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Abstract 
 

There are a number of versatile generalizations of the usual inverse matrix, referred to in this thesis 

as generalized inverse matrices. The definitions and properties of some of the common generalized 

inverse matrices are described, including methods for constructing them. 

A number of applications are discussed, including their use in solving consistent systems of linear 

equations which do not have the same number of equations as variables, or which have a singular 

coefficient determinant. A certain type of generalized inverse is shown to give the least‐squares 

solution of an inconsistent system of linear equations. Other applications are to systems of 

nonlinear equations, to integer solutions of systems of equations and to linear programming. 

 The purpose of the thesis is to show that a singular or 𝑚 × 𝑛 matrix has a generalized inverse (g-

inverse). A matrix 𝐴− is said to be a generalized inverse if it fulfils the condition 𝐴𝐴−𝐴 = 𝐴. The 

raw canonical system is used to find the generalized inverse. So we will be using theorems, 

examples and programming language to prove and solve G-inverse. This thesis will also consist 

of semigroups, contour integration and applications which is related generalized inverse. 
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Chapter-1 
Introduction 
 

It is not easy to find the inverse of a matrix if it is singular or rectangular. 

Let’s consider a system of linear equations 

𝐴𝑥 = 𝑏 

Where the matrix 𝐴 has to be a square and has to be a non-zero determinant.  

If 𝐴 is an 𝑛 × 𝑛 non-singular matrix, then the linear equation given above has a solution 

which is unique given by 

𝑥 = 𝐴−1𝑏 

However, in certain cases the matrix 𝐴 is not a square matrix or a singular matrix; this is 

where the solution of linear equation is inconsistent. In such cases there is a theory to 

solve the system of linear equation. The method is known as generalized inverses of 

matrices. It is also known as Pseudo-inverse, Moore-Penrose inverse or simply g-inverse. 

 

 1.1. Definition 

[1] Let the matrix 𝐴 be 𝑚 × 𝑛 matrix, in order to be a g-inverse matrix has to have a rank 

of 𝑅(𝐴) = 𝑟 ≤ min(𝑚, 𝑛). Then we denote generalized inverse of 𝐴 by 𝐴− in the form of 

𝑛 × 𝑚 matrix. The solution will be consistent for the set of linear equation 𝐴𝑥 = 𝑏 for the 

condition 

𝑥 = 𝐴−𝑏. 

A matrix 𝐴− satisfying 𝐴𝐴−𝐴 = 𝐴 coincides with 𝐴−1 when 𝐴−1 exists. 
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 1.2. Existence of a generalized inverse 

 

 Theorem 1.1. [1] A generalized inverse 𝐴− exists if and only if 𝐴𝐴−𝐴 = 𝐴. 

Proof. 

Suppose that 𝐴− exists. The equations 𝐴𝑥 = 𝑏are consistent for any arbitrary vector 𝑣 

such that 𝑏 = 𝐴𝑣. Since 𝑅(𝐴: 𝑏) = 𝑅(𝐴: 𝐴𝑣) = 𝑅(𝐴) that is, 𝑏 lies in the in the column 

space of 𝐴. Then we have 𝐴𝐴−𝑏 = 𝑏 = 𝐴𝑥 so that 𝐴𝑥 = 𝐴𝐴−𝑏 = 𝐴𝐴−𝐴𝑣 since 𝑏 = 𝐴𝑣. 

∴ 𝐴 = 𝐴𝐴−𝐴 since 𝑣 is a solution of 𝐴𝑥 = 𝑏. Conversely, suppose that 𝐴 = 𝐴𝐴−𝐴 and 

𝐴𝑥 = 𝑏 are a consistent system. Then there exist a vector𝑥𝑣∗ such that 𝐴𝑣∗ = 𝑏, that is, 

𝐴𝐴−𝐴𝑣∗ = 𝑏 

Or, 𝐴𝐴−𝑏 = 𝑏 = 𝐴(𝐴−𝑏) implying the existence of a matrix 𝐴− such that 𝐴−𝑏 = 𝑥. 

Hence the theorem is proved. 
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 1.3. Different Conditions of G-Inverse 

 

[2] Let 𝐴 be a matrix over a complex field 𝐶.When the matrix is defined on an real field 

such equations are getable: 

1. 𝐴𝑋𝐴 = 𝐴 

2. 𝑋𝐴𝑋 = 𝑋 

3. (𝑋𝐴)∗ = 𝑋𝐴 

4. (𝐴𝑋)∗ = 𝐴𝑋 

Where ′ ∗ ′ is conjugate transpose. 

𝑋 is a g-inverse if it fulfils the equation (i) and denoted by 

𝑋 = 𝐴− 

a) If the equations (i) and (ii) is fulfilled then 𝑋 is a reflexive g-inverse denoted 

by 𝑋 = 𝐴𝑟. 

b) If the equations (i), (ii) and (iii) is fulfilled then 𝑋 is a left weak g-inverse 

denoted by 𝑋 = 𝐴𝑤. 

c) If the equations (i), (ii) and (iv) is fulfilled then 𝑋 is a right weak g-inverse 

denoted by 𝑋 = 𝐴𝑛 

d) If the equations (i), (ii), (iii) and (iv) is fulfilled then 𝑋 is Pseudo-inverse or 

Moore-Penrose g-inverse denoted by 𝑋 = 𝐴+. 
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 1.4. The Method of Performing Generalized Inverse 

 

Theorem 1.2. [1] Let 𝐴 be a 𝑚× 𝑛 matrix and 𝐴 = [𝑎𝑖𝑗]. 

Where 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. 

We assume the rank of 𝐴 is 𝑟 and can be partitioned in a way such that the minor 

𝑟 × 𝑟 is non-singular and that 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

] 

And the order and the rank of  𝐴11is 𝑟. 

Hence the g-inverse of 𝐴 is shown by 

𝐴− = [𝐴11
−1 0
0 0

] 

The null matrices of are to make 𝐴− an order of 𝑛 × 𝑚. 

Proof. 

To show that 𝐴− is g-inverse of 𝐴. 

Let us prove it by 𝐴𝐴−𝐴 = 𝐴 

Where  

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

] 

And  

𝐴− = [𝐴11
−1 0
0 0

] 
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Solving left hand side of the equation 

∴ [
𝐴11 𝐴12
𝐴21 𝐴22

] [𝐴11
−1 0
0 0

] [
𝐴11 𝐴12
𝐴21 𝐴22

] 

= [
𝐴11𝐴11

−1 0

𝐴21𝐴11
−1 0

] [
𝐴11 𝐴12
𝐴21 𝐴22

] 

= [
𝐼𝑟 0

𝐴21𝐴11
−1 0

] [
𝐴11 𝐴12
𝐴21 𝐴22

] 

Where 𝐼𝑟 is identity matrix of r order 

= [
𝐴11 𝐴12

𝐴21𝐴11
−1𝐴11 𝐴21𝐴11

−1𝐴12
] 

= [
𝐴11 𝐴12
𝐴21 𝐴21𝐴11

−1𝐴12
]…..(1) 

Now we can partition 𝐴 and can write it in this way 

[𝐴21 𝐴22] = 𝐵[𝐴11 𝐴12] = [𝐵𝐴11 𝐵𝐴12] 

From this we can write 

𝐴21 = 𝐵𝐴11 and 𝐴22 = 𝐵𝐴12 

So 𝐵 = 𝐴21𝐴11
−1 

∴ 𝐴22 = 𝐴21𝐴11
−1𝐴12 

Let us put the value of 𝐴22 in (1) 

𝐴𝐴−𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

] = 𝐴 

Hence 𝐴− = [𝐴11
−1 0
0 0

] is a g-inverse of 𝐴 with 𝑛 ×𝑚 dimension. 
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 1.5. Example of finding a G-inverse matrix 

 

Let us consider a matrix 𝐴 = [
1 23 4
3 70 5
2 46 8

] 

 

The matrix 𝐴 is rectangular and if we apply the Gauss elimination method then 

the rank of the matrix is 2. Hence we need to find the pseudo inverse of the matrix 

𝐴. 

So we are going to partition the matrix 𝐴 which will form like 

𝐴 = [

1 2 ∶ 3 4
3 7 ∶ 0 5__
2

__
4
__
:
__
6

__
8

] = [
𝐴11 𝐴12
𝐴21 𝐴22

] 

Where 𝐴11 = [
1 2
3 7

] 

  Here |𝐴11| = [
1 2
3 7

] = 7 − 6 = 1 ≠ 0 

  ∴ It is a non-singular matrix and hence 𝐴11−1 exists. 

  

Now let us find the inverse of 𝐴11 using raw canonical form 

 

(𝐴11|𝐼) = (
1 2
3 7

|
1 0
0 1

) 

                                                     = (
1 2
0 1

|
1 0
−3 1

) when  𝑅2‘ = 𝑅2 − 3𝑅1 

                                                       = (
1 0
0 1

|
7 −2
−3 1

) when  𝑅1‘ = 𝑅1 − 2𝑅2 
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     = (𝐼|𝐴11
−1) 

 ∴ The pseudo inverse of the matrix 𝐴 is: 

𝐴− = [𝐴11
−1 0
0 0

] 

𝐴− = [

7 −2 0
−3 1 0
0
0

0
0

0
0

] 

 

 1.6. Algorithm and Code for G-inverse 

 

 Algorithm. [1] Let 𝐴 be a 𝑚 × 𝑛 matrix of rank 𝑟; then the generalized inverse can be 

        computed by the following steps: 

 

i. Compute 𝐵 = 𝐴𝑇𝐴 

ii. Let 𝐶1 = 𝐼 of order 𝑟. 

iii. Compute 𝐶𝑖+1 = 𝐼 (
1

𝑖
) 𝑡𝑟(𝐶𝑖𝐵) − 𝐶𝑖𝐵 for 𝑖 = 1,2, … , 𝑟 − 1 

iv. Compute 𝐼𝐶𝑟𝐴𝑇 𝑡𝑟(𝐶𝑟𝐵)⁄  and this is 𝐴. Also 𝐶𝑟+1𝐵 = 0, but 

𝑡𝑟(𝐶𝑟𝐵) ≠ 0. 
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Code. 

Example. Let 𝐴 be a matrix = [

1 0 −2
0 1 −1
−1
2

1
−1

1
2

] 

According to the algorithm and using the Python software the Code will be like 
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The output of the Code is.           
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Chapter-2 

 Representation of G-Inverse In Contour Integration 

 

Definition. Contour integration is the process of calculating the values of a contour 

integral around a given contour in the complex plane. As a result of a truly amazing 

property of holomorphic functions, such integrals can be computed easily simply by 

summing the values of the complex residues inside the contour. 

Theorem 2.1.  [3] If 𝐴 is any 𝑚 × 𝑛 matrix such that (𝐴𝐴∗)−1 exists, then 

𝐴+ =
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 

where the integral sign is a closed contour containing non-zero eigenvalues of 𝐴𝐴∗ but 

not containing the zero eigenvalue of 𝐴𝐴∗ in or on the closed contour integral. 

Proof. Let  

𝑋 =
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 

Then we have to show that 𝑋 satisfies the following four conditions: 

1. 𝐴𝑋𝐴 = 𝐴 

2. 𝑋𝐴𝑋 = 𝑋 

3. (𝐴𝑋)∗ = 𝐴𝑋 

4. (𝑋𝐴)∗ = 𝑋𝐴 

Now, let us prove the conditions. 
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1. 𝐴𝑋𝐴 = 𝐴 

∴ 𝐴𝑋𝐴 =
1

2𝜋𝑖
∮𝐴𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1𝐴

1

𝑧
𝑑𝑧 

=
1

2𝜋𝑖
∮{(𝐴𝐴∗)−1}−1(𝐴𝐴∗ − 𝐼𝑧)−1𝐴

1

𝑧
𝑑𝑧 

=
1

2𝜋𝑖
∮{(𝐴𝐴∗ − 𝐼𝑧)(𝐴𝐴∗)−1}−1𝐴

1

𝑧
𝑑𝑧 

=
1

2𝜋𝑖
∮{𝐼 − 𝑧(𝐴𝐴∗)−1}−1𝐴

1

𝑧
𝑑𝑧 

=
1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑧0)
𝑑𝑧 

Where 𝑧0 = 0 and 𝑓(𝑧) = {𝐼 − 𝑧(𝐴𝐴∗)−1}−1𝐴 

= 𝑓(𝑧0) = 𝑓(0) 

= (𝐼 − 0)−1𝐴 = 𝐴 

∴ 𝐴𝑋𝐴 = 𝐴 

2. 𝑋𝐴𝑋 = 𝑋 

∴ 𝑋𝐴𝑋 =
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 𝐴

1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 

=
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 𝐼 

= 𝑋𝐼 = 𝑋 

∴ 𝑋𝐴𝑋 = 𝑋 



12 

3. (𝐴𝑋)∗ = 𝐴𝑋 

∴ 𝐴𝑋 = 𝐴
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 

= 𝐼 

∴ (𝐴𝑋)∗ = 𝐼∗ = 𝐼 = 𝐴𝑋 

4. (𝑋𝐴)∗ = 𝑋𝐴 

∴ 𝑋𝐴 =
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝐴𝑑𝑧 

=
1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑧0)
𝑑𝑧 

 where 𝑧0 = 0 and  𝑓(𝑧) = 𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1𝐴 

= 𝑓(𝑧0) (using Cauchy’s Integral formula) 

= 𝐴∗(𝐴𝐴∗)−1𝐴 (which is Hermitian) 

∴ (𝑋𝐴)∗ = 𝑋𝐴 

 Thus 𝑋 satisfies the four condition of Moore-Penrose g-inverse. 

 Hence 𝑋 = 𝐴+. 

  So we have  

𝐴+ =
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 

 

Let us use a complex matrix as an example: 
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𝐴 = (
5 −3
2𝑖 0

) 

  Let us use the python software to find 𝐴∗ and 𝐴𝐴∗. 

 Code. 

   

 And the output of the Code is. 

  

 Here the first matrix is 𝐴∗ and the second matrix is 𝐴𝐴∗. 

 Now let us find the determinant of 𝐴𝐴∗ to see if any inverse exists. 

∴ det[𝐴𝐴∗] = (34 × 4) − (10𝑖 × −10𝑖) = 36 ≠ 0 

 Therefore, (𝐴𝐴∗)−1 exists and (𝐴𝐴∗)−1 = (
1
9⁄

5𝑖
18⁄

−5𝑖
18⁄ 17

18⁄
). 

𝐴+ =
1

2𝜋𝑖
∮𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

1

𝑧
𝑑𝑧 

=
1

2𝜋𝑖
∮
𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1

𝑧
𝑑𝑧 
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=
1

2𝜋𝑖
∮

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧 

 where 𝑧0 = 0 and 𝑓(𝑧) = 𝐴∗(𝐴𝐴∗ − 𝐼𝑧)−1 

= 𝑓(0) = 𝐴∗(𝐴𝐴∗)−1 

= (
5 −2𝑖
−3 0

)(
1
9⁄

5𝑖
18⁄

−5𝑖
18⁄ 17

18⁄
) 

𝐴+ = 𝐴∗(𝐴𝐴∗)−1 

 Using the calculator and manual calculation we get 

𝐴+ = (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) 

 Now we have to verify it using the four conditions: 

1. 𝐴𝐴+𝐴 = 𝐴 

2. 𝐴+𝐴𝐴+ = 𝐴+ 

3. (𝐴𝐴+)∗ = 𝐴𝐴+ 

4. (𝐴+𝐴)∗ = 𝐴+𝐴 

1.  

𝐴𝐴+𝐴 = (
5 −3
2𝑖 0

) (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) (

5 −3
2𝑖 0

) 

= (
1 0
0 1

) (
5 −3
2𝑖 0

) = (
5 −3
2𝑖 0

) = 𝐴 

  ∴ 𝐴𝐴+𝐴 = 𝐴 
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2.  

𝐴+𝐴𝐴+ = (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) (

5 −3
2𝑖 0

) (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) 

= (
1 0
0 1

) (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) = (

0 −𝑖
2⁄

−1
3⁄

−5𝑖
6⁄
) = 𝐴+ 

  ∴ 𝐴+𝐴𝐴+ = 𝐴+ 

3.  

𝐴𝐴+ = (
5 −3
2𝑖 0

) (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) 

= (
1 0
0 1

) 

∴ (𝐴𝐴+)∗ = (
1 0
0 1

) = 𝐴𝐴+ 

  ∴ (𝐴𝐴+)∗ = 𝐴𝐴+ 

4.  

𝐴+𝐴 = (
0 −𝑖

2⁄

−1
3⁄

−5𝑖
6⁄
) (

5 −3
2𝑖 0

) 

= (
1 0
0 1

) 

∴ (𝐴+𝐴)∗ = (
1 0
0 1

) = 𝐴+𝐴 

  ∴ (𝐴+𝐴)∗ = 𝐴+𝐴 

  Hence all four conditions are fulfilled. 



16 

Theorem 2.2. [3] The Moore-Penrose g-inverse of a 𝑚 × 𝑛 matrix 𝐴 of complex 

numbers is given by the formula  

𝐴+ = ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 

Proof. Let 

𝑋 = ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 

then we have to show that 𝑋 satisfies the fours conditions of M-P generalized 

inverse. 

1.  

𝐴𝑋𝐴 = 𝐴∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗𝐴

∞

0

𝑑𝑡 

= −𝐴[𝑒−∞ − 𝑒0] 

= −𝐴 [
1

𝑒∞
− 𝐼] = 𝐴 

∴ 𝐴𝑋𝐴 = 𝐴 
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2.  

𝑋𝐴𝑋 = ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡𝐴∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 

= −[𝑒−∞ − 𝑒0] ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 

= ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 = 𝑋 

∴ 𝑋𝐴𝑋 = 𝑋 

 

3.  

𝐴𝑋 = 𝐴∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 

= −[𝑒−∞ − 𝑒0] = 𝐼 

 ∴ (𝐴𝑋)∗ = 𝐴𝑋 
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4.  

𝑋𝐴 = ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡𝐴 

= −[𝑒−∞ − 𝑒0] = 𝐼 

 ∴ (𝑋𝐴)∗ = 𝑋𝐴 

  Hence 𝑋 satisfies the four conditions of M-P generalized inverse. 

  So, 

𝐴+ = ∫ 𝑒−𝐴
∗𝐴𝑡𝐴∗

∞

0

𝑑𝑡 
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Chapter-3 

Applications to the System of Linear Equations 

 

 Theorem 3.1. [5] Let 𝐴 be 𝑚 × 𝑛 order matrix and 𝐺 be the g-inverse of 𝐴 and let  

𝐻 = 𝐺𝐴. 

 

A general solution of consistent non homogeneous equation 𝐴𝑋 = 𝑌 is 

𝑋 = 𝐺𝑌 + (𝐻 − 𝐼)𝑍 

Where 𝑌 and 𝑍 are both arbitrary vectors. 

 

Proof. Let us take a matrix 

𝐴 = (

2 0 −4
0
−2

2
2

−2
2

4 −2 4

) 

 

Using the Python Generalized Inverse code we are going to find g-inverse of 𝐴 

(shown in part 1.6.). Hence we get: 

𝐺 =
1

30
(
4 5 1 6
2 10 8 3
−3 0 3 3

) 

In order to prove the theorem let us take two arbitrary vectors: 
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𝑌 = (

0
0
0
15

) and 𝑍 = (
14
6
5
) 

We know 𝐻 = 𝐺𝐴 

𝐻 =
1

30
(
4 5 1 6
2 10 8 3
−3 0 3 3

)(

2 0 −4
0
−2

2
2

−2
2

4 −2 4

) 

If we multiply the matrices 𝐻 becomes an identity matrix. 

∴ 𝐻 = (
1 0 0
0 1 0
0 0 1

) = 𝐼 

Now we are going to find 𝑋 

𝑋 = 𝐺𝑌 + (𝐻 − 𝐼)𝑍 

=
1

30
(
4 5 1 6
2 10 8 3
−3 0 3 3

)(

0
0
0
15

) + [(
1 0 0
0 1 0
0 0 1

) − (
1 0 0
0 1 0
0 0 1

)] × (
14
6
5
) 

∴ 𝑋 = (
3
1.5
1.5

) 

Now we are going to find 𝑌 using this value of 𝑋. If the value of Y matches with 

the arbitrary vector 𝑌 then the theorem is proved. 

𝑌 = 𝐴𝑋 

= (

2 0 −4
0
−2

2
2

−2
2

4 −2 4

)(
3
1.5
1.5

) 
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∴ 𝑌 = (

0
0
0
15

) 

  Code. 
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 The output of this Code is. 

 

 

 

 

The code and output also proves the theorem above.  
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Example 3.1. We are going to use numerical computation to solve 𝐴𝑥 = 𝑏 where matrix 

noninvertible and singular and we have an Algorithm to solve the value of 𝑥 as shown in 

the next page 

Algorithm for the generalized inverse and solution of 𝑨𝒙 = 𝒃  

 Assume 𝑨 is 𝒎× 𝒏 matrix and a column vector 𝒃 ∈ 𝑹𝒎 

 Choose any non-singular sub-matrix 𝑯 of dimension 𝒓 , 

 Find (𝑯−𝟏)𝑻, 

 Replace the elements of sub-matrix 𝑯 in the original matrix 𝑨 by elements of 

(𝑯−𝟏)𝑻, 

 Replace all other elements by zeros to get a new matrix �̅�, 

 The generalized matrix 𝑮 = (�̅�)𝑻, 

 Calculate 𝑨𝑮𝑨, 

 Use 𝒙 = 𝑮𝒃 + (𝑰 − 𝑮𝑨)𝒛 to calculate a solution of 𝑨𝒙 = 𝒃 

 

This algorithm works for MATLAB but we can also use Python to solve the problem. 

Let 𝐴 = (
1 5 2
3 7 9
2 10 4

) and 𝑏 = (
1
7
2
) 

 Let the sub-matrix be 𝐻 = (
1 5
3 7

) 

 The inverse of the matrix is 𝐻−1 = (
−7

8⁄
5
8⁄

3
8⁄

−1
8⁄
) 
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 Hence (𝐻−1)T = (
−7

8⁄
3
8⁄

5
8⁄

−1
8⁄
) 

 Now we have to put the elements of (𝐻−1)T in a new matrix 

�̅� = (

−7
8⁄

3
8⁄ 0

5
8⁄

−1
8⁄ 0

0 0 0

) 

 

The generalized inverse 𝐺 would be 

𝐺 = (�̅�)T 

𝐺 = (

−7
8⁄

5
8⁄ 0

3
8⁄

−1
8⁄ 0

0 0 0

) 

 Now we need to check whether 𝐺 is the generalized inverse of 𝐴. 

 So  

𝐴𝐺𝐴 = (
1 5 2
3 7 9
2 10 4

)(

−7
8⁄

5
8⁄ 0

3
8⁄

−1
8⁄ 0

0 0 0

)(
1 5 2
3 7 9
2 10 4

) = 𝐴 

 Hence 𝐺 is a Generalized inverse of 𝐴. 

 Now we are going to find 𝑥. 

𝑥 = 𝐺𝑏 
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𝑥 = (

−7
8⁄

5
8⁄ 0

3
8⁄

−1
8⁄ 0

0 0 0

)(
1
7
2
) 

𝑥 = (
3.5
−0.5
0

) 

 Now we need to solve 𝐴𝑥 = 𝑏 

𝑏 = (
1 5 2
3 7 9
2 10 4

)(
3.5
−0.5
0

) = (
1
7
2
) 

Therefore, this algorithm works. Now we are going to show the Python code. 

Code. 
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The output of this Code is: 
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Chapter-4 

Applications to the Semigroup 

 4.1. Definition of Group. 

 Let 𝐺 be a set, The set 𝐺 will be a group if the has the following properties: 

 Is a set of elements 

 It has one operation:∗. Which can be a +or × 

 The group 𝐺 is closed under the operation ∗. For example 𝑥, 𝑦 ∈ 𝐺 ⟹ 𝑥 ∗ 𝑦 ∈ 𝐺 

 Each element 𝑥 ∈ 𝐺 has an inverse.  

 The inverse is known as the identity element 𝑒 where 𝑒 ∈ 𝐺. 

 A group is always associative. For example: 𝑥, 𝑦, 𝑧 ∈ 𝐺 then (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗

(𝑦 ∗ 𝑧) ∈ 𝐺 

4.2. Definition of Semigroup. 

 Let 𝐺 be a set be of natural numbers 𝐺 = {1,2,3,4,5, … . }.  

We need to check whether the set 𝐺 is closed under any operation ∗ (+𝑜𝑟 ×). So let us 

take the addition (+) operation.  

∴ 4 + 5 = 9 ∈ 𝐺 

∴ 𝐺is closed under addition and is a group. 

 In order to be a semigroup we must check the associative property. 

∴ (2 + 5) + 7 = 2 + (5 + 7) 

7 + 7 = 2 + 12 

14 = 14 ∈ 𝐺 

 Hence the Group 𝐺 is a semigroup under addition which can be written as (𝐺,+). 
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 4.3. Preliminary Notes 

 

Definition. [4] Let 𝐴be a 𝑚 × 𝑛 matrix over the complex field 𝐾. The g-inverse of 𝐴 is 

denoted by 𝐴+, which is the 𝑛 × 𝑚 matrix 𝑋 over 𝐾 which satisfies the equations: 

𝐴𝑋𝐴 = 𝐴, 𝑋𝐴𝑋 = 𝑋, (𝐴𝑋)∗ = 𝐴𝑋, (𝑋𝐴)∗ = 𝑋𝐴 

 

For every matrix there exists a Moore-Penrose inverse. If 𝑋 is at least a {1} −  inverse of 

𝐴, then 𝐴𝑋 and 𝑋𝐴 are projectors on 𝑅(𝐴) and 𝑅(𝑋) the range spaces of 𝐴 and 𝑋 

respectively and 𝑟𝑎𝑛𝑘(𝐴𝑋) = 𝑟𝑎𝑛𝑘𝐴 = 𝑟𝑎𝑛𝑘(𝑋𝐴). 

Let us denote 𝐴{1} and 𝐴{1,2} the set of {1} − and {1,2} − inverses of 𝐴 respectively. We 

will denote by small letters the sub-matrices of a matrix 𝑋 and by 𝐼 and 0 the identical 

and zero matrices or identical and zero sub-matrices.  

 

Lemma 1. [4] Let 𝐴 be an 𝑚× 𝑛 matrix over 𝐾 of 𝑟𝑎𝑛𝑘𝑟. Then: 

1) There exists non-singular matrices 𝑃 and 𝑄 such that 𝐴 = 𝑄−1 (
𝑎𝑟 0
0 0

)𝑃 

2) 𝐴+ = 𝑃−1 (𝑎𝑟
−1 0
0 0

)𝑄 

3) The elements of 𝐴{1} are the form of  𝑃−1 (
𝑎𝑟

−1 𝑒
𝑓 𝑔

)𝑄 and the elements of 

𝐴{1,2} are the form 𝑃−1 (
𝑎𝑟

−1 𝑒
𝑓 𝑓𝑎𝑟𝑒

)𝑄.  
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Proof. 

Let us prove the lemma1 by taking 𝑄 = (
3 4
5 6

) and 𝑃 = (
1 0
0 1

) 

Since 𝑃 is an identity element hence 𝑃−1 = 𝑃. 

Now we need to find 𝑄−1 from 𝑄. 

Using Python we are going to find 𝑄−1. 

 Code. 

  

 Here C stands for 𝑄−1 

 The inverse of 𝑄 is 

  
  

 Now let us find the matrix 𝐴 and let the singular matrix (𝑎𝑟 0
0 0

) be 𝑅 = (
1 0
0 0

) 

 Let use Python again to find 𝐴. 

 Code. 
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` The output of 𝐴 is. 

   
 The determinant of matrix 𝐴 is = (−3 × 0)—2.5 × 0 = 0 

 ∴The matrix 𝐴 is singular. 

 

 4.4. Isomorphism between Semigroups 

 

Definition. [2] Let (𝐺,∘) and (𝐺′,∗) be two groups. Then a mapping 𝑓(𝐺,∘) → (𝐺′,∗) is 

called isomorphism if it fulfils these condition: 

i. 𝑓 is homomorphism i.e. 𝑓(𝑎 ∘ 𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏)∀𝑎, 𝑏 ∈ 𝐺 

ii. 𝑓 is one-to-one 

iii. 𝑓 is onto 

It is denoted by (𝐺,∘) ≅ (𝐺′,∗) or 𝐺 ≅ 𝐺′. 

Theorem 4.1. [4] Let 𝐴 and 𝐵 be two equivalent matrices. Then (𝐴{1},∗) and (𝐵{1},∗) 

are isomorphic. 

Proof. 

 By using the previous Lemma, we can define a map 𝜑 from 𝐴{1} on 𝐵{1} follows 

𝜑(𝑋) = 𝑃−1𝑋𝑄. Then 𝜑−1 is the inverse map from 𝐵{1} on 𝐴{1} given by 

 𝜑−1 = 𝑃𝑋𝑄−1. In addition, for every 𝑋 and 𝑌 in 𝐴{1}, we have 

𝜑(𝑋 ∗ 𝑌) = 𝜑(𝑋𝐴𝑌) = 𝑃−1(𝑋𝐴𝑌)𝑄 = (𝑃−1𝑋𝑄)(𝑄−1𝐴𝑃)(𝑃−1𝑌𝑄) = 𝜑(𝑋)𝐵𝜑(𝑌)

= 𝜑(𝑋) ∗ 𝜑(𝑌). 
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Also, we have for every 𝑋 and 𝑌 in 𝐵{1}, 

𝜑−1(𝑋 ∗ 𝑌) = 𝜑−1(𝑋𝐵𝑌) = 𝜑−1(𝑋)𝐴𝜑−1(𝑌) = 𝜑−1(𝑋) ∗ 𝜑−1(𝑌). 

Then the map is an isomorphism. 

We remark that 𝜑(𝐴+) = 𝑃−1𝐴+𝑄 = 𝐵+ only if 𝑃 and 𝑄 are orthogonal. 

 

Lemma 2. [4] Let 𝐴 and 𝐵 be two matrices. Then the following statements are 

equivalent: 

a. 𝑟𝑎𝑛𝑘(𝐴) + 𝑟𝑎𝑛𝑘(𝐵 − 𝐴) = 𝑟𝑎𝑛𝑘(𝐵) 

b. Every {1} − inverse of 𝐵 is a {1} − inverse of both 𝐴 and 𝐵 − 𝐴. 

c. 𝑅(𝐴) ∩ 𝑅(𝐵) = {0} and 𝑅(𝐴𝑡) ∩ 𝑅(𝐵𝑡) = {0} 

 

Theorem 4.2. [4] There is one-to-one correspondence between 𝑀𝑚×𝑛(𝐾) and 𝑀𝑚×𝑛
{1} (𝐾) 

maps 0 to 𝑀𝑛×𝑚(𝐾) and preserves isomorphism between semigroup. 

 Proof. 

Let 𝜓 be a map from 𝑀𝑚×𝑛(𝐾) onto 𝑀𝑚×𝑛
{1} (𝐾) defined for every 𝐴 ∈ 𝑀𝑚×𝑛(𝐾) by 

𝜓(𝐴) = 𝐴{1}. Since 0𝑋0 = 0 for any 𝑋 ∈ 𝑀𝑛×𝑚(𝐾), we get 0{1} = 𝑀𝑛×𝑚(𝐾). Thus 

𝜓(0) = 𝑀𝑛×𝑚(𝐾). According to the Lemma above, if 𝐴{1} = 𝐵{1}, we have 𝑟𝑎𝑛𝑘(𝐴) +

𝑟𝑎𝑛𝑘(𝐵 − 𝐴) = 𝑟𝑎𝑛𝑘(𝐵)and 𝑟𝑎𝑛𝑘(𝐵) + 𝑟𝑎𝑛𝑘(𝐴 − 𝐵) = 𝑟𝑎𝑛𝑘(𝐴). Thus we have 

𝑟𝑎𝑛𝑘(𝐴 − 𝐵) = 0 = 𝑟𝑎𝑛𝑘(𝐵 − 𝐴). Therefore 𝐴 = 𝐵. Now, let 𝐴, 𝐵 ∈ 𝑀𝑚×𝑛(𝐾) such 

that 𝐵 = 𝑄−1𝐴𝑃. According to Theorem2.1, we have 𝐵{1} = {𝑃−1𝑋𝑄 𝑋⁄ ∈ 𝐴−1} =

𝜑(𝐴{1}). Hence we have 𝜓(𝐵) = 𝜑(𝜓(𝐴)). 
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Conclusion 

 

The theory of generalized inverses has its roots both on semigroup theory and on matrix and 

operator theory. In this thesis we have examined several topics in the theory of linear statistical 

models using the generalized inverse of a matrix as an analytical device. The examination has 

rewarded us with considerable insight into some of the underlying structure of this theory, and it 

appears that the generalized inverse will become a valuable addition to the theorist's box of 

mathematical tools.  

We have discussed numerically reliable methods and computer algorithm to compute generalized 

inverses of singular matrices. The proposed methods are completely general, being applicable to 

singular matrices. The proposed approach provides flexibility to compute the solutions of 

linearly-dependent equations, it has been also shown that all can be obtained from only one 

generalized inverse matrix. 

This thesis also describes a generalization of the inverse of a non-singular matrix, as the unique 

solution of a certain set of equations. This generalized inverse exists for any (possibly 

rectangular) matrix whatsoever with complex elements 𝐽. It is used here for solving linear matrix 

equations, and among other applications for finding an expression for the principal idempotent 

elements of a matrix. 

A generalized inverse exists for an arbitrary matrix, and when a matrix has an inverse, then this 

inverse is its unique generalized inverse. Some generalized inverses can be defined in any 

mathematical structure that involves associative multiplication, that is, in a semigroup.  
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