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ABSTRACT 

Virtual game players always had a desire for playing with an opponent that acts 

intelligently like a human. That is why MMO (Massive Multiplayer Online) games have 

gained huge popularity. Programmers have developed and implemented many systems and 

algorithms overtime, none came out as successful as Neural Network AI. Artificial Neural 

Networks (ANN) are computing systems inspired by the biological neural networks that 

constitute animal brains. Such systems learn (progressively improve performance) to do tasks 

by considering examples, generally without task-specific programming. We mainly 

implemented Genetic Algorithm, perceptron algorithm and finally neural network with the 

help of tensorflow in unity game engine. We finally selected neural network for output 

efficiency. In this paper, our main focus is to analyze the behavior of the Bots to observe the 

percentage of efficiency achieved, after the implementation of ANN algorithms in game 

engine and pointing out the evolving behavior properties. Results from the analysis of our 

findings can also be helpful for automation and AI development while the whole world is 

running for these. Neural network algorithms are very complex and a quite time inefficient 

for video games. But, we implemented ANN in game engine to create smart bots, increasing 

the efficiency of that algorithm will be another challenge for us. With the help of tensor-flow 

we made the training process easier, thus making ANN easier to implement in common 

games.   

 

Keywords: Artificial Neural Networks, Genetic Algorithm, Reinforcement Learning 

Algorithm, Regression Algorithm, Smart Bot, 2D & 3D Games, Unsupervised Learning, 

Scarcity of Memory 
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CHAPTER 01 

INTRODUCTION 

 

1.1 Introduction 

Game bots generally do not use AI algorithms for decision making rather follow a 

specific set of instructions. In order to make these bots intelligent and eligible for making smart 

decisions we need to use AI algorithms in game engine. Despite having complexities and 

complications, we implemented neural network AI in game engine to create smart enemy bot. 

Artificial neural networks are systems with impressive computing capabilities inspired by the 

biological neural networks that constitute the human brains. Genetic algorithm is a AI algorithm 

that acts the same way. In a genetic algorithm, a population of candidate solutions (called 

individuals, creatures, or phenotypes) to an optimization problem is evolved toward better 

solutions. Each candidate solution has a set of properties (its chromosomes or genotype) which 

can be mutated and altered. Traditionally, solutions are represented in binary as strings of 0s and 

1s, but other encodings are also possible. Genetic algorithms which have been shown to yield 

good performance for neural network weight optimization are really genetic hill-climbers, with a 

strong reliance on mutation rather than hyperplane sampling. Neural control problems are more 

appropriate for these genetic hill-climbers than supervised learning applications because in 

reinforcement learning applications gradient information is not directly available. Genetic 

reinforcement learning produces competitive results with the adaptive heuristic critic method, 

another reinforcement learning paradigm for neural networks that employs temporal difference 

methods. The genetic hill-climbing algorithm appears to be robust over a wide range of learning 

conditions. Therefore, focusing on unsupervised learning had a better chance of yielding fruitful 

results [1]. We developed 3 3D game sample in unity in order to implement the genetic 

algorithm on it. For the first one it takes the sessions played by the bots as a test set and then 

consider all possible reactions for all the given circumstances and initialize it as a population. 

Then it selects reactions based on fitness and go through the crossover process. Outputs of the 

crossover process are then mutated. After mutation a new population is generated and fitness 

tests are run on them again. This process goes on until an optimal solution is chosen as reaction. 

This way the bot will behave like a human and will no more be as clueless as before. 
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1.2 Motivation 

As we like to play PC games and we were playing for quite a long time, we realized the 

urge for smart enemy. So we decided to discover the challenges behind the development of a 

game integrated with the environment that inhabits a smart enemy. Although MMO games have 

emerged as an alternative where real person plays against real person, it’s not very effective for 

countries with lower internet speed, higher internet charge and inadequate infrastructure to set up 

servers locally. Moreover continuous transfer of data for gaming can be a reason for network 

traffic overload. So the solution can be found with the help of smart game bots. These scenarios 

motivated us to contribute in finding a solution for not only the gaming community but also for 

all the internet users. A hope that our country might take a baby step through our research toward 

the generation when we will be able to develop innovative games those are competitive to the 

global market also motivated us in the process. 

1.3  Thesis Contribution 

This thesis has an objective of pioneering the era of intelligent PC game development in 

our country. We aim to assist in overcoming the challenges our developers are facing currently 

by shedding some light into the rigorous development process. As we analyze the behavior of the 

bot based on certain parameters, we will be able to point out significant evolution in reactions. 

Even if the idea of Neural Network AI is not a new one, we go beyond the beginning state in 

several ways: 

We identify appropriate parameters for the gaming environment to retain a standard 

output from our test and training. 

We study the characteristics of the bot’s behavior and list out significant improvement 

through evolution while trained. 

1.4  Problem Statement 

Neural Network AI is a completely new field of research for us. As there are very few 

people involved in Neural Network research in our university, it was tough to take guidance. 

Developing the game engine also requires high performance PC and software.  As we started 

sorting out algorithms based on their efficiency, we were faced with the uncertainty of their 
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performance as there is no fixed standard. Making the test linear enough to assess the output 

reactions was a challenge too. 

1.5  Solutions 

We went through online tutorials and courses. We also tested multiple algorithms to 

establish a custom scale of performance during the research although not mentioning all of them 

to reduce redundancy. The game inhabits a 3D environment yet game rules are kept simple to 

help us in assessing the output. 

1.6  Methodology 

We analyzed the algorithms and sorted them based on efficiency and practicality of this 

research. We developed the game in Unity and implemented Neural Network AI algorithms in 

the game engine. Later we let the bot play to determine and analyze its reactions upon 

challenging circumstances. As we let it play more and more, the bot got trained and its efficiency 

and fitness for survival was increased. 

1.7  Data 

For our research, there was no data available. That is why we prepared our own dataset 

through the tests. We gave parameters as input and collected output reactions as data for our 

research. 

 

1.8  Thesis outline 

Chapter 1 gives a brief overview of our research, our estimated goal and what we have gained. 

Chapter 2 discusses the literature review and background study of our thesis, what properties we 

considered and how they work and more. 

Chapter 3 discusses the chosen methodology, and the reasons behind choosing it. 

Chapter 4 discusses comparative study and analysis of the resulting output we found. The 

training and evolution stages are also briefly discussed in this chapter.  

Chapter 5 ends our paper with conclusion and proposed future work for the system. 
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CHAPTER 02 

LITERATURE REVIEW 

 

2.1 3D Game Theory 

 Three Dimensional games follow coordinate system of basic mathematics. These models 

are all about the representations of shapes in a 3D space, with a coordinate system used to 

calculate their position. WebGL uses the right-hand coordinate system — the x axis points to the 

right, the y axis points up, and the z axis points out of the screen, as seen in the diagram below.  

 

Figure 1: Coordinate System 

2.1.1 Objects 

 Diverse kinds of Articles are manufactured utilizing vertices. A Vertex is a point in space 

having its own particular 3D position in the facilitate framework and typically some extra data 

that characterizes it. Every vertex is described by these attributes: 

❖ Position: Identifies it in a 3D space (x, y, z). 

❖ Color: Holds an RGBA value (R, G and B for the red, green, and blue channels, alpha for 

transparency — all values range from 0.0 to 1.0). 

❖ Normal: A way to describe the direction the vertex is facing. 
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❖ Texture: A 2D image that the vertex can use to decorate the surface it is part of instead 

of a simple color. 

 

Figure 2: 3D Object 

Here, for instance a face of the given shape is a plane between vertices. For instance, a 

3D square has 8 diverse vertices (focuses in space) and 6 unique faces, each built out of 4 

vertices. An ordinary characterizes which way the face is coordinated in. Likewise, by 

associating the focuses we're making the edges of the solid shape. The geometry is worked from 

a vertex and the face, while material is a surface, which utilizes shading or a picture. On the off 

chance that we associate the geometry with the material we will get a work [2].  

 

2.1.2 Rendering Pipeline 

 In this very approach images are prepared and processed to be visible on the screen. This 

methodology takes three dimensional objects and calculates the fragments and renders them into 

two dimensional pixels. The process can be shown as followings: 
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Figure 3: Rendering Pipeline 

Terminology used in the diagram above is as follows: 

● A Primitive: An input to the pipeline — it's built from vertices and can be a triangle, 

point or line. 

● A Fragment: A 3D projection of a pixel, which has all the same attributes as a pixel. 

● A Pixel: A point on the screen arranged in the 2D grid, which holds an RGBA color. 

 

2.2 Reinforcement Learning 

 Reinforcement Learning (RL) refers to a kind of Machine Learning method in which the 

agent receives a delayed reward in the next time step to evaluate its previous action. It was 

mostly used in games (e.g. Atari, Mario), with performance analysis on per to per or even with 

human. Recently, as the algorithm evolves with the combination of Neural Networks, it is 

capable of solving more complex tasks [3]. Some of the earlier researchers of AI used to believe 

that RL might be usefully reproduced in machines. The beginning of the era started in 1951, 

when a Harvard graduate, M Minsky built a machine that used a simple form of reinforcement 

learning to mimic a rat learning to navigate a maze. We have evidenced a few successes over the 

next decades too.  

However, there would be large portions tests to the current Reinforcement Learning 

research. Firstly, it is excessively memory consuming with store qualities in each of the states, 

since those issues could be pretty unpredictable. This includes looking under quality close 

estimation techniques, for example, Decision Trees or Neural Networks. There is needed a 
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significant number outcome of presenting, and investigate tries will minimize their effect on the 

nature of the result. [4] 

 

2.3 Unity Game Engine 

 Unity Game Engine is known as a third party game making platform. According to the 

Unity press release, over 45% of today’s developers are somehow involved using this platform 

where Unreal Engine 4, another third party game making platform with huge developer appeals, 

being used by 17% of market share. With the manta of ‘democratize game development’, the 

unity game engine has already succeeded with flying colors all over the world. 

 The Unity platform is free of cost and simple to install and the features are supported 

regardless the OS of the user. Even while installing, the user might choose the customized 

features based on his requirements of work. Along with the documentation files in their website, 

a number of tutorials in available in the net to get started with Unity and building your own 

game. The Unity API is known as one of the most well documented online documentation and 

provides you insight into operations and features works here. So, the problems someone might 

face working with Unity will not waste much time to solve.  

 Although the Unity Game Engine framework was developed using one of the most used 

programming language, C++; the end users can interact with both C++ & JavaScript. For this 

very reason, we have incorporated unity to work on and using as the game developing platform. 

That gives us easy access and much freedom to design and making our game, the way we want. 

  

2.4  Existing Works 

Neural Networking is such a wonderful thing to work on for smarting any game enemy 

bot. The outcomes of this implementation is noticeable and surely be further workable. There 

have been few works with the game bot to make them more efficient and also with the neural 

networking. However, only few researchers had focused on implementing neural networking in 

game engines to make them smarter. Previously a group of researchers proposed an approach to 

briefly describe the scope and background of AAIA’17 Data Mining Challenge: Helping AI to 
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Play Hearthstone in the context of a more general project related to the development of an AI 

engine for video games, called Grail [05].  
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CHAPTER 03 

ALGORITHM AND WORKING PRINCIPLES 

 

3.1  System Design 

 In our proposed technique, we can divide the whole system into two different segments 

named ‘Developing’ and ‘Training’. Firstly, in the developing segment, we build our systems 

based on the model we proposed from zero. We designed our models based on the parameters 

and rules we choose to work on. To be done with that we had to go through various steps and 

levels of development. Primarily, we selected a suitable and fruitful algorithm initially which 

was decision tree algorithm, can be considerable as a predictive modeling approach. Decision 

trees where the target variable can take continuous values (typically real numbers) are called 

regression trees. First step of this process is initialization. The second segment which was 

training the system involves creating multiple section sets, crossing over them and mutating as 

well as re-evaluating the section sets for fitness checking with the help of the algorithm [6].  

 

3.2  Parameter Selection 

 We needed to set some parameters to make decisions on different situations. Based on the 

parameters we developed the games and made playable. By taking decisions of these situation, 

the intelligent bot will learn and be better after every fitness testing. 

 

3.2.1 Survival Time 

 The intelligence development of proposed games will rely on the measurement of the 

survival time of the bot in every try. It will keep track of the survival timing in both games to use 

the improved time in every fitness testing and accepting the developed methodology of better 

survival. How much time the bot can stay before get eliminated, will be measured here which 

will be resultant reward and to proceed in next stage also.  
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3.2.2 Distance Covered 

 The total distance covered by the bot by walking in segments will be added. The bot 

cannot stop walking permanently as it will eliminate the chance of falling over the edge. The best 

timing will improve the efficiency level of the bot with the techniques used after every fitness 

testing. The walking time is more vital for the first game as the points will be adding points in 

the game and the bot will be able to cover more distance if it doesn’t fall from the edge too early.  

 

3.2.3 Threat Identification 

In the second game we will measure how fast the bot can separately identify the lethal 

object being thrown at it from the harmless ones. Faster identification will also result in longer 

survival time. As the bot will not have any previous given instruction about the shape of the 

objects, the color of it or even any hint about being harmless or harmful of the objects for the 

bot, it’s one of the major identifier to justify the performance of the bot in second game.  

 

3.2.4 Dodging Accuracy 

There will be multiple shapes of objects, being thrown at the bot in the second game. As 

the bot identifies the lethal object, how accurately it can dodge it, is another parameter that we 

have taken into consideration. Better dodging will result in better points and failing will result in 

poor points. 

 

3.2.4 Tackling accuracy 

In the final game we implemented a bot which will avoid enemy stream coming 

randomly from a direction and it will come up with a strategy of its own. The strategy totally 

depends in which environment the bot is trained and how many times the steps are executed for 

the training. The training strategy significantly varies if we max out the max steps as we did in 

our game. 
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3.3  Test Environment 

 The game environments of the proposed models are simple. In the first game, bots will 

spawn in a large playfield. They are allowed to walk any direction they want. If a bot reaches the 

edge of the playfield and does not stop, it will fall over [Figure 4]. So the bots have to decide 

whether to walk straight or turn left / right or stop. In the next phase, next generation of bots will 

respawn and restart. 

 

Figure 4: Game Environment 

In the second game, different shapes of object will be thrown toward a bot. Only one type 

of object is lethal and the rest are harmless. The bot only has to dodge the lethal objects, not the 

harmless ones. Getting hit by the lethal object will result in lost points and dodging them will 

result in gaining points. The set of rules has been discussed briefly in the test game rules section. 
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Figure 5: Game Environment 

 

3.4  Test Game Rules 

 We had to set up few predefined rules to play the game. Based on those conditions, the 

game will move forward.  

I. In the first game, the bots will be given 5 seconds for each generation. 

II. Bots are allowed to act anyway they want (they had 6 options/input options). 

III. In the second game, the bot have no hint beforehand about the lethal object. 

IV. There is no pattern in which the objects will be thrown, balls will be thrown manually. 

V. In the third game bit will have to avoid hitting on top and bottom bar as well as the 

running stream of enemies, it will have to find a safe place for itself 
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3.5  Algorithm  

 We used three algorithms in our system which are genetic algorithm, a search algorithm 

that iteratively transforms a set of strings, each with an associated fitness value, called a 

population into a new population of offspring objects using the Darwinian principle of natural 

selection and using operations such as crossover and mutation, secondly we used perceptron 

algorithm which works like a single neuron iterating data that has similarities with reinforcement 

learning and thirdly we used neural network algorithm with the help of tensorflow with 6 state 

input and 4 output. 

 

3.5.1 Genetic Algorithm 

I. Defining the fitness function f(x) according to the problem definition.  

II. Generating the random population of n chromosomes – each chromosome being the potential 

solution. 

III. Evaluating the fitness f(x) of each chromosome x in the population. 

IV. Repeating the following steps to create the  new population of chromosomes using loops: 

A. Select some parent chromosomes from a population according to their fitness to form 

mating pool. 

B. Mate the selected chromosomes as per given crossover probability to form new 

offsprings. 

C. Mutate new chromosomes as per given mutation probability. 

D. Replace the old population of chromosomes with the new population. 

V. Checking if the maximum number of generations is reached, then stop, and return the best 

solution. 

VI. Go to step 3 
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Figure 6: Basic flowchart of Genetic Algorithm  

 

The used genetic algorithm works step by step in the above mentioned way [7]. In the 

section, the process has been described in details. First of all, the fitness function has to be 

defined for the algorithm. Right after that the population for the game environment has to be 

defined. For our first game, the population is fifty.  

After setting the population and specify all the parameters, the algorithm start testing the 

fitness of the bot in after every single generation. Based on the fitness testing the algorithm 

decides the life time remaining for the bot and related fitness stuffs. 

a. In the fitness evaluation section, first stage is to select the bot and to find out the 

specific parameters to test the fitness. A GA uses fitness as a discriminator of the quality of 

solutions represented by the chromosomes in a GA population. The selection component of a GA 

is designed to use fitness to guide the evolution of chromosomes by selective pressure. 
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Chromosomes are therefore selected for recombination on the basis of fitness. Those with higher 

fitness should have a greater chance of selection than those with lower fitness, thus creating a 

selective pressure towards more highly fit solutions. Selection is usually with replacement, 

meaning that highly fit chromosomes have a chance of being selected more than once or even 

recombined with themselves. The traditional selection method used is Roulette Wheel (or fitness 

proportional) selection. This allocates each chromosome a probability of being selected 

proportional to its relative fitness, which is its fitness as a proportion of the sum of fitness of all 

chromosomes in the population. There are many different selection schemes. Random Stochastic 

Selection explicitly selects each chromosome a number of times equal to its expectation of being 

selected under the fitness proportional method. Tournament Selection first selects two 

chromosomes with uniform probability and then chooses the one with the highest fitness. 

Truncation Selection simply selects at random from the population having first eliminated a 

fixed number of the least fit chromosomes. A full account of the various selection schemes used 

in the literature and guidance on when it is most appropriate to use them.  

b. Then the specified parameters cross matches the values of the bot currently. Based on 

the testing, the algorithm decides the lifestyle of the bot.  

c. In the next stage the algorithm updates the old population with new population as it 

may lose number of population during the crossover fitness testing.  

d. This procedure continues unless the algorithm does get the expected performance for it 

and itself update the best possible output after every single stage.  

 

3.5.2 Perceptron algorithm 

I. Starting the algorithm 

II. Identifying the current state 

III. Choosing an action  

A. Finding error in the first step 

B. Updating weights and bias value based on output 

C. Going back to step 3. 

IV. Determining the next step 

A. Checking the Reach goal 

B. Program ends if reached goal or go back to step 2 if false. 
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3.6  Workflow 

 The following working flowchart in Figure 2 we have followed for developing the 

proposed model. 

 

Figure 7: The working flowchart  

 

 In the used methodology which is already shown in the above Figure 2, we have designed 

the system in the following systematic ways. Where we started with selecting the algorithm and 

followed by the algorithm selection, Algorithm Optimization and designing the game was the 

most crucial phrases in the early stages of the research. After being done with the game 

development, we implemented Artificial Intelligence on the game and following that Testing and 

Training phases has been done. And finally, the behavior of the bot has been analyzed. The steps 

has been discussed below. 

1. Algorithm Selection: At the very early stage our first challenge was to decide which 

algorithm to use for our program.  From many of the existing algorithms in Neural 

Network, we choose genetic algorithm based on the scenario for our game after 
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measuring the possible outcomes and benefits, constraint can be occur  using the 

algorithms.  

2. Algorithm Optimization: A Genetic Algorithm is constructed from a number of distinct 

components. This is a particular strength because it means that standard components can 

be re-used, with trivial adaptation in many different Genetic Algorithms, thus easing 

implementation. The main components are the chromosome encoding, the fitness 

function, selection, recombination and the evolution scheme.  

3. Game Development: We have used unity game engine for developing the game for our 

research. Starting from the very beginning, the environment and the bots were designed 

according to the need of our project. 

 

Figure 8: Steps of implementing AI in game engine.  

4. AI Implementation on game Engine: In this stage, the game was integrated with the AI 

algorithm following the steps mentioned above. Few others algorithms were in our plan 

to implement. However, using Genetic Algorithm gave the best accuracy for the 

performance and helped in self-learn of the bot.  
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5. Testing and Training: In this very stage, for the first bot we tested the walking distances 

covered by the bot and the time spent on the pitch. And for the second game, the harmful 

object avoidance accuracy and the gained point was kept in the record.  

6. AI Behavior Observation: With no previous given instruction, how the bot learn to walk 

in safe directions and to stay on the pitch more time was the first segment to observe to 

justify whether the bot is learning in every generation or not. However, for the second 

game, it was crucial for the bot to know which object of what shape or color to avoid and 

which one to collect to gain point. We observed how the bots learn from the progress of 

the game. 
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CHAPTER 04 

RESULT ANALYSIS  

4.1  Reaction analysis  

 In this stage we have taken the analysis of the reaction of bots in every stages of the game 

to see how it reacts in stages [8]. In first stage, with the increase of number of times of attempts, 

how the bots reacted has been noted and analyzed the progress with the span of time. At the 

stage, the bot has been dropped in the walking segment for the first time and the bots starts 

running regardless the direction. As the bots are walking first time, they do not have any 

previous data and so far best path in Figure 9. According to the parameter the time the bots can 

survive before dropping from any edge is important. Therefore, at the early stages, the 

parameter’s values was not satisfactory and maximum of the bots were getting fallen from any of 

the edges. As a result, they are scattered and going in different direction in generation 1 with the 

population of 50. 

 

 
Figure 9: Bots movement without any previous knowledge 

 

 However, in Figure 10 the movement of the bots are more likely group wise. In the 

generation 03, with the same number of population the bots reacts differently. Unlikely, 
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generation 01, this time the bots makes decision based on the previous walk experience and 

makes groups and some of the bots stays more time in the walkway then previous generation.  

 

 

Figure 10: Bots movement in generation 03 with previous learn. 

 

 After few more generation, the bots learnt by themselves from the previous runs and 

keeping the best path in learn in Figure 11. Therefore, this time the bots goes in same direction 

and stays more time in the walkway comparing the previous generation. As we see in the figure 

05, the bots are going in one direction that’s because the current best path shows the bots the 

path. Following this path, they are surviving more time. Therefore, we can come to the 

conclusion that these bots are learning in generation to generation.  
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Figure 11: After few generations the bots find a direction to walk to survive more. 

 

 In the second round of the game, where the bots had no previous clues about the shapes 

of the objects been thrown towards them. All the objects will not be harmless. Some of the 

objects will be harmful and will cause decrease the life capacity of the bot whereas rest of the 

bots will be adding extra game point for the bot. With the span of time and stages, the bot will 

learn which object to avoid and to take.  
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Figure 12: Bot standing beside the harmless objects in second game. 

 

 The figure 12 shows that the bot is standing beside the thrown objects towards it and 

doesn’t have clues about which one to take and which one to accept. Whereas in the next figure 

(figure 07), it’s shown that the bot is not moving or saving himself from the thrown object 

towards it as it already knew the object is not harmful and will add points to the game scores. 
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Figure 13: Bot receiving the harmless objects 

 

 In the next scenario in figure 13, the bot tries to avoid the object which is red and harmful 

for the bot. However, at the beginning of the game, the bot did not have any idea about being 

harmless or harmful of the bots as no instruction was provided to the bot about the different 

shaped objects thrown toward it. With the expansion of time, it did self-learn and could able to 

recognize the differences between the harmful and harmless objects and started acting 

accordingly. 

In the third game we trained a bot to avoid streaming enemy and top and bottom bar to survive 

and for coming up with a strategy of its own. Mainly inputs are the hit distance from four 

directions and their velocity. Outputs are its own velocities with the help of which it moves. The 

more the bot is trained increasing the max steps the more accurate strategy it find to tackle the 

bot and find a safe place for itself. It is important to note that the training environment is very 

important because the more challenging the environment would be the better the training would 

be. 



 
 

24 
 

  

Figure 14: Bot avoiding monsters 

 

4.2  Reaction properties 

 The reaction of the bot for this game has been measured in two different segment. Based 

on the time and covering distance for the first game where for the second game the reaction has 

been measured based on how the bot dodge on the different types of objects thrown towards the 

bot.  

a. First Game Properties 

 For the first game, there is two different parameters. Number one is the covered distance 

by the bot in every generation. With the increase of time and number of runs, the distance 

covered by the bot gets increases. 

 Measurement of the time until the bot dropped into to fallen from any of the edges is the 

second parameter for first game. With no knowledge or previous learnt path, the amount of 

spend time might be low however, that gets increases with every generation.  

b. Second Game Property  

The only property to measure the bot reaction of second game is the scores it can gain in 

one lifetime in the game. In this stage, the bot loses it lifetime by getting hit through harmful 
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Figure 15: Bot’s react on thrown object 

 

objects thrown towards it. And the fact to remember that, at the beginning, the bot is not aware 

of any of the object’s size, shape, color or even harmful or harmless. This is how the reaction of 

the bot has been measured based on the above mentioned properties.  

 

c. Third Game Properties 

In the third game the accuracy of the tackling is checked by observing the game play. 

Also the reward increase with increase of steps is analyzed. The more the rewards the 

better the training turns out to be. 

 

4.3  Bot's Fitness analysis 

At the beginning of the first game, we have seen that, as the bots didn’t have any knowledge 

about which action they should take. So as a result, each of them started to random tasks. But 

after the 5th generation, we have seen that they have self-trained themselves and started to go 

straight.  Here to find out the best fit value, we can consider the time they have survived and the 

distance they have passed. The bot that has passed more distance must have survived longer. So, 
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the bot which has passed the highest distance and survived the highest the time will be the fittest 

of all. 

In the second game, we are considering three parameters: weight1, weight 2 and bias weigh. 

When the bot will learn which object is harmful and which is harmless, the bias weigh will be 

same as the real weight and after that, they will keep giving a fixed value in the further 

generation. The total error will be zero. That fixed value will be considered as the fittest value of 

the bot.    

Total error becomes 0; where weight and bias was same. 

 

4.4  Regression analysis 

 

Table 1:  Dodge Ball Data 

 

1 
UnityEngine.Debug:Log(Object) 

W1: -0.73950719833374  W2: 0.679593086242676   B: -0.313713431358337 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 0 
UnityEngine.Debug:Log(Object) 

0 
UnityEngine.Debug:Log(Object) 

W1: -0.73950719833374  W2: 0.679593086242676   B: -0.313713431358337 
UnityEngine.Debug:Log(Object) 

W1: -0.26049280166626  W2: 0.679593086242676   B:  0.686286568641663 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 1 
UnityEngine.Debug:Log(Object) 

1 
UnityEngine.Debug:Log(Object) 

W1: -0.26049280166626   W2: 0.679593086242676   B: 0.686286568641663 
UnityEngine.Debug:Log(Object) 
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TOTAL ERROR: 0 
UnityEngine.Debug:Log(Object) 

1 
UnityEngine.Debug:Log(Object) 

W1: -0.26049280166626   W2: 0.679593086242676   B: 0.686286568641663 
UnityEngine.Debug:Log(Object) 

W1: -0.26049280166626   W2: 0.679593086242676   B: -0.313713431358337 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 1 
UnityEngine.Debug:Log(Object) 

0 
UnityEngine.Debug:Log(Object) 

W1: 1.26049280166626    W2: 0.679593086242676  B: 0.686286568641663 
UnityEngine.Debug:Log(Object) 

W1: 1.26049280166626    W2: 0.679593086242676   B: -0.31373431358337 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 2 
UnityEngine.Debug:Log(Object) 

W1: 1.26049280166626    W2: 0.679593086242676    B: -0.31373431358337 
UnityEngine.Debug:Log(Object) 

1 
UnityEngine.Debug:Log(Object) 

W1: 1.26049280166626    W2: 0.679593086242676    B: -0.31373431358337 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 0 
UnityEngine.Debug:Log(Object) 

W1: 1.26049280166626    W2: 0.679593086242676    B: -0.31373431358337 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 0 
UnityEngine.Debug:Log(Object) 
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Table 2: Function Data 

W1: 0.482770413160324   W2: -0.970821857452393   B: -0.0900560617446899 
UnityEngine.Debug:Log(Object) 

W1: 0.482770413160324   W2: 0.0291781425476074   B: 0.90994393825531 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 1 
UnityEngine.Debug:Log(Object) 

W1: 0.482770413160324   W2: 0.0291781425476074  B: -0.0900560617446899 
UnityEngine.Debug:Log(Object) 

W1: 0.482770413160324 W2: 1.02917814254761 B: 0.90994393825531 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 2 
UnityEngine.Debug:Log(Object) 

W1: 0.482770413160324 W2: 1.02917814254761 B: -0.0900560617446899 
UnityEngine.Debug:Log(Object) 

TOTAL ERROR: 0 
UnityEngine.Debug:Log(Object) 

Test 0 0:0  
UnityEngine.Debug:Log(Object) 

Test 0 1:1  
UnityEngine.Debug:Log(Object) 

Test 1 0:1  
UnityEngine.Debug:Log(Object) 

Test 1 1:1  
UnityEngine.Debug:Log(Object) 

 

 
Total 50 populations generate every time. Generation reset time 5 second. Fitness function for 

each bot is distance travelled +time alive. The bot will die if falls of the green platform. Mutation 

occurs 1 in 100. 
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Table 3: Generations and performance 
 

 
 

Generation 1: 
 

7 goes to  left 
7 goes to right 
7 goes to back 
7 goes to forward 
12 crouches 
10 jumps 
 

 
 
 
 
                          Generation 2: 

10 goes to  left 
8 goes to right 
8 goes to back 
24 goes to forward 
0 crouches 
0 jumps 
 
 

 
 
 
                          Generation 3: 
 

10 goes to  left 
8 goes to right 
4 goes to back 
28 goes to forward 
0 crouches 
0 jumps 
 

 
 
 
                          Generation 4: 
 
 

5 goes to  left 
0 goes to right 
0 goes to back 
44 goes to forward 
0 crouches 
1 jumps 
 

 
 
 
                          Generation 5: 
 
 

0 goes to  left 
1 goes to right 
0 goes to back 
48 goes to forward 
0 crouches  
1 jumps 
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                          Generation 6: 
 

0 goes to  left 
0 goes to right 
0 goes to back 
50 goes to forward 
0 crouches  
0 jumps 

 
 
 
In the third game we can see the rewards increasing with steps. 
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CHAPTER 05 

 

Future Work and Conclusion 

5.1  Future of AI in FPS games 

So when can we expect to play a game where our enemy bots will pass the Turing Test? 

The answer is it may be not very soon but we are taking big steps toward that. In recent games 

the use of AI is mostly done with supervised learning. We know that in supervised learning the 

training data has very clear solution to problems as if God has given us the solutions to all 

problems that we can follow. But the real world is different. We continuously search for new 

solutions to new problems which we might have no idea about. But eventually we solve most 

problems very well as human even though no solution set is given to us. The situation in FPS 

games is exactly the same. The enemy bot might not know what might happen to the 

environment or what type of new situations might arrive. So it needs to decide in an 

unsupervised manner and should be bold enough to try new solutions. AI in current games are 

not bold enough to take decisions like this. Memory is one of the main reasons for this. In order 

to run a situation to an algorithm we need to dig into dependencies of a lots of data from 

environments and after that if we need to run neural network or genetic algorithms with those 

data to come to a decision, then the process would take a lot of memory. Right now our 

technologies don’t provide everyone a very cheap solution for that. In games we always have 

memory limitations and memory greedy algorithms can’t handle the game environments for 

normal user PCs. 

But the good news is that technology is advancing very fast. Price of memory is 

decreasing at a very fast rate. That means the possibilities of using unsupervised AI algorithms 

are becoming more and more open. And if normal user pc can handle those large chunks of data 

with those memory greedy algorithms then our enemy bots can be as smart as us. Now here we 

are not talking about just AI in all games. We are talking about AI in fps games where the enemy 

bots will create a charm that will hold us in disbelief that the bot cannot be not human. 

Obviously in our present games there is no enemy that pass the Turing test. It will only be 

possible if we let out bots think like we think. For example in an fps game like call of duty, 

inside the game environment we see a lot of things like a box, a wall, a piece of rock, fogs, a tree 
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etc. But we cannot interact with everything we see in current games neither every object we see 

in games matter while an important decision is taken by us. For example hiding behind a tree in a 

game like call of duty might not make us invisible from enemy. Why are we coming up with this 

limitation? Why can’t we make every object matter which we can see in game screen? There is 

only one reason. Memory. Every game must be memory efficient so some objects in games are 

just for beautifications. They just don’t play any roles in the games. Now imagine if we could 

actually use and interact every object in an fps game what we could actually do. Imagine what 

our enemy bots could do. Our enemy bots can even make a new weapon out of a stone after 

trying and figuring out that stone can hurt us. So finding new possibilities and making new 

decisions and taking new risks should be part of our future AI. In fact in genetic algorithm the 

phase of mutation inspire us to take new decisions out of just using fitness function. Just patterns 

don’t give us a very effective solutions. For example, I can intentionally follow a wrong pattern 

to give the enemy a wrong idea about what I am going to do. So if an enemy totally depends on 

finding patterns it might be easily deceived by a clever player. We need an enemy which doesn’t 

depend on patterns instead depends on fitness function or reward based system where taking a 

decision will result in getting reward for longer time. In fps games it’s not possible to use 

anything like min max algorithm since the number of variables is huge. But if memory problem 

is solved we can even use the min max algorithms with probabilities for taking a very cautious 

decision in which way our enemy can get super smart may be even smarter than human. 

So we can see memory efficiency is the major thing for games AI. It’s just that we need 

to figure out how to make reinforcement learning more memory efficient with the available 

technologies. Also we need to train our bots efficiently in a specific way so that it becomes smart 

in the specific things rather trying to be smart in everything and waste memory for no reason. For 

example, what do we humans do if we want to train a soldier be a sniper for a battle? We train 

him with sample shooting object to increase his accuracy but not limited to that. Their endurance 

to pain is increased in order to live in a harsh environment. Their skills of making objects from 

new things are sharpened for their survival. They are always made biased for taking any 

decisions example US soldier hating and hurting Russian soldiers. Also they may be made 

smarter in math for accurate and quick measurement skill in times when it’s needed. There is no 

training given to a soldier about poetry or art as it will count as waste of time for their purpose 

even though poetry and art are not valueless knowledge. The condition is same for training an AI 
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soldier. If we want to make an AI soldier we need to train it with some basic skills like how to 

shoot or how to run or walk, what is its purpose, where it should be biased about etc. In our 

current games trainings like these are not performed and our current bots are not ready for an 

unknown world situations yet. But with adequate technologies and memory efficiency we can 

achieve that state easily. 

Another thing that we will have to make our enemy bot do is being able to take different 

decisions sometimes.  We all have different personalities. Some of us are more daring and some 

of us are more fearful in taking decisions. An efficient decision comes from the balance of these 

two. So when we teach an AI, we cannot teach it to ignore the risk of any decisions and be super 

bold, neither to be so fearful that it doesn’t even do anything. So during the training we need to 

set its biased value somewhere in the middle so when it comes to chances or probabilities, it does 

not get too afraid or too bold to take a decision. So we can see that we need to use multiple 

algorithms for taking multiple types of decisions in a game. Simple decision trees won’t give us 

very convincing performance from a bot which pretends to be a human. So memory and time 

cost of all these algorithms are the walls on our way to use these algorithms widely in game AI. 

With our present rate of technological advancement we can hope to break these walls pretty 

soon. 

5.2 Conclusion 

In our behavior analysis result, we have seen exponential rate of improvement in the 

reaction of the bots in order to survive the game environment. Implementing something so 

complex was not an easy task, especially when there were such conditions involved. In order to 

achieve this goal, we had to be careful about the memory consumption and time complexity. We 

also needed to carefully select and monitor, if necessary regulate different properties of the 

specified algorithms. There are different ways to optimize an algorithm including switching 

blocks and importing faster methods. Definitely, we did not expect to create a super intelligent 

bot that can surpass human intelligence through self-driven evolution but we sure expected it to 

make the game experience more enjoyable while creating the dilution of a human player. 
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