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Abstract

There are a number of versatile generalizations of the usual inverse matrix, referred to in this thesis
as generalized inverse matrices. The definitions and properties of some of the common generalized

inverse matrices are described, including methods for constructing them.

A number of applications are discussed, including their use in solving consistent systems of linear
equations which do not have the same number of equations as variables, or which have a singular
coefficient determinant. A certain type of generalized inverse is shown to give the least-squares
solution of an inconsistent system of linear equations. Other applications are to systems of

nonlinear equations, to integer solutions of systems of equations and to linear programming.

The purpose of the thesis is to show that a singular or m X n matrix has a generalized inverse (g-
inverse). A matrix A~ is said to be a generalized inverse if it fulfils the condition AA™A = A. The
raw canonical system is used to find the generalized inverse. So we will be using theorems,
examples and programming language to prove and solve G-inverse. This thesis will also consist

of semigroups, contour integration and applications which is related generalized inverse.
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Chapter-1

Introduction

It is not easy to find the inverse of a matrix if it is singular or rectangular.
Let’s consider a system of linear equations
Ax=b

Where the matrix A has to be a square and has to be a non-zero determinant.
If A is an n X n non-singular matrix, then the linear equation given above has a solution
which is unique given by

x=A"1h
However, in certain cases the matrix A is not a square matrix or a singular matrix; this is
where the solution of linear equation is inconsistent. In such cases there is a theory to
solve the system of linear equation. The method is known as generalized inverses of

matrices. It is also known as Pseudo-inverse, Moore-Penrose inverse or simply g-inverse.

1.1. Definition

[1] Let the matrix A be m X n matrix, in order to be a g-inverse matrix has to have a rank
of R(A) = r < min(m, n). Then we denote generalized inverse of A by A~ in the form of
n X m matrix. The solution will be consistent for the set of linear equation Ax = b for the
condition

x=A"b.

A matrix A~ satisfying AA~A = A coincides with A~! when A~ exists.



1.2. Existence of a generalized inverse

Theorem 1.1. [1] A generalized inverse A~ exists if and only if AA™A = A.

Proof.

Suppose that A~ exists. The equations Ax = bare consistent for any arbitrary vector v
such that b = Av. Since R(A: b) = R(A: Av) = R(A) that is, b lies in the in the column
space of A. Then we have AA™b = b = Ax so that Ax = AA™b = AA™ Av since b = Av.
~ A = AA™ A since v is a solution of Ax = b. Conversely, suppose that A = AA™A and
Ax = b are a consistent system. Then there exist a vectorxv™ such that Av* = b, that is,
AAAv* =b

Or, AA™b = b = A(A™b) implying the existence of a matrix A~ such that A=b = x.

Hence the theorem is proved.



1.3. Different Conditions of G-Inverse

[2] Let A be a matrix over a complex field C. When the matrix is defined on an real field
such equations are getable:

1. AXA=A

2. XAX =X

3. (XA)" = XA

4. (AX)" = AX
Where ' * ' is conjugate transpose.

X is a g-inverse if it fulfils the equation (i) and denoted by
X=A"

a) If the equations (i) and (ii) is fulfilled then X is a reflexive g-inverse denoted
by X = A".

b) If the equations (i), (ii) and (iii) is fulfilled then X is a left weak g-inverse
denoted by X = A%.

c) If the equations (1), (i1) and (iv) is fulfilled then X is a right weak g-inverse
denoted by X = A"

d) If the equations (1), (ii), (iii) and (iv) is fulfilled then X is Pseudo-inverse or

Moore-Penrose g-inverse denoted by X = A™.



1.4. The Method of Performing Generalized Inverse

Theorem 1.2. [1] Let A be am X n matrix and A = [a;;].
Wherei =1,2,...,mandj =1,2,...,n
We assume the rank of A is r and can be partitioned in a way such that the minor

r X r is non-singular and that
A= [All AlZ]

And the order and the rank of A;;is 7.

Hence the g-inverse of A is shown by
[

The null matrices of are to make A~ an order of n X m.
Proof.

To show that A~ is g-inverse of A.

Let us proveitby AA"A = A

Where

A A
A= [ 11 12]
Az1 Az

And

o=y



Solving left hand side of the equation

Ay A12][A11_1 0][A11 AIZ]
Az Az 0 0ll421 Ay

_ ApA Tt 0 [An A12]
Ay At 0flA21 Ap

Lo o
A21A11_1 0 AZI A22

Where I, is identity matrix of r order

_ Aqq Aq, ]
Ap1A1 Ay ApiAn A

_ A Aq,

= ° (D)
Ayy ApAiy 1A12]

Now we can partition A and can write it in this way
[A21  Az2] = B[A11  A1z2] = [BA1; BAys]
From this we can write
A,; = BA;; and A,, = BAy;
SoB = Ay Ayt
~ Ay = A21A11_1A12

Let us put the value of A,, in (1)

Ay A
AA=A = [ 1 12] =A
A21 AZZ

-1
Hence A~ = [Al(l) 8] is a g-inverse of A with n X m dimension.



1.5. Example of finding a G-inverse matrix

1 2 3 4
Letus consideramatrix4A=1|3 7 0 5
2 4 6 8

The matrix A is rectangular and if we apply the Gauss elimination method then

the rank of the matrix is 2. Hence we need to find the pseudo inverse of the matrix

A.

So we are going to partition the matrix A which will form like

1 2 :3 4
A=|3 7 0 s5|=[4n AlZ]
2 2.%6 38 Ay Ap

Where A1, = [é 3

Here|A11|=[§ ; —7-6=1%0

= It is a non-singular matrix and hence A;; " exists.

Now let us find the inverse of A4 using raw canonical form

(A4|D) = (é ? é (1))

= ((1) i|_13 (1)) when R, = R, — 3R,

(5 115 =) when R =Ry 28



= (1]41.7)

=~ The pseudo inverse of the matrix A is:

oy
0 0
-2

0
0
0
0

S OoOr

1.6. Algorithm and Code for G-inverse

Algorithm. [1] Let A be a m X n matrix of rank r; then the generalized inverse can be

computed by the following steps:

i. Compute B = ATA
1. LetCy; =1oforderr.
1 .
iii.  Compute Ciyy = 1(3) tr(CB) — CB fori =1,2,...,7 — 1
iv.  Compute IC, AT /tr(C,B) and this is A. Also C,,;B = 0, but

tr(C,B) # 0.



Code.

1 0 =2

o 1 -1

Example. Let A be a matrix = 1 1 1
2 -1 2

According to the algorithm and using the Python software the Code will be like

import numpy as np
import sys
# muliplication of matrix system
def multiply(AT,A):
m, n=AT.shape
p,q=A.shape
if nl=p:
print ' Matrix product not possible’
sys.exit(@)
B=np.zeros((m,q))
for 1 in range(m):
for j in range(q):
sum=8
for k in range(n):
sum=AT[1i,k]*A[k,j]+sum
B[i,j]=5um

B=np.matrix(B)
return B
#trace of a matrix system
def trace(0):
m,n=0.shape
add=0
for 1 in range(m):
for j in range(n):
if i==j:
add=0[1,j]+add
return add



if  name_ =="_ main__ ":

A=np.matrix("1 @ -2; 81 -1; -111; 2 -1 2
AT=np.matrix("1 @ -1 2; 811 -1; -2 -11 2

")

")

# multiplies A transpose with A giving B
B=multiply(AT,A)

# Computing C1, C2 and C3 since its a 3 by 3 matrix

Cfirst=np.matrix('1 @ 6; @ 1 0; 8 8 1°)
I=Cfirst

M=multiply(Cfirst,B)
X=trace(M)
Csecond=(I*X)-M
M=multiply(Csecond,B)
Y=trace(N)
Cthird=(.5*I*Y)-N

# calculates generalised inverse of A

P=multiply(Cthird,B)
I=trace(P)

R=multiply(Cthird,AT)
ginversef=(3*R)/float(Z)

print ginversel

The output of the Code is.
In [1]: %run "E:\BRAC-Shiham\MNS\MAT4@@\generalised_inverse.py"
[[ @.26666667 @.33333333 @.06666667 0.4 ]

[ @.713333333 @.66666667 @.53333333 0.2 ]

[-8.2 8. 8.2 8.2 1]



Chapter-2

Representation of G-Inverse In Contour Integration

Definition. Contour integration is the process of calculating the values of a contour
integral around a given contour in the complex plane. As a result of a truly amazing
property of holomorphic functions, such integrals can be computed easily simply by
summing the values of the complex residues inside the contour.

Theorem 2.1. [3] If A is any m X n matrix such that (AA4*)~?! exists, then
At ! A*(AA* — I2)71 ! d
=— —I1z) ' =dz
2mi z

where the integral sign is a closed contour containing non-zero eigenvalues of AA* but

not containing the zero eigenvalue of AA™ in or on the closed contour integral.

Proof. Let
X = 17€A*AA* I ‘11d
 2mi ( z) A z

Then we have to show that X satisfies the following four conditions:

1. AXA=A4
2. XAX =X

3. (AX)" = AX
4. (XA)" = XA

Now, let us prove the conditions.

10



1. AXA=A

1 1
~AXA = —,ygAA*(AA* — Iz)‘lA—dz
2mi A

1

= 3@ ((AA")~ 171 (44" — Iz)‘lAédz

1 1
=2—m,j§{(AA ~ 12)(AA) ) A dz

= 1 il AAN1 ‘1A1d
C 2mi { z( )} A z

15[; @,

“2ni) (z-2)
Where z, = 0 and f(2) = {I — z(AA")"}"14
= f(z0) = £(0)
=(-0)lA=4
# AXA = A
2. XAX =X

w XAX = ! 3€A* AA* =1 ‘11d A ! 7€A*AA* I ‘11d
- - 2mi ( 2) z z 2mi ( 2) VA z

_ Y Sacan —1n1tant
=P A z) " dz

=XI=X

S XAX =X

11



3. (AX)" = AX
cAX = A - ng* AA* — 1 ‘11d
- U mi ( z) A d
=]
~(AXN) ' =1I"=1=AX
4. (XA)"=XA

XA = ! A (AA* — 1 ‘11Ad
-  2mi ( z) A d

1% @,

~ 2mi (z — zp)
where z, = 0 and f(z) = A*(AA* — I2)71A
= f(zy) (using Cauchy’s Integral formula)
= A*(AA*)"1A (which is Hermitian)
~ (XA =XA
Thus X satisfies the four condition of Moore-Penrose g-inverse.
Hence X = A*.

So we have

A== A*(AA*—I)‘lld
= 2mi 2 G

Let us use a complex matrix as an example:

12



A= (251 _03)

Let us use the python software to find A* and AA™.
Code.

1 import numpy as np

2 import sys

3 A=npp.matrix('5. -3.; ©.+2.7 08.")

4 B=A.getH() # B is the conjugate tranpose of A

5 C=A*B

6 print "The conjugate tranpose of A is:", B

7 print "The product of A with it's conjugate transpose is:", C

And the output of the Code is.

In [6]: %run "E:/BRAC-Shiham/MNS/MAT40@/thesiswork2.py"

The conjugate tranpose of A is: [[ 5.-8.7 @.-2.7]

[-3.-0.] @.-0.71]

The product of A with it's conjugate transpose is: [[ 34. +@.j 9.-10.7]
[ 0.+10.7 4. +0.3]]

Here the first matrix is A* and the second matrix is AA™.
Now let us find the determinant of AA* to see if any inverse exists.

~ det[AA*] = (34 x 4) — (10i x —10i) = 36 # 0

1/9 5i/18>.

*\—1 . *\—1 _
Therefore, (AA™) ™" exists and (A4A*)™" = (_ Si/ 17/
18 18

A+—ifA*(AA*—1 )‘11d
= 2mi 2 G

Z

1 [(A"(AA" —I2)7t
5£ ( D

2mi A

13



1 f@

- dz
2ni ) z — z

where z, = 0 and f(z) = A*(4A* — 12)71

= f(0) = A"(AA)~!
_(® —Zi)( o 5i/18)
-3 0 —51/18 17/18
At = A" (447!

Using the calculator and manual calculation we get

i © _i/z)
g <—1/3 ~5i/,

Now we have to verify it using the four conditions:

1. AA*A=A
2. AYAA*T =AY
3. (AAM)" = AA*

4. (A*A)" = A*A

_ o i _
wea=( Do, )G )

S AATA=A

14



A —i/ _ 0 —Y
A*AA —(_1/3 —5i/26>(25i 03)<—1/3 _Si/ze)

1 oy O _i/z>=< 0 _i/2>= N
(o 1)<—1/3 -siy )\, —siy A

A+AA+ — A+

_ o i
AA+:(25i 03) <—1/3 —5i/26>

=( 1)

1 0

@ (AA*Y = (0 .

)=AA+

. (AAY)* = AAY

- 7

sty = (g V) =a%a

« (ATA)* = A*A

Hence all four conditions are fulfilled.

15



Theorem 2.2. [3] The Moore-Penrose g-inverse of a m X n matrix A of complex

numbers is given by the formula
At = f e A4 dt
0
Proof. Let
X = f e~ A AtA dt
0

then we have to show that X satisfies the fours conditions of M-P generalized

inverse.
1.
AXA=A J e A At A A dt
0
= —Ale™® —e"]
1
=—-A [—oo - 1] =A
e
~AXA=A

16



XAX = f e A AtA* dtA f e~ AAtA* dt
0 0

=—[e~* —eY] f e A A4 dt
0

= f e A4 dt = X
0

L XAX =X

AX = A f e A At A* dt
0

=—[e®—-e =1

~ (AX)* = AX

17



XA = f e AAtA* dtA
0

=—le ™ —e% =1
~ (XA =XA
Hence X satisfies the four conditions of M-P generalized inverse.

So,

AT = f e A AtA* dt
0

18



Chapter-3

Applications to the System of Linear Equations

Theorem 3.1. [5] Let A be m X n order matrix and G be the g-inverse of A and let

H = GA.

A general solution of consistent non homogeneous equation AX =Y is
X=GY+(H-1)Z

Where Y and Z are both arbitrary vectors.

Proof. Let us take a matrix

2 0 -4
0o 2 =2
A= -2 2 2
4 =2 4

Using the Python Generalized Inverse code we are going to find g-inverse of A

(shown in part 1.6.). Hence we get:

1/4 51 6
G=o—|2 10 8 3

30\3 o9 3 3

In order to prove the theorem let us take two arbitrary vectors:

19



15 >
We know H = GA
(4 51 6 (8 5 3
H=—| 2 10 8 3
30\ 5 3 3/\=2 2 2
4 =2 4

If we multiply the matrices H becomes an identity matrix.

1 0 O
-'-H=<0 1 O>=I

0 0 1

Now we are going to find X

X=GY+(H-DZ

145163 100 /100 14
=—(2 10 8 3|+ 010>—<010>x<6>
00 1 5

—303315 0 0 1

3
-x = (13)
1.5

Now we are going to find Y using this value of X. If the value of Y matches with

the arbitrary vector Y then the theorem is proved.

20



Y =
15

Code.

1 import numpy as np

2 import sys

3 # muliplication of matrix system

4 def multiply(AT,A):

5 m, n=AT . shape

6 p,q=A.shape

7 if n!=p:

8 print ' Matrix product not possible’
9 sys.exit(2)
1@ B=np.zeros({m,q))
11 for i in range(m):
12 for j in range(q):
13 sum=@
14 for k in range(n):
15 sum=AT[i,k]1*A[k, j]+sum
16 BLi,jl=sum
17
18 B=np.matrix(B)
19 return B
2@ #trace of a matrix system
21 def trace(0):
A m, n=0. shape
23 add=0
24 for i in range(m):
25 for j in range(n):
26 if i—=j:
27 add=0[1i, j]+add
28 return add
29

39

3

32 if __name__=="__main__":

33

34 A = np.array([[2, @, -41, [e, 2, -21, [-2, 2, 21, [4, -2, 411)
35 AT = A.transpose()

36

37 # multiplies A transpose with A giving B
38

39 B=multiply(AT,A)

48

11 # Computing C1, C2 and C3 since its a 3 by 3 matrix
42 # I is the identity matrix

43

44 Cfirst=np.matrix{'1 @ @; @ 1 @; @ @ 1")
45 I=Cfirst

46

47 M=multiply(Cfirst,B)

48 Exam=trace(M)

49 Csecond=(I*Exam)-M

5@

51 N=multiply(Csecond,B)|

52 Dark=trace(N)

53 Cthird=(.5*I*Dark)-N

54

55 # calculates generalised Inverse of A
56

57 P=multiply(Cthird,B)

58 logic=trace(P)

59

60 uber=multiply(Cthird,AT)

61

62 G=(3*uber)/float(logic) #here G is the g-inverse
63

64 print "The g-inverse is:" ,G

21



65 #now we are proving the theorem
66 H=G*A

67 # If we multiply G with A It gives us the identity element hence
68 #which 1s one the properties of generalized inverses

69 H=1

7@ # Now let us consider 2 arbritrary vector Y and Z and assume any values
71

72 Z=np.matrix('14; 6; 5")

73 Y=np.matrix('@; @; @; 15")

74

75 X=GxY+(H-T)*Z

76 print "The matrix X is:" ,X

77

78 rat=AxX

79 print "The matrix Y is:" ,rat

80 #if rat i1s equal to YV then theorem is proved

The output of this Code is.

In [2]: %run "E:\BRAC-Shiham\MNS\MAT4@@\homogeneous theorem.py"
The g-inverse is: [[ ©.13333333 @.16666667 @.83333333 @.2 ]
[ ©.86666667 ©.33333333 0.26666667 0.1 ]

[-8.1 a. a.l @a.1 11

The matrix X is: [[ 3. ]

[ 1.5]

[ 1.5717

The matrix Y is: [[ @.]

[ a.]

[ e.]

[ 15.1]

The code and output also proves the theorem above.

22



Example 3.1. We are going to use numerical computation to solve Ax = b where matrix
noninvertible and singular and we have an Algorithm to solve the value of x as shown in

the next page

Algorithm for the generalized inverse and solution of Ax = b
e Assume A is m X n matrix and a column vector b € R™
e Choose any non-singular sub-matrix H of dimension 7,
e Find (H DT,
e Replace the elements of sub-matrix H in the original matrix 4 by elements of
(H~ YT,
e Replace all other elements by zeros to get a new matrix 4,
e The generalized matrix G = (A)T,
e C(Calculate AGA,

e Usex =Gb + (I — GA)z to calculate a solution of Ax = b

This algorithm works for MATLAB but we can also use Python to solve the problem.

1 5 2 1
a=(3 7 9)man=(7)
2 10 4 2

Let the sub-matrix be H = (; ;)

—7/8 5/8>

T'he inverse of the matrix is H 1= 3
/ /
8 8

23



/g 3/8>

Hence (H™ )T = (
ls g

Now we have to put the elements of (H™1)T in a new matrix

) —7/8 3/8 0
A= 5/8 —1/8 0
0 0 0

The generalized inverse G would be

G =(A)T
—7/8 5/8 0
G = 3/8 —1/8 0
0 0 0

Now we need to check whether G is the generalized inverse of A.

So
(1 5 2) “Tlg Slg 0 (1 5
Aca=(3 7 9|l 3, -1, o]|[3 7
2 10 4 /g /g
0 0 0

Hence G is a Generalized inverse of A.
Now we are going to find x.

x=Gb

24
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9

2 10 4

)

A



_7/8 5/8 0\ /1
X = 3/8 —1/8 0 <7)

Now we need to solve Ax = b

1 5 2 3.5 1
v=(3 7 9)(-03)(7)
2 10 4 0 2

Therefore, this algorithm works. Now we are going to show the Python code.

Code.

1 import numpy as np

2 import sys

3 # muliplication of matrix system
4 def multiply(AT,A):

5 m,n=AT. shape

6 p,q=A.shape

7 if n'!'=p:

8 print ' Matrix product not possible’
9 sys.exit(@)

18 B=np.zeros((m,q))

11 for i in range(m):

12 for j in range(q):

13 sum=@

14 for k in range(n):

15 sum=AT[i,k]*A[k, j]+sum
16 B[i,jJl=sum

25



19 if __name__=="__main__":

20

21 A = np.array([[1, 5, 21, [3, 7, 91, [2, 10, 4]]) #set a matrix A
22 b=np.matrix('1; 7; 2') #set a solution matrix b
23

24 #now we are setting a submatrix H

25 H=np.matrix('1 5; 3 7')

26 #now to find the inverse of H

27 Hinverse=H.I

28 J=Hinverse.transpose() #the tranpose of Hinverse
29 print J #check Hinverse's transpose

30 Abar=np.matrix('-©.875 0.375 @; ©.625 -0.125 @; @ @ @')#put J In new matrix
31 #now to set new generalized inverse

32 G=Abar. transpose()

33 #now we check G is a generalized of A

34 K=AxG*A

35 print K

36 print "g is a g-inverse of A"

37 #now we are going to solve x

38 x=G*b

39 print x

40 #now we are going check If x Is right

41 rice=Axx #where rice=b

42 print rice

43 print 'The theorem is proved’

The output of this Code is:

In [7]: %run "E:/BRAC-Shiham/MNS/MAT408/Mathlab algorithm.py”
[[-@.875 @.375]
[ @.625 -08.125]]
1. 5. 2.]
3. 7. 9.]
2 18. 4.1]
g-inverse of A

orem is proved

26



Chapter-4

Applications to the Semigroup

4.1. Definition of Group.
Let G be a set, The set G will be a group if the has the following properties:
e Isaset of elements
e It has one operation: *. Which can be a + or X
e The group G is closed under the operation *. For example x,y €E G = x*y € G
e [Each element x € G has an inverse.
e The inverse is known as the identity element e where e € G.
e A group is always associative. For example: x,y,z € G then (x * y) x z = x *
(yxz)ea
4.2. Definition of Semigroup.
Let G be a set be of natural numbers G = {1,2,3,4,5, .... }.
We need to check whether the set G is closed under any operation * (+or X) . So let us
take the addition (+) operation.
~44+5=9€G
~ G 1s closed under addition and is a group.
In order to be a semigroup we must check the associative property.
~(2+5)+7=24+5+7)
74+7=2+12
14=14€G

Hence the Group G is a semigroup under addition which can be written as (G, +).
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4.3. Preliminary Notes

Definition. [4] Let A be a m X n matrix over the complex field K. The g-inverse of A is
denoted by A*, which is the n X m matrix X over K which satisfies the equations:

AXA = A XAX = X, (AX)" = AX, (XA)" = XA

For every matrix there exists a Moore-Penrose inverse. If X is at least a {1} — inverse of
A, then AX and XA are projectors on R(A) and R(X) the range spaces of A and X
respectively and rank(AX) = rankA = rank(XA).

Let us denote A™} and A12} the set of {1} — and {1,2} — inverses of A respectively. We
will denote by small letters the sub-matrices of a matrix X and by I and 0 the identical

and zero matrices or identical and zero sub-matrices.

Lemma 1. [4] Let A be an m X n matrix over K of rank r. Then:

1) There exists non-singular matrices P and Q such that A = Q1 (cg 8) P

(i

a, !

3) The elements of A™ are the form of P! ( [

;) Q and the elements of

-1
(1,2} -1 (Qr e )
A are the form P ( f fa.e Q.
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Proof.

Let us prove the lemmal by taking Q = (3

Since P is an identity element hence P!
Now we need to find Q! from Q.
Using Python we are going to find Q1.
Code.

1 import numpy as np
2 import sys
3 # matrix inverse

4
5 6

= P.

4 Q=np.matrix('3 4; 5 6")

5 C=Q.1
6 print C

Here C stands for Q1

The inverse of Q is

JandP=(; 7))

In [7]: %run "E:\BRAC-Shiham\MNS\MAT25@\matrixinverse.py"

[[-3. 2. ]
[ 2.5 -1.5]]

Now let us find the matrix A and let the singular matrix (

Let use Python again to find A.

Code.

2 import sys
3 Q=np.matrix(’'3

5 R=np.matrix('1 @;
6 C=(Q.I)*R

7 A=C*P

8 print Al

1 import numpy as np

4: 5 6'
4 P=np.matrix('1 &; @ 1'
@; @ @'
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The output of 4 is.
In [6]: %run "E:/BRAC-Shiham/MNS/MAT258/thesisworkl.py”

[[-3. 8. ]
[ 2.5 8. ]]

The determinant of matrix A is = (—3 X 0)—2.5x0=10

~ The matrix A is singular.

4.4. Isomorphism between Semigroups

Definition. [2] Let (G,o) and (G',*) be two groups. Then a mapping f(G,o) = (G',*) is

called isomorphism if it fulfils these condition:

i. f is homomorphism i.e. f(a o b) = f(a) * f(b) Va,b € G
il. f is one-to-one
1. f is onto

It is denoted by (G,°) = (G',*)or G = G'.

Theorem 4.1. [4] Let A and B be two equivalent matrices. Then (A{5,%) and (B!, %)

are isomorphic.
Proof.
By using the previous Lemma, we can define a map ¢ from A on B follows
(X)) = P~1XQ. Then ¢! is the inverse map from B} on 4™} given by
=1 = PXQ~'. In addition, for every X and Y in A", we have
P(X *Y) = o(XAY) = PTH(XAY)Q = (PT'XQ)(QT'AP)(PT'YQ) = p(X)Bop(Y)

= @X) * @(¥).
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Also, we have for every X and Y in B{1J,
¢ (X *Y) = 7 (XBY) = ¢ (X)Ap~H(Y) = 971 (X) * o7 H(Y).
Then the map is an isomorphism.

We remark that ¢(A*) = P~1A*Q = B* only if P and Q are orthogonal.

Lemma 2. [4] Let A and B be two matrices. Then the following statements are
equivalent:

a. rank(A) + rank(B — A) = rank(B)

b. Every {1} — inverse of B is a {1} — inverse of both A and B — A.

c. R(A) nR(B) = {0} and R(AY) n R(B?) = {0}

Theorem 4.2. [4] There is one-to-one correspondence between M,,,, (K) and M,{,iin(l( )
maps 0 to M, (K) and preserves isomorphism between semigroup.

Proof.

Let 1 be a map from M,,,«,,(K) onto M. {1}

mxn

(K) defined for every A € M, (K) by
P(A) = A Since 0X0 = 0 for any X € M,,,.,,,(K), we get 083 = M, ..., (K). Thus
P(0) = My (K). According to the Lemma above, if A1} = B{Y} we have rank(4) +
rank(B — A) = rank(B) and rank(B) + rank(A — B) = rank(A) . Thus we have
rank(A — B) = 0 = rank(B — A). Therefore A = B. Now, let A, B € M,,x,,(K) such

that B = Q~'AP. According to Theorem2.1, we have B} = {P~1XQ/X € A7} =

@(A™). Hence we have (B) = ¢((4)).
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Conclusion

The theory of generalized inverses has its roots both on semigroup theory and on matrix and
operator theory. In this thesis we have examined several topics in the theory of linear statistical
models using the generalized inverse of a matrix as an analytical device. The examination has
rewarded us with considerable insight into some of the underlying structure of this theory, and it
appears that the generalized inverse will become a valuable addition to the theorist's box of

mathematical tools.

We have discussed numerically reliable methods and computer algorithm to compute generalized
inverses of singular matrices. The proposed methods are completely general, being applicable to
singular matrices. The proposed approach provides flexibility to compute the solutions of
linearly-dependent equations, it has been also shown that all can be obtained from only one

generalized inverse matrix.

This thesis also describes a generalization of the inverse of a non-singular matrix, as the unique
solution of a certain set of equations. This generalized inverse exists for any (possibly
rectangular) matrix whatsoever with complex elements J. It is used here for solving linear matrix
equations, and among other applications for finding an expression for the principal idempotent

elements of a matrix.

A generalized inverse exists for an arbitrary matrix, and when a matrix has an inverse, then this
inverse is its unique generalized inverse. Some generalized inverses can be defined in any

mathematical structure that involves associative multiplication, that is, in a semigroup.
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