.1.4 Basic SVM Diagram .. 30

Figure 4.3.1 Decision Tree .. 32

Figure 4.3.2 KNN .. 33

Figure 4.3.3 Naïve Bayes .. 34

Figure 4.3.4 SVM .. 35

Figure 4.3.5 K-Means ... 36

Figure 4.3.6 Min Batch K-means ... 37

Figure 4.3.7 Comparison of Supervised Algorithms for 4 categories 38

Figure 4.3.8 Comparison of Supervised Algorithms for 20 categories 38

Figure 4.3.9 Comparison of Unsupervised Algorithms for 20 categories 39

Figure 4.3.10 Comparison of Unsupervised Algorithms for 4 categories 40

vi

LIST OF TABLES

Table 2.1.2.1 Pros and Cons of different text classification algorithms.............……8

Table 2.2.4.1 Types of values to filter……………..……………………………..…..15

Table 3.1.1.1 20 Newsgroups Categories...………………………………….………199

Table 3.1.1.2 Documents in 20 Newsgroups……..…....………………….…………200

Table 3.2.1 Differences between types of Stemmer…………………….…………..24

Table 3.2.1.1 Process of TF-IDF ……………………..……………………………..25

1

CHAPTER 1

Introduction

This chapter gives a general review of the purpose of this research work and an

overview of the entire research. It also includes the basic idea of Machine learning (ML)

data preprocessing and feature extraction. Machine learning algorithms allow the

software applications to become more accurate in predicting outcomes without being

explicitly programmed [1]. It focuses on the development of computer programs that can

access the data and use it to learn by themselves. The basic premise of machine learning

is to build algorithms that can receive raw input data, use statistical analysis to predict an

output while updating itself and fetching new data for applying the learning. The process

involved in machine learning are similar to the data mining and predictive modeling. Both

require searching through data to look for patterns and adjusting program action

accordingly [2].

Nowadays, with the development of growing internet technology, more and more

network information has been presented digitally, the number of text on the database have

dramatically increased and is becoming scattered. The biggest problem of text

classification is high dimension of feature space and text representation of sparse vectors

[3]. In the past, people used the KNN algorithm, Naive Bayesian algorithm, Decision

Tree algorithm, Rough Set algorithm and Support Vector Machine to classify text, but

these methods were realized by single neural network, and did not understand really the

importance of feature extraction [3]. Feature extraction is the process where the key

features are extracted that help to classify the text. In recent years, researchers have begun

to focus on the research that can reduce the dimensionality of text classification as well

as improve text feature extraction algorithm. The two major considerations are how

accurately the data is classified and overall system efficiency. Accuracy ensures that text

is categorized in correct class i.e. sports data is classified in sports, fashion data in fashion

and so on and the other factor is efficiency which ensures overall classification and

model’s performance. The news classification has been in talks for last few years.

Research on document level or large text classifications is now more popular compared

to classifying short texts. The reason behind this is that the noisy data for short news

classification, which does not actually support entire process resulting in considerable

less inaccuracy as well as efficiency. Another fact is the learning process is short in large

2

text classification. Lots of researches have been carried out by the researchers on text

classifications including news group classification producing sufficient outputs. There

had been numerous findings in the past in the same area including emotions

classifications, synonyms classifications, twitter news classifications, and so on. In all of

these text classifications, it is proved that data is limited for classifying news texts

performing metrics i.e. time, accuracy, efficiency, and many other related factors with

great and improved results [6]. News classifications of short texts, which have taken place

in past include classifying emotions on basis of short news group, classifying short texts,

classifying financial news, automated news classification, classifying news using N-gram

and classifying news of social media i.e. Twitter are helping to grow the area of

classifying the text. In addition to this, classifying full text news or document level news

categorization is a vast area as compared to headlines classification or short text

classification. The paper basically focuses at news type classification introducing a

probabilistic approach for classifying news type where each of the news type is

categorized into its defined class respectively i.e. system will read the description and it

will categorizes it into suitable category i.e. sports, entertainment, fashion, and others.

The classes are self-defined in the training data set and the two data sets have been

prepared explicitly for this purpose including training and test dataset.

1.1 Motivation

Machine learning evolves from artificial intelligence and study of pattern

recognition. Digitization has changed the way we process and analyze information. Now

a days, a lots of data are being digitized every day. Modern machine learning now have

the accuracy to categorize any kind of information and deliver us the content we need.

Daily Newspaper is such a sector where a lot of data are updated daily, and if anyone

want to find any specific information about a topic he/she has to go through every paper

which is almost not possible. Here comes the need of text classification, where we can

generate any kind of class of our interest and get the data easily. The text classification

has been adopted by a growing number of organization to effectively manage the ever

growing inflow of unstructured information. The core purpose of the text classification

is to increase the discoverability of information and to serve those kinds of knowledge

which will help us to make strategic decision. Text classification is mostly needed when

the task involves business-specific context that are very complex which is done by

3

manual text classification. Manual text classification takes a lot of time (depends on the

dataset) but it is highly detailed and accurate.

1.2 Objective

The main objectives of this research are following:

 Categorize all text of news paper

 Search faster and smarter

1.3 Methodology

In this research, we build a model to classify the “20 Newsgroup” dataset using

Unsupervised and Supervised approach. Firstly, the loaded dataset will be preprocessed.

Then we applied feature extraction process where we extract those key words that we

were going to use for prediction of the selected topic. After that we used machine learning

algorithms in different parameters to bring out the best result in a given parameter. In

supervised process the data set has labeled information which include numeric value and

categorical value. In unsupervised learning process the test data will not have any

classification or labeled information. In this learning system our prediction will be based

on clustering. Clustering finds pattern and groups the unlabeled data.

1.4 Thesis Overview

Chapter 1 is the introduction of our research work. We also have mentioned our

motivation and objective to do this research as well as short overview of the methodology

we followed.

Chapter 2 consists of the literature review where we have demonstrated the

background study that we have done for this thesis

Chapter 3 consists of workflow, dataset cleaning algorithms and feature extraction.

Chapter 4 is the section where we have presented algorithms and implementation

of the overall research.

Chapter 5 contains the conclusion and future possibilities and planning of this

research.

4

CHAPTER 2

Literature Review

This chapter contains the background study required for this research work. Our

findings include understanding about Machine Learning (ML) Algorithms, Pre-

processing, feature extraction, Text selection and text segmentation. This chapter also

refers to related works and their accuracy. Machine Learning is paradigm that may refer

to leaning form past experience (Which in this case previous data) to improve future

performance [17]. Its main focus is to learn automatically and also modify and improve

of algorithms based on past experience without any external assistance from human. Text

classification is the process of defining a label for a previous unseen documents [19]. It

is an active and important area where machine learning algorithms are used frequently.

Automated text classification has always been an important research sector since

the implementation of digital document [21]. The necessity of text classification is very

high because we have to deal with large amount of text which are being digitized every

day.

2.1 Machine Learning

We will discuss about the rear history required for our research paper in this

section. Our work covers understanding of Machine Learning Algorithm, Data Pre-

processing, feature selection, feature extraction and Text classification methods. Machine

Learning is a group of algorithm that enables software application to generate probably

the highest accurate in calculating outcomes without being explicitly programmed [1].

The common proposition of machine learning is to create or develop algorithms that

receive input data and make statistical analysis for predicting an output. Machine

Learning programs are also built to learn and improve over time whenever new data

become available. We use machine learning techniques for automated text classification.

It has many application such as self-driving cars, spam filtering, web search, graphic

recognition system, identification of document genre, authorship attribution, automated

essay grading, classification of news articles etc. [2][4].

2.1.1 Machine Learning Algorithms

The imminent need to access the rising availability of documents in digital form,

the content-based document management tasks have earned a remarkable status in the

5

information systems area. Text classification also known as text categorization is the

job of allocating predefined classes to free-text documents. Machine Learning is an

inductive process which builds automated text classifier by learning from a set of pre-

classified documents. This process has an advantage over knowledge engineers or

domain experts for the structure of the classifier as it has highest accuracy comparable

to that gained by human experts [3]. So, machine learning techniques have the

advantage for better understanding in every aspects from theoretical point of view and

performance surety in parameter guidance.

2.1.2 Supervised Learning Algorithms

In this paper we have discussed three categories supervised learning,

unsupervised learning and semi-supervised learning for approaching text classification

techniques [4]. Under supervised learning a program is trained on pre-defined dataset. It

analyzes training data and gives a suppositional function and the function will be used to

calculate output from a given input. Those who do not give desired output will be

calculated from a given new data. For example to train a spam classifier algorithm, a

training dataset of human tagged spam or non-spam emails is used and then uses the

algorithm to classify whether a new email without tag is spam or not [2]. For text

classification each document is leveled by zero or more categories and new text will be

classified by learning a classifier. Documents which are labeled will be considered as

positive and others as a negative example. The task is to find a weight vector for a text

classifier which classifies new text documents. K-Nearest Neighbor classifier, Naïve

Bayes, Decision Trees, Support Vector Machines, and Decision Rules Classification

includes in supervised learning algorithms [4]. We will take a look of these classifier

algorithms in this paper.

K-Nearest Neighbor

K-NN is an excellent supervised learning algorithm which stores all the cases and

based on similarity measurement it classifies new cases. It works on an assumption that

documents which are closed in the space belong to the same class [5]. By using some

similarity measure such as Euclidean distance measure etc., the weight of the categories

of the neighbor document can be found for a fix amount of the nearest neighbors for all

training samples.

6

Figure 2.1.2 K Nearest Neighbor. [7]

 𝐷𝑖𝑠(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)^2𝑑
𝑖=1 …………………………. (i)

This method is effective and easy to implement but it becomes slow when it uses all

features in computing distance as the irrelevant features declines its accuracy.

Naïve Bayes

Naïve Bayes s one of the most basic text classification techniques with different

applications in email spam detection, document categorization, documents

categorization, language detection etc. It is a probabilistic method based on Bayes

Theorem that makes independence assumptions. By using Bayes Theorem it predicts the

following probabilities by reading a set of examples in attribute value representation. The

feature order and presence of one feature does not affect each other because of its

7

independent assumption in classification task [4]. The only drawbacks of this method is,

when dependencies arises it does not perform and give low performance.

Support Vector Machine

Support Vector Machine is one of the most powerful tools for text classification.

The algorithm addresses the common problem of learning to differentiate the positive and

negative attributes of a given class which is achieved by a linear or non-linear separating

surface in the input space of the dataset. It is based on the Structural Risk Minimization

principle [9]. The ability to learn independently of the feature space makes SVM really

suitable for text classification. The major advantage of SVM is it remains unchanged

when documents that do not belong to the support vectors are removed from the training

dataset but this is relatively more complex than other algorithm where it also requires

high time and memory consumptions [4].

Decision Tree

When decision tree is used for text classification, the internal nodes are considered

as tests and leaf nodes as categories. As long as it reaches a certain leaf which represents

the goal for the classification, the tree is exploring the structure from the root node [5].

The every internal node and branch from a node test one attribute and one value

respectively. The goal attribute is not defined as a result we use the attribute which gives

the maximum information and the leaf node predicts the class or category for the

classification.

Figure 2.1.2 Decision Tree [8]

8

The above example shows the attribute person is the root node and the instances

are spilt based on their values it take for the root node. The instance which gives the

maximum information for the root attribute person is chosen as the decision and so we

can say selecting person gives the highest information at that level. The edges

represents values and the instances are divided according to each child nodes [6].

Though this approach has been successful over the past but due to swapping of training

tuples it becomes ineffective as many training data do not fit in memory decision tree

construction [5].

Table 2.1.2.1 Pros and Cons of different text classification algorithms

Classification
Algorithm

Pros cons

KNN

 Effective
 Non-parametric
 Easy to implement

 Time consumption
 Not ideal based on accuracy

Naïve Bayes

 Easy to implement
compared to other

 Work well on small
amount of data

 Perform poorly when
dependencies arises

SVM

 Large spaces of
feature

 Work well on multi-
label classification

 Work for linear and
non-linear data

 Not perform well for highly
co-related data

Decision
Tree

 Easy to understand
 Easy to generate

 Training time is costly
 Need human experts to

construct or update rules

2.1.3 Unsupervised Learning Algorithms
The Unsupervised learning is a method that is used to classify unsorted

information even there is no categories provided. Basically, it means to expose the

machine to large volume of varied data and allow it to learn and infer from data.

Unsupervised learning algorithms can perform more difficult procedures than

supervised learning. Hierarchical Clustering Techniques, Partitional Clustering

9

Techniques, Kohonen’s Self organizing Network etc. some clustering methods used for

unsupervised learning.

Hierarchical Clustering

In this process, the two most similar clusters are joined and continue to put

together until all the objects are in the same cluster. Hierarchical clustering algorithms

make a cluster hierarchical in the form of tree structure called dendrogram [4]. We can

pick any number form this tree in terms of output. Starting with N cluster where one

for each data point, we have N-1 clusters when we merge the two clusters that are

closest to each other. Then we calculate the distances between clusters by considering

the distance between two clusters and the average distance between all their respective

members. This process will be repeated until we get one cluster of N data points

(dendrogram). Generally, the number of clusters is equal to the number of intersection

points of the horizontal line with the vertical lines in the dendrogram [10]. This process

have two subtypes: Divisive Hierarchical and Agglomerative Hierarchical Clustering.

Divisive hierarchical is used by grouping all the information into one cluster and

successively splitting these clusters. Besides, agglomerative works by sequentially

merging similar clusters.

Partitional Clustering Techniques

In partitional clustering, each object belongs in exactly one cluster. Each cluster

can be represented by a cluster representative. Here, an initial partition is constructed

belong to n objects and partition these objects into k clusters and then clustering

solution is reformed iteratively by moving documents from one cluster to another [4].

This method can be implemented by K-means clustering where we cluster our data into

k groups and assign each data point to one of the nearest centroid’s cluster. The distance

of nearness is calculated often by Euclidean distance formula. After that we move the

centroids to the center of their clusters [10]. Iteration will be continued until a stopping

criterion is achieved. There is another process called Bisecting K-means which achieves

a hierarchy of clusters by repeatedly applying K-means algorithm. A cluster is selected

and the selected cluster is split into two for k=2 where the cluster with less similarity

or that containing the maximum number of documents can be chosen to split.

10

Kohonen’s Self Organizing Network

Kohonen’s self-organizing network is a special type of neural network. In this

process, an input vector represents to the network and the output is compared with the

target vector. After that it checks whether they are differ and if so then the weights of the

network are slightly switched to reduce the error in the output. Until the network gives

the desired output the process will be repeated many times and with many sets of vector

pairs [11]. These are used in the application for visualization aid. Though Kohonen’s

SOM are more complex and outstretched but able to make it easy for humans to explore

relationships between huge amount of data [4].

2.1.4 Semi-supervised Learning Algorithms

Semi-supervised learning is in between of supervised and unsupervised learning.

It is a class of supervised learning. Unlabeled data and labeled data are used by these

algorithms to classify new unlabeled text document. The earliest idea of using unlabeled

data was self-learning or self-training [13].Semi-supervised algorithm uses small amount

of labeled data and a large amount of unlabeled data typically. They use labeled data to

help to identify the specific group of web page types. Then the algorithm is trained on

unlabeled data to define the boundaries of those web page types [12].

Co Training

This machine learning algorithm used when there are only small amounts of

labeled data and large amounts of unlabeled data. This algorithm trains two classifiers

separately on two sufficient and unnecessary views. As an example, two attributes

which are sufficient for learning and independent to the other given class label uses the

prediction of each classifier on unlabeled examples of the other.

 An example of co-training algorithm can be COREG algorithm. It uses two k-

nearest neighbor regressions with different distance metrics. Coreg can be effective to

exploit unlabeled data to improve regression estimates [14].

EM Based

 It is Expectation- Maximization algorithm. By estimating of a generative model

through iterative Expectation- Maximization, these algorithms are used to train

classifiers. Based on multinomial, text documents are represented with a bag of words

model [4]. The theoretical basis for Expectation- Maximization shows that with

sufficiently large amounts of unlabeled data generated by the model will lead to more

11

probable model. This approach rests on the assumption that the generative model is

correct [15].This model is much simplistic to represent. But it has a problem of local

maxima.

Graph Based

It is the theory that study graph models. Graphs are the mathematical structures

used to describe the pairwise relations between objects [16].Graph based methods are

generally non-parametric. It works on a closed data set and at the time of training, test

set is relevant. It is assumed that the data is embedded within a low-dimensional

numerous by a graph. Within a weighted graph, each data sample is represented by

vertex [4].

2.2 Text Categorization

Text categorization is the process of assigning predefined categories of previously

unseen documents [24]. Main purpose of text categorization is to include processing

features, extracting irrelevant features against the feature in database and categorize a set

of documents into predefined categories [25]. The categorization of texts helps to

understand and creates opportunities to make more specific category for that raw data.

The purpose is to run faster and efficiently. Text categorization helps Machine learning

algorithms to run smoother and in more controlled way possible.

2.2.1 Pre-Processing

Data preprocessing is the process where processing algorithms are applied on raw

data for future processing procedure. Data preprocessing transforms the data into a format

where it will be more effectively and easily processed for the later ML algorithms. Main

goal is to represent each data as a feature vector and separate the raw text individually

[25]. It is important to select the proper words that will hold the proper value and meaning

which will have some weight after the applied of the algorithms. There are a lot of

preprocessing tools and methods are available like stop word removal,sampling,

transformation, denoising, normalizing etc[26]. Sampling is a method where a

representative subset is created form a large number of raw data. Transformation is a

process where the raw data is manipulated to produce a single data. Denoising is the way

to remove the noise from the data. Normalization is to organize data in more efficient

way. But the most important sector is stop word removal.

12

2.2.2 Feature Selection

Feature subset selection is the process where we remove irrelevant and redundant

features as much as possible [29]. This reduces the length of dataset and enables the

learning algorithms work faster. Feature selection generally have two parts [29]: a

selection algorithm that help to generate from the given subset which tries to find an

optimal subset; and another one is evaluation algorithms that evaluate how suitable the

proposed dataset is. However without the suitable stopping criteria the feature selection

process will not work perfectly. There are generally three types of feature selection

methods: wrapper method, filter method, embedded methods. Wrapper method is the way

where different combination are prepared, evaluated and compare to other combination,

where it selects the section of set of features as a search problem. A predictive model is

used to score based on the model accuracy. This search process may be methodical where

it can use best-first search. An example is the feature elimination algorithm.

Filter, feature selection methods are used to apply scoring to each feature. The

highest scored features are selected for the used features or selected to remover from the

main dataset. Some examples of some filter methods include Chi square test, information

gain and correlation scores. Embedded methods learn while the model is being created it

tracks those features which has a great contribute to the good accuracy. Regularization is

the most common embedded feature selection method. Examples of embedded methods

are LASSO, Elastic Net and Ridge Regression.

2.2.3 Advantages of Feature Selection

We have used feature methods for following reasons:

 Unnecessary features and low sample features have noise in their data, in this

situation, classification will remove these noises and help to generate a good

performance.

 Complete control of how many and what type of features will generate the

algorithms.

 Helps to set minimum set of features to generate output.

 Easy to understand the generated output.

Preprocessing steps includes Stop Word Removal, Stemming, and Document

Indexing.

13

Stop Word Removal

 Stop word removal is one of the most commonly used processing technique

right now. Search engines used this process to ignore all those words or character that has

no value or less value in the time of generating accuracy form the dataset. At the time of

creating the index, most engines are programmed to remove some certain words that has

less weight. Mainly the list of words or characters that are not added to the final data set

is called the stop word list. This saves both time and space as it removes the words at

indexing time and ignored at searching time. We remove these set of words as they carry

no information [23] (i.e. pronoun, preposition, conjunctions). In English language there

are about 400-500 stop words [23]. These are some examples of stop words which helps

us to build the system.

Figure 2.2.1 Stop Words

By removing stop words from the dataset we get high quality language model which

is preferred for machine learning algorithms [30]. There are many hypothesis about stop

word removal. These can appear at the time of model training [30]:

 1. Stop words can herm inference, means noise from frequent words prevents

algorithms to reorganizing in content bearing words. By this the pattern of sentence could

be changed as well as the meaning.

2. Noise from frequent words does not alter on non-stop words, means no effect

on inference.

14

3. Stop words can improve inference, means it do not herm the pattern of the main

meaning of the sentence.

Stemming

Stemming is the process to reduce a bunch of similar words and give them a

root word. Stemming is including word and giving a set of words same type of meaning

[23]. Here root word is called lemma. Stemming is very important in natural language

processing (NLP). In a very big data set a lot of word can be similar, if we can remove

the similar meaning words the size of our dataset will reduce and it will reduce run

time. When we found a similar type of word we give a particular weight to it for

measuring [23]. When a new word is found it is selected as a new type. To get the best

result the process of lemma is used. To find lemma, stemming is performed by different

machine learning algorithms. Some algorithms will simply strip recognized prefix and

suffix. But these type of implementation creates a lot of error which is not suitable for

learning algorithms. For an example ‘responsively’ can be reduced to a word like

‘respon’. In suffix stripping the algorithms knows the suffix words and removes the

suffix. Another one is Lemmatization. Here the algorithm breaks down the word to its

root directory. Then it categorize the word type according to rules of grammar. Another

type is Stochastic, it gets the form of how the root words could be inflected and it

removes the infected forms of words.

2.2.4 Feature Extraction

Feature extraction is the process to pull out specified data that is significant for

particular process. It is used to extract a subset of new features from original feature

set, by means of some functional mapping and keeping data Information as much as

possible [27]. Most popular feature extraction technique is Principle Component

Analysis. In this method it extracts the lower dimension space by analyzing the

covariance structure of multivariate statistical observations [28]. Another one is Linear

Discriminant Analysis. Here it projects high-dimensional data into lower dimensional

space [28]. Variable by variable data cleaning is straight forward filter approach. There

are many authors’ focuses on duplication of data, which reduce the run time of

algorithms.

Filter evaluation is the process to data reduction, it does not consider the activities.

The values that are suspicious due to their relationship to a specific probability

15

distribution, say a normal distribution with a mean id of 5, a standard deviation of 3 and

a suspicious value of 10[29]. Table 1 shows some examples of how this metadata can

help on detecting a number of possible of data quality problems.

Table 2.2.4.1 Types of values to filter

Problems Metadata Examples/Heuristics

Illegal values

Cardinality e.g., cardinality (gender)> 2

indicates problem

max, min max, min should not be

outside of permissible

range

variance, deviation variance, deviation of

statistical values should not

be higher than threshold

Misspellings feature values sorting on values often

brings misspelled values

next to correct values

Incomplete data is a big problem while dealing with the raw datasets. There can

be many factors for this incompletion of data. The common problem occurs because of

“unknownness”. Data can be missing because of the value is forgotten or lost. Similarly

data can be unknown in result because of certain features is not applicable for it or the

value that is in don’t care mode [29]. To recover these values or to work with the data

set we need to handle the missing data. Many methods are available such as method of

ignoring instance with unknown feature values, most common feature values, mean

substitution, regression or classification methods hot deck input, method of treating

missing feature values as special values etc. Method of ignoring instance with unknown

feature values is one of the simplest methods. Here it ignores values which have at least

one unknown feature. Another one is the concept about the most common feature. In

the dataset which occurs on same class is selected as the value of the unknown feature.

16

Next one is the mean substitution, here it substitutes a features mean value to fill in

missing data values on remaining cases. Another one is the regression or classification

methods. It is based on complete case data for a given feature. Hot deck imputation is

similar case with the missing value and substitute with the most similar cases. In method

treating missing feature value, it treats itself unknown and make new value for the

future.

2.2.5 Bag of words

Bag of words is a segment that treats every word a feature. It is widely used in text

classification area. This is a way of modeling data with machine learning. The main

idea is to categorize data, analyze and classify different bag of words. When we try to

model the text it become more difficult as it has a lot of noise inside it. So to make a

category out of these messy data, bag of word comes up. It tries to segment a set of data

which will be the representation of a feature. This set will be the core thing to select

other similar items [32]. It tries to find the occurrence of words in the document but it

is not concern where the words occur in the document. It represents the text that

describes the occurrence of text in the dataset. It consist of two things one is vocabulary

of known things and another one is measure of presence of words [31]. First step is to

collect the data and in our case here is the dataset. Then it designs the vocabulary, means

it finds the unique words and create document vector. In case of document vector the

words are converted into binary vector where it puts a value for each unique word [31].

For example, if we consider 2 text samples:

1. “the fifa 2018 world cup has become the most exciting world cup ever”

2. “the fifa 2018 world cup is becoming the most viewed world cup”.

Here the text sample is the form of a dictionary where vectors are formed to

represent the count of each word in every sentence.

17

Figure 2.2.5 Distributed value for each

In figure 2.2.5, we have 12 unique words which do not overlap with each other.

For this each text sample will generate 12 element vectors. Which will indicate the

occurrence of the words in the sentence.

Figure 2.2.5 Weight of each word per line

In figure 2.2.5, each element represents the number of words that are present in

the sentences. For the first row the word “the” comes first and the occurrence of it is

twice in the first sentence. That’s why it is marked as 2 and next word is “fifa” which

occurs two times in the same sentence. For the first sentence the word “viewed” do not

appear so it is not valued as 0. Similarly all other words are taken into this process [33].

There are some problems in scoring of words, one of the main reason is the high

frequency words dominate the document. But this may not contain much important

information [31]. For an example, the word “the”, this word can stand almost in front

of anything, but do not contain much information to separate from other. One approach

is to rescale the frequency of the word of how often they appear in the data. And another

concern is to differentiate between two almost similar sentences. To solve this problem

TF-IDF come forward. This scoring approach is called Term Frequency – Inverse

Document Frequency.

18

CHAPTER 3

Workflow and Feature Extraction

3.1 Workflow

Figure 3.1 Proposed System

19

This chapter will shed light on the process which we followed. We started by

loading the dataset. Then we split the dataset to train and test. We cleaned the test and

train set using several pre-processing methods such as stemming, lemmatization and

removing stop words and we also removed headers, footers and quotes. Following, we

extracted features using bag of words representation. Now the features are ready for

supervised algorithms. We have used 4 supervised algorithms: Naïve Bayes, Support

Vector Machine, K-Nearest Neighbor and Decision Tree. At last, we plotted the

accuracy of the classifiers tested by the test set. For unsupervised algorithm we have

used the whole dataset and vectorize the dataset. For fitting the unsupervised

algorithms, we normalized the dataset using dimensionality reduction. We have used

K-means and Mini Batch K-means for clustering. We then plotted the homogeneity

scores of unsupervised algorithms.

3.1.1 20 Newsgroup Dataset

The 20 Newsgroups dataset is commonly used for text mining applications. It

was collected by Ken Lang. The 20 Newsgroups data set is a test collection of

approximately 20,000 newsgroups documents that 1000 documents were taken from

each of the newsgroups. It is divided across 20 different newsgroups. The category

topics are related to computers, politics, religion, sports, and science. Each document

belongs to exactly one newsgroup, but there is a small fraction of the articles belong to

more than one category. The data collection is the well-known 20-Newsgroups (20NG)

dataset.

Table 3.1.1.1: 20 Newsgroups Categories

comp.graphics

comp.os.ms-

windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

20

misc.forsale

talk.politics.misc

talk.politics.guns

talk.politics.mideast

talk.religion.misc

alt.atheism

soc.religion.christian

Table 3.1.1.2: Documents in 20 Newsgroups

Topics #

Documents

in testing

Documents in

training

Documents

alt.atheism

 comp.graphics

 comp.os.ms-

windows.misc

comp.sys.ibm.pc.hardware

 comp.sys.mac.hardware

 comp.windows.x

 misc.forsale

 rec.autos

 rec.motorcycles

 rec.sport.baseball

 rec.sport.hockey

 sci.crypt

 sci.electronics

 sci.med

 sci.space

 soc.religion.christian

 talk.politics.guns

 talk.politics.mideast

 talk.politics.misc

 talk.religion.misc

319

389

394

392

385

395

390

396

398

397

399

396

393

396

394

398

310

364

376

251

480

584

591

590

578

593

585

594

598

597

600

595

591

594

593

599

465

546

564

377

799

973

985

982

963

988

975

990

996

994

999

991

984

990

987

997

775

910

940

628

21

Total 7532 11314 18846

The categories of the dataset are shown in Table 3.1.1.1 some news-groups, for

example, the category “comp.sys.ibm.pc.hardware” and “comp.sys.mac.hardware” are

very similar to each other. An example of the 20 newsgroups dataset document shown

in Fig 1. From the document example, it contains more than headers such as subject

and from. Subject header holds the title of document and from header holds the email

address for the sender.

Moreover, there are different versions of the dataset. The first version known as

original dataset contained 19997 documents. The second version that shows in Table

3.1.1.2 contains 18846 documents. It’s called “bydate” version. Another version is

18828 version which is more cleaned and has 18828 documents. We used the "bydate"

version since cross-experiment comparison is easier (no randomness in train/test set

selection), newsgroup-identifying information has been removed and it's more realistic

because the train and test sets are separated in time. For the purpose of testing the

dataset by supervised algorithms we have split the dataset into 80% training and 20%

test data.

3.2 Applied Methods For Cleaning

The Main challenge of working with text data is cleaning. For our thesis we tried to

clean the data to some extent so that the data would be more realistic and would generalize

to other documents that aren’t from this window of time.

22

Figure 3.2 Dataset Sample

23

Figure 3.2 shows a sample document. Here we can see some noises. Noisy text

does not comply with rules basic program uses to identify and categorize words, phrases

and clauses in a particular language. Poor spelling and punctuation, typographical errors

noises the data. For cleaning the data first while loading the data we will not include

headers, footers, quotes. Headers, footers, quotes are irrelevant for categorization. The

function that load 20 newsgroup data provide a parameter called remove telling it what

kind of information to strip out of each file. The next step we used was to remove special

characters such as “#”, “@” and “/”. In this stage we used python Scikit-learn module to

load the dataset and then regex module to replace all these special characters as “ “

(space). The regex expression we used: “ |(\\(.*?){)|}|[!$%^&*#()_+|~\-

={}\[\]:\";'<>?,.\/\\]|[0-9]|[@] ”. We also used regex to remove extra space. Then we have

done stemming. Stemming is a part of linguistic studies in morphology and artificial

intelligence information retrieval and extraction. Stemming extract meaningful

information from vast sources.

Recognizing, searching and retrieving more forms of words returns more results.

When a form of a word is recognized it can make it possible to return search results that

otherwise might have been missed. That additional information retrieved is why we use

stemming in our data pre-processing phase. Often, the best results can be attained by

using the basic morphological form of the word: the lemma. To find the lemma, stemming

is performed by an individual or an algorithm. Stemming uses a number of approaches to

reduce a word to its base from whatever inflected form is encountered.

It can be simple to develop a stemming algorithm. Some simple algorithms will

simply strip recognized prefixes and suffixes. A stemmer for English operating on the

stem ‘cat” should identify such strings as “cats”, “catlike”, and “catty”. A stemming

algorithm might also reduce the words “fishing”, “fished”, and “fisher” to the stem “fish”.

The stem need not be a word, however. The most popular stemming algorithm is “Porter

stemmer”. However, we used “Snowball stemmer” instead of “Porter stemmer”.

“Snowball stemmer” is also called “Porter2” stemming algorithm. Porter stemmer stem

aggressively and error prone. On the other hand, Snowball stemmer can handle many

words nicely. For a simple comparison we give these words as inputs to both the

stemmers: "python", "pythoner", "pythoning", "pythoned", "pythonly".

24

Table 3.2.1: Differences between types of Stemmer

Porter Stemmer Snowball Stemmer

>>python

>>python

>>python

>>python

>>pythonli

>>python

>>python

>>python

>>python

>>python

Table 3.2.1 shows a better view of the differences. Algorithm used in Snowball

Stemmer provides a significant reduction in the complexity of the rules associated with.

For the next phase we have used “Lemmatizing”. The goal of both stemming

and lemmatization is to reduce inflectional forms and sometimes derivationally related

forms of a word to a common base form.

However, the two words differ in their flavor. Stemming usually refers to a crude

heuristic process that chops off the ends of words in the hope of achieving this goal

correctly most of the time, and often includes the removal of derivational affixes.

Lemmatization usually refers to doing things properly with the use of a vocabulary and

morphological analysis of words, normally aiming to remove inflectional endings only

and to return the base or dictionary form of a word, which is known as the lemma.

Stemming increases recall while harming precision. As an example of what can go

wrong, note that the Porter stemmer stems all of the following words: “operate”,

“operating”, “operates “, “operation”, “operative”, “operatives”, “operational” to

“oper”. However, since “operate” in its various forms is a common verb, we would

expect to lose considerable precision on queries. The word "better" has "good" as its

lemma. This link is missed by stemming, as it requires a dictionary look-up. In terms

of implementation, lemmatization is usually more sophisticated. We implemented it by

using python NLTK module “lemmatizer”. At the end of the pre-processing phase we

have blocked all the stop words. "stop words" usually refers to the most common words

in a language. These are some of the most common, short function words, such as “a”,

“the”, “is”, “at”, “which” etc. Removing these stop words will result in less term

frequencies and more realistic data.

25

3.2.1 Feature Extraction Process

Feature extraction involves reducing the amount of resources required to describe

a large set of data. When performing analysis of complex data one of the major

problems stems from the number of variables involved. Analysis with a large number

of variables generally requires a large amount of memory and computation power, also

it may cause a classification algorithm to overfit to training samples and generalize

poorly to new samples. Feature extraction is a general term for methods of constructing

combinations of the variables to get around these problems while still describing the

data with sufficient accuracy. There are many feature extraction methods. Most famous

is “Bag of Words” which is also known as “Tf-Idf Vectorizer”. TF-IDF reflect the

context of the sample better than other [33]”. Tf-Idf (Term Frequency – Inverse

Document Frequency) reflect the context of the sample better than other [33]. There is

another method of feature extraction called “Hashing Vectorizer” which only uses TF

(Term Frequency) for extracting features. TF-IDF consists of two values. One of them

is Term Frequency (TF) and other one is Inverse Document Frequency (IDF). The

common way to determine TF is to taking the raw frequency of a term and divide by

the maximum frequency of any term in the document [33].

 𝑇𝐹 = 0.5 + 0.5 ∗ 𝑓𝑟𝑒𝑞(𝑙)/max (𝑓𝑟𝑒𝑞(𝑘)) ………………………….. (ii)

Here, k=all words in document and l= tram in document. And another one is to take the

log of the inverse of the proportion of documents c obtaining the term.

IDF = log (𝑚/𝑙𝑒𝑛(𝑛)) …………………………………… (iii)

Here m= 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑐𝑜𝑢𝑛𝑡 and n= 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚

Table 3.2.1.1 Process of TF-IDF

Unique

Words

TF
IDF

TF-IDF

A B A B

I 1 1 Log(2/2) 0 0

Am 1 1 Log(2/2) 0 0

fine 1 1 Log(2/2) 0 0

26

not 0 1 Log(2/1) 0 1

Here we can see that we have two sample dataset as D1 and D2. Here we the

separated unique words are taken into consideration. The first line is set as true and the

second line is set as false. And the difference of these two sentence is just “not”. If we

do not use TF-IDF here our program will just ignore the value of “not” as it will not

contain much value. So after applying TF-IDF we can see the combined result which is

almost same for two sentences except one. Which is the negative symbol to separate

the two sentences. So in this process we can differentiate between two similar types of

data.

Before cleaning and fitting the vectorizer the shape of train and test set was

(15076, 20823) (3770, 20823). After cleaning and fitting the vectorizer the dataset the

shape of train and test set was (15076, 13116) (3770, 13116). So we can clearly see

cleaning the dataset has reduced the term frequencies of the dataset.

27

CHAPTER 4

Implementation and Results

4.1 Supervised Algorithms

After cleaning and feature extraction the documents can be easily represented in

a form that can be used by a ML algorithm. Many text classifiers have been proposed in

the literature using machine learning techniques, probabilistic models, etc. We have used

four of the most used machine learning algorithms for text classification: Naïve Bayes,

Support Vector Machine, K-Nearest Neighbors and Decision Tree.

4.1.1 Naive Bayes

Naive Bayes is often used in text classification applications and experiments

because of its simplicity and effectiveness. Naive Bayes is a kind of classifier which uses

the Bayes Theorem. Bayes theorem named after Rev. Thomas Bayes

[https://en.wikipedia.org/wiki/Thomas_Bayes]. It works on conditional probability.

Conditional probability is the probability that something will happen, given that

something else has already occurred. For a document d and a class c, and using Bayes’

rule,

𝑝(𝑐|𝑑) = [𝑝(𝑑|𝑐) ∗ 𝑝(𝑐)]/𝑝(𝑑)] ………………………… (iv)

Here, classes are the categories the documents belong. P(c) is the total probability

of a class. We have used Multinomial Naïve Bayes rather than Gaussian Naïve Bayes

algorithm. Multinomial Naïve Bayes works well for data which can easily be turned into

counts, such as word counts in text. Here simply the documents are represented as a set

of features (x1, x2, x3, …). We have set the parameters of Multinomial Naïve Bayes as

“alpha=.01”, “prior=false”. Here “alpha=.01” counter the problem with maximum

likelihood which is if any document didn’t match any classes Naïve Bayes will mark it

as 0 probability. Zero probabili1es cannot be conditioned away. By “alpha=.01” we have

done Laplace smoothing (add-.01). By giving “prior=false” We ensured that every

document consist a uniform prior

28

4.1.2 K nearest Neighbors

K nearest Neighbors classifier is based on the assumption that the classification

of an instance is most similar to the classification of other instances that are nearby in the

vector space. Compared to other text categorization methods such as Bayesian

classifier, KNN does not rely on prior probabilities, and it is computationally efficient.

The main computation is the sorting of training documents in order to find the knearest

neighbors for the test document. The number of k determines how many neighbor it will

take and measure the similarity.

Figure 4.1.2 Basic KNN example [20]

To classify a class-unknown document X, the k-Nearest Neighbor classifier

algorithm ranks the document's neighbors among the training document vectors and uses

the class labels of the k most similar neighbors to predict the class of the new document.

The classes of these neighbors are weighted using the similarity of each neighbor to X,

where similarity is measured by Euclidean distance or the cosine value between two

document vectors. The cosine similarity is defined as follows:

 𝑠𝑖𝑚(𝑋, 𝐷𝑗) =
∑ 𝑋ₐ∗𝑑ₐₑ𝑡ₐ∈(𝑋∩𝐷ₑ))

||𝑋||₂∗ ||Dₑ||₂
 …………………………... (v)

29

Where X is the test document, represented as a vector; De is the eth training

document; ta is a word shared by X and De; Xa is the weight of word ta in X; dae is the

weight of word ta in document De; ||𝑋||₂ = √𝑥₁2 + 𝑥₂2 + 𝑥₃2 + ⋯ is the norm of X,

and ||De||2 is the norm of De. Here we have used k = square root of training samples.

Using square root of training samples is the thumb rule of getting optimal value.

4.1.3 Decision Tree

Decision Tree creates a training model which can used to predict class or value

of target variables by learning decision rules inferred from training data. The Decision

tree algorithm tries to solve the problem, by using tree representation. Each internal

node of the tree corresponds to an attribute, and each leaf node corresponds to a class

label. Decision Tree is based on the strategy of divide and conquer.

Figure 4.1.3 Decision Tree [22]

In general, this philosophy is based on the successive division of the problem into

several sub problems with a smaller number of dimensions, until a solution for each of

the simpler problems can be found. While implementing we have set the parameters as

“criterion=gini", “splitter=best”. Here criterion measure the quality of a split. To measure

30

the quality, we have used Gini Impurity. Gini impurity is a measure of how often a

randomly chosen element from the set would be incorrectly labeled if it was randomly

labeled according to the distribution of labels in the subset [22]. At each node while the

tree splits, we chose the “best” parameter to choose the best split it possibly can.

4.1.4 Support Vector Machine

Support Vector Machine focus only on the points that are the most difficult to tell

apart, whereas other classifiers pay attention to all of the points. The intuition behind the

support vector machine approach is that if a classifier is good at the most challenging

comparisons then the classifier will be even better at the easy comparisons. Basically, the

goal of the support vector machine to design a hyperplane that classifies all training

vectors in two classes. The best choice will be the hyperplane that leaves the maximum

margin from both classes.

Figure 4.1.4 Basic SVM Diagram [18]

 We have used LinearSVC of python module to implement Support Vector

Machine. LinearSVC is implemented in terms of liblinear. Liblinear is a linear classifier

for data with millons of instances and features.The parameter we have given was:

“loss=hinge”, “penalty=l2”, “tol=1e-2”, “max_iter=100”, “random_state=50”.

“Loss=hinge” gives a linear SVM and penalty is a regularization term which is set to l2

implementing l2 regularization. The regularization parameter serves as a degree of

importance that is given to miss-classifications. Here “tol” value is a constant that

31

multiplies the regularization term. “max-iter” represents the number of passes over the

training data. We have run 100 epoches by “max_iter=100” parameter. Lastly

classification scores depend on “random_state”. It is the seed of the pseudo random

number generator to use when shuffling the data.

4.2 Unsupervised Algorithms

K-means clustering is a type of unsupervised learning, which is used when you

have unlabeled data (i.e., data without defined categories or groups). The goal of this

algorithm is to find groups in the data, with the number of groups represented by the

variable K. The algorithm works iteratively to assign each data point to one of K groups

based on the features that are provided. Data points are clustered based on feature

similarity. Each centroid of a cluster is a collection of feature values which define the

resulting groups. Examining the centroid feature weights can be used to qualitatively

interpret what kind of group each cluster represents.

 𝑗 = ∑ ∑ ||𝑥ᵢ(ᴶ) − 𝐶ᴊ||2𝑛
𝑖=1

𝑘
𝑗=1 ……………………………… (vi)

Here, k=number of cluster, j=objective function, n=number of cases, Cj=centroid

for cluster j, Xi = case i .We have used kmeans clustering with the same 20 newsgroup

dataset and with k = number of categories. Before training we used SVD (Singular Value

decomposition) to reduce the dimensionality. As the dimensionality of data increases, the

volume of the space increases, in a sense the data becomes more and more sparse

(scattered). The parameters we have used: “init=k-means++”, “max_iter=100”,

“n_init=1”. Here “init=k-means++” selects initial cluster centers for k-mean clustering in

a smart way to speed up convergence. We have run the k-means algorithm with 100

iterations at a time with the “max_iter=100” parameter. “n_init=10” function determines

10 times the k-means algorithm will be run with different centroid seeds. The final results

will be the best output of n_init consecutive runs in terms of inertia.

4.2.1 MiniBatch Kmeans

MiniBatchKmeans is a modified version of kmeans clustering. Time complexity

of kmeans clustering is O(n*K*I*f), where n is the number of documents, K is the

number of clusters we want, I is the number of iterations and f is the number of features

in a particular record. It can be clearly seen that this will take a lifetime for the original

algorithm to cluster data. On the other hand, MiniBatchKMeans algorithm takes small

batches (randomly chosen) of the dataset for each iteration. It then assigns a cluster to

each data point in the batch, depending on the previous locations of the cluster

32

centroids. It then updates the locations of cluster centroids based on the new points from

the batch. The update is a gradient descent update, which is significantly faster than a

normal Batch K-Means.

4.3 Result

For evaluating scores, we have measured F1-scores. F1-scores is a measure of

a test's accuracy. It considers both the precision p and the recall r of the test to compute

the score: p is the % of selected items that are correct, and r is the % of correct items

that are selected. The F1 score can be interpreted as a weighted average of the precision

and recall, where an F1 score reaches its best value at 1 and worst at 0.

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ……………………................….(vii)

 We have run our classifiers for 3 different length of categories: 20, 10 and 4.

The more categories the less accurate result and more time needed to fit the classifiers.

 Figure 4.3.1 Decision Tree

Decision tree creates nodes of the tests and create subgroups until each of the

set addressing one class. However, Decision tree creates biased trees if some classes

33

have more features from others thus lead to misclassification. Again, a small change

can cause the tree to change its path so it is unstable. Here, we can see decision tree has

a low f1 score of 49.2% when we used the full dataset and 68.44% when we used only

the 4 categories. Since we have some categories which are really close like

'comp.sys.ibm.pc.hardware’, 'comp.sys.mac.hardware'. This causes the tree to

misclassify. Our data includes categorical variables with different number of

levels, information gain so decision trees is biased in favor of those attributes with more

levels.

 Figure 4.3.2 KNN

KNN works based on minimum distance from the query instance to the training

samples to determine the k-nearest neighbors. After we gather k nearest neighbors, we

take simple majority of these k-nearest to be the prediction of the query instance.

However, KNN doesn’t handle categorical variable very well. It uses the class labels of

nearest neighbors to determine the class label of unknown record. We had to determine

the k for the best result because, if k is too small it is sensitive to noisy points and if k

is too large neighborhood may include points from other classes. Here, while

34

categorizing for 20 categories KNN’s accuracy is degraded to 62.71% because there

are many features and every feature have weights and determining classes using only

distance caused misclassifying as there can be many irrelevant features. For a small

amount of data like for only 4 categories KNN shows a prediction of 69.17%.

 Figure 4.3.3 Naïve Bayes

Naïve Bayes classifier is suitable for classification with discrete features like

word counts for text classification. Naïve Bayes use probability to predict classes. We

can see that while predicting for 4 categories it scored 84.51%. While classifying Naïve

Bayes ranks the features in terms of frequency. This sometimes degrade performance.

Again, Naïve Bayes classifier makes a very strong assumption on the shape of data

distribution like any two features are independent given the output class. Due to this,

accuracy got lower while categorizing 20 categories that is 76.13%.

35

 Figure 4.3.4 SVM

SVM (support vector machine) doesn’t depend on the number of features. All

features ranked according to their binary information gain. Naïve Bayes classifier is

trained using only those features which is high ranked. However, features ranked lowest

still contain considerable information and are somewhat relevant. SVM use these

features to predict. SVM creates a hyperplane which is as far away from the data as

possible. Thus, it gives good accuracy by considering the low ranked features. We can

see for 4 categories the f1 score is 84.22%. However, we have used bag of words

representation which loses sequantiality information and leads to performance degrade.

That’s why when we try to categories for 20 groups accuracy degraded to 75.86%

because there are many features and bag of words representation describes every word

independently.

Since there are no labels in unsupervised learning, it’s near impossible to get a

reasonably objective measure of how accurate your algorithm is. We have evaluated

our unsupervised algorithm by the homogeneity. Homogeneity means all of the

observations with the same class label are in the same cluster. There is another

36

measurement for accuracy called Completeness. It means all members of the same class

are in the same cluster. There is no such declaration of best results between k-means

clustering and minibatch kmeans because unsupervised algorithms improve their result

over time and give different result at different time. However, we have run both the

classifiers 100 times and saved the scores for plotting.

Figure 4.3.5 K-Means

We are using features and every feature have weight it will try to cluster features

into a number of mutually exclusive clusters. In figure 4.3.5, we see k means clustering

algorithms has a homogeneity of 44.2% for 20 categories and 40.72% for 10 categories

and 62.79% for 4 categories. This is the result after 100 iterations. Results vary because

unsupervised algorithms learn from the environment, the more time it takes to run the

more accuracy it will get.

37

Figure 4.3.6 Min Batch K-means

Mini Batch K-means is faster while clustering 20 categories because it works in

batches. It divides the whole samples in some batches for each iteration and then cluster

centroids based on the new points from the batch. K-means and Mini Batch K-means

differs only on this matter. We can see that in Figure 4.3.6 for 20 categories results have

improved because of the batching process. For 20, 10 and 4 categories Mini Batch K-

means has homogeneity of 46.99%, 42.54% and 62.22%.

38

Figure 4.3.7 Comparison of Supervised Algorithms for 4 categories

Figure 4.3.8 Comparison of Supervised Algorithms for 20 categories

In figure 4.3.7 and figure 4.3.8 we have compared f1 score of support vector

Machine, Naïve Bayes, K-nearest Neighbor and Decision Tree for 20 and 4 categories.

We can see that Naïve Bayes gives the best result. SVM is pretty close with Naïve

39

Bayes. The reason behind such result is that he naive Bayes classifier makes two bold

assumptions:

 The probability of occurrence of any word given the class label, is independent of

the probability of occurrence of any other word, given that label.

 The probability of occurrence of a word in a document, is independent of the

location of that word within the document.

When these two works together it's called a bag-of-words model, each document

then is literally just a bunch of words thrown together. Support Vector Machine uses

features ranked lowest to determine the class. This method also gives good result. But

like Naïve Bayes it doesn’t use probability of given class and doesn’t consider best

features. Moreover, SVM doesn’t handle bag of words representation very well. This

causes the classifier to be less accurate than Naive Bayes. KNN and Decision tree gave

very poor scores because of their incompatibility with the given data. For Decision Tree

any small change causes the tree to change the path and misclassify. There are many

classes which has close features. This cause Decision Tree to give such poor result than

other classifier. K-nearest Neighbor doesn’t handle categorical data very well. KNN

works based on minimum distance from the query instance to the training samples to

determine the k-nearest neighbors and every feature have weights and determining

classes using only distance caused misclassifying as there can be many irrelevant

features.

Figure 4.3.9 Comparison of Unsupervised Algorithms for 20 categories

40

 Figure 4.3.10 Comparison of Unsupervised Algorithms for 4 categories

In figure 4.3.9 and figure 4.3.10, we have compared homogeneity scores of K-

means clustering algorithm and Mini Batch K-means algorithm for 20 and 4 categories.

Here we can see for 20 categories Mini Batch K-means scored better than K-means.

This is because Mini Batch handle large amount of data by batching process thus this

is faster and give better result than k-means. However, for 4 categories we see K-means

and Mini Batch K-means scored almost same because 4 categories consist small amount

of data and doesn’t necessarily need batching. This result will vary every time we run

the classifiers because unsupervised algorithms doesn’t cluster the same away every

time. Different initial cluster can result in different final clusters.

41

CHAPTER 5

Conclusions

This chapter consists of a brief summary of this research and demonstrates the

future aspects and possibilities. We presented an extensive comparative study of text

classification using machine learning algorithms which are KNN, SVM, Naïve Bayes and

Decision Tree algorithms. All these algorithms helped us to improve the accuracy to

predict the result. The preprocessing is a very important part for the prediction accuracy

so we cleaned the dataset with Lemmatizing and stemming algorithms. Due to the

digitization of text a lot of data are being stored easily, text classification is the process

where we categorize the text and machine learning helps us to make the process superfast,

smarter and efficient.

 In our study we have found many great works in text categorization. These works

helped us to guide us. Here we tried to collaborate different algorithms which fetched

only one dataset. This help us to train the data more accurately. But we were unable to

get high accuracy for huge amount of data. Low powered pc and less refine data could be

one of the issues for getting less accuracy for big amount of data processing. Another

concern our unsupervised algorithm is slow because of the time to train the system. We

have made the prediction according to a fix dataset so it is very difficult to say that we

will get the same amount of accuracy in real life uses. Since the English language

sentence structure and use of word is changing very frequently. So we need a live

dictionary tool that would make the rules and structure of the present time language. So

we propose to make such kind of dictionary with the public accessibility.

5.1 Future Possibilities

Text classification with the help of machine learning system has a lot of

opportunities to improve. The world is changing very fast and the way of solving

problems are becoming smarter and more efficient. To cope with the need of vast people

everything need to be updated. As we are working with text we could make more accurate

result by setting the uses of one word on different situation and by focusing on its type.

It means how many type of uses of a single word depending on the position of the word

42

in the sentence. This would help to select which sentence will be on which categories as

a result it will help to classify the text. Another thing is to make good accuracy for the

large amount of data processing, for this we could use different machine learning

algorithms and compare the results between them. In many cases hybrid algorithms

output is more accurate and working time is much less.

In our work Decision tree have less accurate result. To overcome this problem our

future work will be applying Radom Forest, as it operate by constructing a multitude of

Decision trees at running time and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the individual trees. In the future we

will be working with semi-supervised learning algorithms. However to get this good

amount of accuracy we need to get more generalized text and the text classification will

have to be more efficiently used. But the main approach should be towards the semi-

supervised learning algorithms as new document can be assigned to more relevant

category.

43

REFERENCES

[1] Margaret Rouse.What is machine learning (ML)? - Definition from

WhatIs.com. (2016). Retrieved from

https://searchenterpriseai.techtarget.com/definition/machine-learning-ML

[2] Jenny (Xiao) Zhang.10 Machine Learning Terms in Simple English. (2015,
August 01). Retrieved from http://jennyxiaozhang.com/10-machine-learning-
terms-in-simple-english/

[3] Heller K, Rulik B (2016) Ctenosciara alexanderkoenigi sp. n. (Diptera:

Sciaridae), an exotic invader in Germany? Biodiversity Data Journal 4: E6460.

https://doi.org/10.3897/BDJ.4.e6460. (n.d.). Empirical Studies on Machine

Learning Based Text Classification Algorithms.

doi:10.3897/bdj.4.e6460.figure2f

[4] Gore R, Gaikwad S (2015) Checklist of Fabaceae Lindley in Balaghat Ranges of

Maharashtra, India. Biodiversity Data Journal 3: E4541.

https://doi.org/10.3897/BDJ.3.e4541. (n.d.). doi:10.3897/bdj.3.e4541.figure2f

[5] Payal R. Undhad, Dharmesh J. Bhalodiya Text Classification and Classifiers: A

Comparative Study. Retrieved May 3, 2018, from

https://www.ijedr.org/papers/IJEDR1702319.pdf

[6] Srinivasan Ramaswamy. (2016). Multiclass Text Classification A Decision Tree

based SVM Approach. Retrieved May 12, 2018, from

https://pdfs.semanticscholar.org/64d4/3db78cdf2b7eaacd0e949003f410d28a2ee

2.pdf

[7] Mike de Waard. Machine Learning for Developers by Mike de Waard. (2018).

Retrieved from https://xyclade.github.io/MachineLearning/

[8] BADGERATI. (2010). Machine Learning – Decision Trees. (2018). Retrieved

from https://computersciencesource.wordpress.com/2010/01/10/year-2-machine-

learning-decision-trees/

[9] Soumojit Sarkar, Nivedita Rajani. (2016). Text Categorization by Unsupervised

Learning. Retrieved May 17, 2018, from

https://pdfs.semanticscholar.org/6978/3974b7102eef8d9ec1b1cd66a9a0f672733

f.pdf

https://www.techtarget.com/contributor/Margaret-Rouse
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
http://jennyxiaozhang.com/
https://pdfs.semanticscholar.org/64d4/3db78cdf2b7eaacd0e949003f410d28a2ee2.pdf
https://pdfs.semanticscholar.org/64d4/3db78cdf2b7eaacd0e949003f410d28a2ee2.pdf
https://xyclade.github.io/MachineLearning/
https://computersciencesource.wordpress.com/author/badgerati/
https://computersciencesource.wordpress.com/2010/01/10/year-2-machine-learning-decision-trees/
https://computersciencesource.wordpress.com/2010/01/10/year-2-machine-learning-decision-trees/

44

[10] Maini, V. (2017, August 19). Machine Learning for Humans, Part 3:

Unsupervised Learning. Retrieved May 25, 2018, from

https://medium.com/machine-learning-for-humans/unsupervised-learning-

f45587588294

[11] B.H.ChandraShekar, Dr.G.Shoba. (2016). Classification Of Documents Using

Kohonen’s Self-Organizing Map. Retrieved June 5, 2018, from

http://www.ijcte.org/papers/99-G592-613.pdf

[12] Castle, N. (n.d.). What is Semi-Supervised Learning? Retrieved from

https://www.datascience.com/blog/what-is-semi-supervised-learning

[13] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien.(2006).Semi-

Supervised Learning(Rep.). (n.d.). Retrieved June 6, 2018, from

https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf

[14] Zhi-Hua Zhou and Ming Li. (2016). Semi-Supervised Regression with Co-

Training. Retrieved June 6, 2018, from

http://ijcai.org/Proceedings/05/Papers/0689.pdf.

[15] Chapelle, O., Schölkopf, B., & Zien, A. (2010). Semi-supervised learning.

Cambridge, MA: MIT Press. Retrieved June 6, 2018, from

https://www.cs.cmu.edu/~tom/pubs/NigamEtAl-bookChapter.pdf.

[16] S. Jin, W. Chen and J. Han, "Graph-based machine learning algorithm

with application in data mining," 2017 Third International Conference

on Research in Computational Intelligence and Communication

Networks (ICRCICN), Kolkata, 2017, pp. 269-272.

doi: 10.1109/ICRCICN.2017.8234519

[17] Kajaree Das, Rabi Narayan Behera. (2017). Machine Learning for Intelligent

Information Access. Machine Learning and Its Applications Lecture Notes in

Computer Science,274-280. Retrieved June 10, 2018, from

http://www.rroij.com/open-access/a-survey-on-machine-learning-

conceptalgorithms-and-applications-.pdf.doi:10.1007/3-540-44673-7_15

[18] Dr. Lance Eloit.(2018).Support Vector Machines (SVM) for Al Self-Driving

Cars. Retrieved June 12, 2018, from https://aitrends.com/ai-insider/support-

vector-machines-svm-ai-self-driving-cars/

https://www.datascience.com/blog/what-is-semi-supervised-learning
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf

45

[19] Sam Scott, Stan Matwin. Feature Engineering for Text Classification. (n.d.).

Retrieved June 15, 2018, from

https://pdfs.semanticscholar.org/6e51/8946c59c8c5d005054af319783b3eba128a

9.pdf

[20] Adi Bronshtein. (2017). A Quick Introduction to K-Nearest Neighbors

Algorithm. Retrieved June 15, 2018, from

https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-

neighbors-algorithm-62214cea29c7

[21] Ikonomakis, Emmanouil & Kotsiantis, Sotiris & Tampakas, V. (2005). Text

Classification Using Machine Learning Techniques. WSEAS transactions on

computers. 4. 966-974.

[22] Simon T Adams, Stephen H Leveson. (2012). Clinical Prediction Rules.

Retrieved July 5, 2018, from https://www.bmj.com/content/344/bmj.d8312.

(n.d.). doi:10.3897/bdj.1.e1005.

[23] Aurangzeb Khan, Baharum Baharudin, Lam Hong Lee, Khairullah khan.

(2016). A Review of Machine Learning Algorithms for Text-Documents

Classification. Retrieved July 5, 2018, from

http://www.jait.us/uploadfile/2014/1223/20141223050800532.pdf.

doi:10.18411/d-2016-154

[24] Shweta C. Dharmadhikari, Maya Ingle, Parag Kulkarni.Empirical Studies on

Machine Learning Based Text Classification Algorithms. Retrieved July 5, 2018,

https://pdfs.semanticscholar.org/22c2/1d58114a6da2d9f520b3e179d32ad1c278a

b.pdf. (n.d.). doi:10.3897/bdj.4.e7720.figure2f

[25] Pritam C. Gaigole, L. H. Patil , P.M Chaudhari.Preprocessing Techniques in

Text Categorization. Retrieved July 5, 2018,

https://pdfs.semanticscholar.org/ff34/7657082e70347a916548a9fe567ab791162

a.pdf.(n.d.). doi:10.3897/bdj.4.e7720.figure2f

[26] Margaret Rouse.What is data preprocessing? - Definition from WhatIs.com.

(n.d.). Retrieved July 8, 2018, from

https://searchsqlserver.techtarget.com/definition/data-preprocessing

[27] N. Elavarasan, Dr. K.Mani. (2016) . A Survey on Feature Extraction

Techniques. Retrieved July 9, 2018, from

https://pdfs.semanticscholar.org/f1be/6ab3a4b2c036005c9fbe136cd3bb24cf730

3.pdf

https://pdfs.semanticscholar.org/6e51/8946c59c8c5d005054af319783b3eba128a9.pdf
https://pdfs.semanticscholar.org/6e51/8946c59c8c5d005054af319783b3eba128a9.pdf
https://medium.com/@adi.bronshtein?source=post_header_lockup
https://www.techtarget.com/contributor/Margaret-Rouse

46

[28] Nisha Ranjani, Karthikeyan.K. (2016). A SURVEY ON RELEVANCE

FEATURE SELECTION METHOD FOR TEXT CLASSIFICATION. Retrieved

July 11, 2018, from

https://pdfs.semanticscholar.org/8ba0/7e48d0f91d60abdc50b39e2d2c33938847e

b.pdf

[29] S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas. (2016) .Taxonomic revision

of Rochefortia Sw. (Ehretiaceae, Boraginales). Biodiversity Data Journal 4:

E7720. https://doi.org/10.3897/BDJ.4.e7720. (n.d.). Data Preprocessing for

Supervised Leaning. doi:10.3897/bdj.4.e7720.figure2f

[30] Schofield, A., Magnusson, M., & Mimno, D. (2017). Pulling Out the Stops:

Rethinking Stopword Removal for Topic Models. Proceedings of the 15th

Conference of the European Chapter of the Association for Computational

Linguistics: Volume 2, Short Papers. doi:10.18653/v1/e17-2069

[31] Jason Brownlee. (2017). A Gentle Introduction to the Bag-of-Words Model.

(2017, November 21). Retrieved June 8, 2018, from

https://machinelearningmastery.com/gentle-introduction-bag-words-model/

[32] S. Lazebnik, A. Torralba, L. Fei-Fei, D. Lowe, C. Szurka. (2010). Bag-of-Words

models. (n.d.). Lecture presented at Bag-of-Words models in National University

of Singapore, Singapore. Retrieved June 10, 2018, from

https://cs.nyu.edu/~fergus/teaching/vision_2012/9_BoW.pdf

[33] Ongspxm. (2014). Bag of Words (BoW) - Natural Language Processing. (n.d.).

Retrieved from https://ongspxm.github.io/blog/2014/12/bag-of-words-natural-

language-processing/

https://machinelearningmastery.com/author/jasonb/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://cs.nyu.edu/~fergus/teaching/vision_2012/9_BoW.pdf

