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Abstract

Cosmic string are objects of great importance and investigation for cosmic

string has been done from last 20 years. There are a lot of models to detect

cosmic string.But a very few are to detect the location of cosmic string.We

propose a framework to detect the location of cosmic string. We used di-

lated convolutional net with focal loss instead of cross-entropy to improved

the performance of the framework on weak samples. The neural network we

trained is able to detect and locate cosmic string on noiseless CMB temper-

ature map down to a string tension of less then Gµ=5× 10−9. We expect to

use more accurate simulation to produce data set to improve the confidence

of the model.
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0.1 Introduction

0.1.1 Cosmic Microwave background

CMB maps are the left over of big bang. We can see the CMB saturating space which

began at about 378,000 years after the big bang. Before the creation of CMB the universe

was hot,dense and plasma containing both matter and energy.Since lights are photons and

at that time the photons could not move freely, no lights escaped earlier to that time.

The universe had cooled to temperature of 2700 Celsius in Recombination era ,cool enough

to recombine electron and photons to recombine into hydrogen atoms. Photons were re-

leased and this is today called the CMB. Photons were released and this is today called the

CMB.The CMB confirms that the the overall Big Bang theory was correct.

This also provides insights on the composition of the universe.Such as the universe is made

of dark energy about 68.3 percent, the mysterious force that is driving the expansion of the

universe. Then the dark matter about 26.8 percent, which only interacts with the universe

with the gravity. Normal matter like star,planets and galaxies makes up only 4.9 percent

mass of the universe. Moreover, in the same way the CMB can also help us to identify the

existence and location of cosmic string.
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Figure : Explanation of the creation of CMB.

0.1.2 Cosmic String

Cosmic strings are formed in 10−34s after the big bang. These strings are much thinner

then proton but if they are of length of a kilometer they will be heavier the then mass of

the earth. They are formed in the phase transition in the same way the Hughes field under-

goes phase transition while it gives masses to the particle. So to define Cosmic strings are

hypothetical 1-dimensional topological defects which may have formed during a symmetry

breaking phase transition in the early universe when the topology of the vacuum manifold

associated to this symmetry breaking was not simply connected. In this particular case

while the phase transition happens(changes from one high energy to another),it doesn’t

happen so smoothly throughout the universe.

There are various part of the universe where the original part of the energy stay the same

(the high energy bit gets trapped ). These forms the line the long string(they are in the
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high energy and surrounded but the new phase which has lower energy ). When they

are formed we have a long string’s network crossing across the universe ,creating loops

.Since they are so massive and so much tension they begin to flop around. As they flop

around the speed of light or about the half the speed of light they begin to cross one another.

We can imagine the cross of string like a shoe lace as it wraps back and crosses itself

with a shoe lace , we can’t do anything it can not go through itself. But with a cosmic

string they can go they chop off at that point where they crosses itself (break at junction).

These loops of string are now under huge tension (huge mass and oscillating,moving closer

at good fraction of speed of light). Since they are moving and oscillating they radiate grav-

itational waves. Just like any massive object that moves will radiate gravitational waves.

Gravitational waves is cosmic strings principle way of losing energy. Because if they didn’t

do that what would happen is the long strings would just keep stretching as the universe

expands that will be like pulling an elastic band and the energy stored in this strings will

get bigger and bigger and eventually they will dominate all the other energy contribution to

the universe. That would completely change the dynamics of the universe and that doesn’t

happen we don’t seen any. So either they are not there or something else happened which

means they don’t dominate.

Long strings forms loops and the loops can radiate the energy in gravitational waves .

Then they can reach to a stable scaling solution where the energy stored in the strings

becomes a constant fraction of the total energy of universe so it never comes to dominate

(the energy in the strings doesn’t disappear or grow big it just becomes constant, just right

). That was where got people excited (the Goldilocks amount of energy).

Tom Kibble first first came up with this amazing idea of the formation of this objects.

He demonstrated when they evolved under the expansion of the universe that they chop off
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the loops and they would radiate away their energies in just the right amount so that the

overall energy of network of strings would be some fixed fraction of the background energy.

It turns out that we can work out the fixed fraction and we find it for phrase transition

which corresponds to what we call the grand unified phrase transition (where we unify the

strong, the electro-weak and electromagnetic forces that is about 10−35 after the big bang).

Energy scale associated with that which determines the masses of this strings is just suf-

ficient to lead fluctuation in the matter that produces the cosmic micro wave background

radiation and the distribution of galaxies. From 1996 to 1970’s this provided a belief that

the cosmic strings are the seeds from which structures would reconstructed.

Now there is a another rival theory called the inflationary theory of universe. They are

competing theory of cosmic string. Unfortunately cosmic microwave background image is

becoming better and more accurate and we could see the fluctuation in the temperature

of the microwave background all different size across the observable universe. We are be-

ginning to fit our cosmic string prediction with what we observe in terms of what this

distribution should be.

We found that cosmic string is not working since the predicted calculation were not match-

ing with observed cosmic microwave background anisotropies. People began to lose inter-

ests for this theory. Although there are analogous objects observed in condense matter

system(liquid helium system,pneumatic liquid crystals ). Also there scaling properties are

all seen and matched what we might expect from cosmology there are not yet seen. There

are numbers of condense matter system which are driven by loops of vortexes and effectively

of strings. Such as a particular equation called the vine equation which is used in helium.
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0.1.3 Cosmic Super String

Back in the 1990’s to the end of the 2000’s people begin to lose interest these cosmic strings

since there were not doing as they are said in the tin. Particularly when we look on the

observed map; the power as a function the angle in the sky we are looking at also know as

the Doppler peaks. This got a very distinctive set of peaks. We compare with the predic-

tion of cosmic strings. The cosmic strings should give us only one peak not the secondary

Doppler peaks.

Figure:Doppler leaks from Plank 2013 data.

For a while people began to lose interest for cosmic string. Then the idea of super string

comes. People became interested another type of string which they call the fundamental

strings also known as super string of string theory. Ed.Witten asked the obvious question

if we have cosmic strings and those fundamental strings may be they are the same thing.

Ed.Witten came to the conclusion that it couldn’t be the same thing.The fundamental

string seamed very unstable. So if a fundamental string is formed that in a size of the

galaxy. Then it should chop off incredibly quickly. Ed.Witten also discovered that if we
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look at the natural value of the mass of the fundamental string it was way to big compared

what observation was telling us the cosmic string could be. So the masses didn’t work out

, it was seemed it ,it won’t work.

In the early 90’s there happened to be a second type of String revolution. It was real-

ized that a new class of object could formed. The normal string which we thought could

not be stable. It could have mass per length(tension) way much less Ed.Witten had thought,

it opened up possibility that, may be these strings could be like the cosmic strings which

we call the cosmic super string. [E. Copeland, Dark Matter in the Universe 99 (1990). ]

This rejuvenated the subject. This new kind of string has some unusual property. They

could come in different flavours. It’s for simplicity one has orange and mango flavour.They

would not pass through of each other. They can not simply chop. They would have to form

a composite in between so it ended up with a position where those strings would no longer

form simple loops. They the form so called junctions. A three way junctions. So two strings

will come in and they hit each other. The point they hit each other that have to be a new

bridge. So this led to this more complicated networks [1 . Ed.Copeland ,Kibble Strings

and Super strings, 2009]. Physicists are looking at the possibilities that this objects could

actually be seen not only in the microwave background and also the decay of gravitational

waves. These strings and cosmic strings have some wonderful properties.

0.1.4 Cosmic string in String theory and QFT

Cosmic string can be interpreted by many theory both in string theory and quantum field

theory. Like in theory of fundamental strings, in M strings or in D strings. As per[55,58],in

string theory, the role of cosmic strings can be played by the fundamental strings (or F-

strings) themselves that define the theory perturbatively, by D-strings which are related

to the F-strings by weak-strong or so called S-duality, or higher-dimensional D-, NS- or
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M-branes that are partially wrapped on compact cycles associated to extra spacetime di-

mensions so that only one non-compact dimension remains.

The prototypical example of a quantum field theory with cosmic strings is the Abelian

Higgs model. The quantum field theory and string theory cosmic strings are expected to

have many properties in common, but more research is needed to determine the precise

distinguishing features. The F-strings for instance are fully quantum-mechanical and do

not have a classical definition, whereas the field theory cosmic strings are almost exclusively

treated classically.

Cosmic strings are really thin and extremely massive. Their width is described as zero

width or NambuGoto approximation. So the cosmic string is like a line and obey the Nam-

buGoto action, which is classically equivalent to the Polyakov.

In fact the width is set differently by different theories, The string width is set by the

scale of the symmetry breaking phase transition, as per explanation of field theory. The

string width is set (in the simplest cases) by the fundamental string scale, warp factors

(associated to the space time curvature of an internal six-dimensional space time manifold)

and/or the size of internal compact dimensions as per String theory. The universe is either

10- or 11-dimensional, depending on the strength of interactions and the curvature of space

time as described in string theory .

0.1.5 Observation of Cosmic String

It is expected that at least one string per Hubble volume is formed. When we have a loop

of cosmic string oscillating back and forth every now and again once in an oscillation usu-

ally there will be a part of the strings forming cusp. This cusp is very sharp region which
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instantaneously goes at the speed of light. Since it is sharp, it has so much energy packed in

the region that it can emit bursts of gravitational waves. There are detectors out there such

as the LIGO detector 1 and the upgraded advanced LIGO detector so these would detect

the beaming events coming out of the strings. Many are working like Ed.Copeland on the

properties of these beaming events so that to see whether or not they could be detected

by these gravitational waves . These is one of the main things the LIGO detectors will be

looking for,the beams of gravity. Which are shooting out from this objects .

Since cusp are so sharp they just don’t bream gravitational waves they beam other things

such as they can bream particles out. So they are like ultimate laser which can boom.The

neat thing is that they are not doing it all the time, just once a cycle. It goes beaming and

beaming like an pulsing effect that we can begin to look for,it’s an distinctive signature. So

we have those to detect cosmic string.

The other features on the strings which are called the kinks. Every time a string chops off

it leaves this discontinuity. Where one string is coming and it meets the other string. In the

point they have meet, a loop has gone off. We are left with this sort of discontinuity. A one

string here and the other string there. They begins to propagate around the configuration

which builds up kinks which also radiates. Which in turn creates extra beaming effect.

Much effort has been given to understand the distribution of these things, the amount of

the radiation and the rate of radiation. It is not seen yet. One interpretation of these is

that if some thing is not seen it doesn’t mean those things are not there instead it gives

idea about the mass scale.

1The Laser Inter-ferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment

and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as

an astronomical tool. Two large observatories were built in the United States with the aim of detecting

gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less

than a ten-thousandth the charge diameter of a proton, equivalent to measuring the distance from Earth

to Proxima Centauri (4.0208x1013km) with an accuracy smaller than the width of a human hair.
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The mass scale should be low since it should be visible if the mass scale of the string

is high enough. If mass scale was high then the tension in the string should be high that

would beam more energetically and we would have seen them. Since the mass scale is drop-

ping it is hard to reconcile them with grad unified theories although they are consistent

with some of the cosmic super string model. So those are perfectly plausible. Despite the

fact that CMB images are not matching, not finding those gravity laser or cusp,not finding

any evidence and in fact some of those are against the theory. Physicist are still interested

because firstly the idea of phase transition is well accepted in particle physics and the Higgs

mechanism is a phase transition . Moreover the breaking of symmetry is going on is well

accepted. What is more, these objects are seen in equivalent terrestrial system is an evi-

dence. This tells us the idea is work.

Phase transition happened but whether or not it happened in such a way that they caused

those topological defects are not confirmed. However there are different types of cosmolog-

ical defects such as mono poles, domain walls and texture. These could have all formed, in

fact mono poles is the reason behind the idea of inflation. This things comes so naturally

that still efforts are given to search cosmic string. It is still interpreted on the bound of

strings ,the reason why it is not yet observable. It may not not happen eventually when

the detectors will fail completely but not at that stage.
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In fact Plank2 on 2013 second year of observation will be looking for polarization effect

that’s whether the radiation gets polarized by the presence of objects and cosmic strings

can do that it can polarize the light. B-Modes is a particular type of polarization of light

with magnetic fields is a signal of cosmic string.Ed. Copeland and many other are working

on nature of the signature signal and trying to figure out if those signal are in the Planks

data or not.The long string which are of the stretch across the observable universe should be

of order 101 but they are chopped off continuously, so there would be billions of chopped of

loops of strings. These loops then gradually decay. The majority of the loops are chopped

off is around the size of observable universe at that time so there would be a long time to

decay and they will be chopped off all the time. In that way there will be replacement of

loops all the time. So a group will decay, a group will be decaying and a whole new group

will begin.

Since the majority of the loops are self intersecting there will the loops all the time. Some

of them are not self intersecting. The non self intersecting loop match or have one to one

map with the distribution of clusters of galaxies. Since they are so massive and thin, those

are not observable in human eye. They will attract matter, so the surrounding objects will

be attracted and since those travel three or four times faster then light that will make os-

cillation. The process and dynamics are formed to understand them makes complete sense.

Those make them serious candidate for structures.

2Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013,

which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infra-red fre-

quencies, with high sensitivity and small angular resolution. Planck provided a major source of information

relevant to several cosmological and astrophysical issues, such as testing theories of the early Universe and

the origin of cosmic structure; as of 2013, it has provided the most accurate measurements of several key

cosmological parameters, including the average density of ordinary matter and dark matter in the Universe.

On 21 March 2013, the mission’s first all-sky map of the cosmic microwave background was released, with

an expanded release including polarization data in February 2015. The final papers by the Planck team

are expected to be released in March 2018.[3]
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0.2 Non-machine learning Approaches

Many geometrical edge detection algorithms are used in detecting cosmic string. Among

them are curve let,wavelet and canny are the most used. Most of the detection algorithm

search for the GKS(Gott-Kaiser-Stebbins ) effect. When an string move between observer

and the surface of last scattering, it makes an step discontinuity. That is the GKS ef-

fect. When we look for this effect in the WMAP data it gives null detection and a limit

ofGµ < 1.5 × 10−6. Another way to detect cosmic string is though the emission of the

gravitational waves such as from cusp and kinks.

The CMB angular power spectrum on the WMAP data gives a constraint an order of

magnitude higher than that from the GKS effect. The strongest constraint is constructed

from the Plank Collaboration. They made the upper bound on the string tension for

Nambu-Goto strings of Gµ < 1.3× 10−7 at the 95 percent confidence level.

The actual limits of detection provided by Canny are for string tension above Gµ = 10−6.

With a lot of false positive or extra edges. This limit of tension is even higher when there

is noise in the data. Curve let can detect for Gµ = 1.4× 10−6 and even more vulnerable to

noise. Another Edge detection algorithm which has been discussed in [31,34] is the wavelet.

Wavelet can detect cosmic string with tension Gµ = 5× 10−6 .

Using pulsar timing constraints, the North American Nanohertz Observatory for Gravi-

tational Waves (NANOgrav) places limits of Gµ < 3.3× 10−8 at the 95 percent confidence

level [23]. Joint interferometer experiments such as the LIGO-Virgo Collaboration are also

searching for the gravity wave background from loops [24, 25] and cusps. Much of the

work is going on to understand the way to detect the kinks. References [31,33] used the

Canny algorithm to detect GKS edges made from long strings in the CMB temperature
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maps simulated with this model. They found more short edges in maps with strings which

they interpreted as the disruption of long edges by Gaussian noise[36]. So none of the Edge

detection algorithm works when there is much Gaussian noise.

Since a lot of fine CMB maps are coming ,the search for cosmic string is getting a more

exciting field of research day by day. In 21 cm red-shift surveys we could observe cosmic

strings wakes through their distinctive shape in red-shift space [17,21] or by using the corre-

lation between CMB and 21-cm radiation from dark ages [22]. Machine learning approaches

has several advantages over the non-machine learning approaches. Those Algorithm learns

the features by themselves. While non machine learning approaches has to be given the

prior knowledge as shapes. In case of noise none of the edge detection algorithm will work

as good as the machine learning approaches since machine learning is statistical general-

ization not memorization. We can explain the behaviour of edge detection algorithm with

noise as over-fitting in data science.

The disadvantages of using machine learning techniques is that they require a lot of data to

train with a lot of computational resources. Moreover, in this cosmic string search scenario

requires a lot of simulated data to be made and the simulation takes a lot of computational

resources. Fortunately in the recent time, as the development of powerful GPU which

supports faster parallel computation, the simulation for data set as well as the training is

now possible with complex learning architecture. So the main benefit of using non-machine

learning algorithm , that it requires less computational resources with the price of accu-

racy is not a big advantage now a days. Moreover, Canny and Canny-like edge detection

algorithm can not find cosmic string location properly on the sky map which is a huge

disadvantage.

Despite this disadvantages, Canny ,wavelet and curvelet analysis has a lot of room to

exploration and improvement.Since they require a statistical measure to identify the differ-
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ence in number of edges between a sky map with strings and without string much like a

objective function in machine leaning , lots of fine tuning can be done to improve the result

while using those edge detection algorithms.

0.3 Machine Learning Approach

Bayesian interpretation of cosmic string detection improves two major goals: 1)it unifies

all the previous models and have mechanism to unify new approaches and make a non-

uniformly learn able hypothesis which makes it easy to figure out a optimal hypothesis for

cosmic string search. 2)It also derives a linkage between the cosmic string location and cos-

mic string tension Gµ. It presented a framework within the context of detection of cosmic

string through GKS effect on the CMB temperature entropy maps. However ,it could be

equally applied to 21cm intensity maps to detect cosmic string. 3

From our perspective a single string produces a signal which is localized in position space

so only the neighbouring pixels are affected. However,Fourier representation of a string

cause all the models to change. This makes extremely hard to identify if a pixel belongs to

cosmic string or not. Identifying location of cosmic string is important since it helps to to

further investigate on the concentrated area.

3In cosmology, intensity mapping is an observational technique for surveying the large-scale structure

of the universe by using the integrated radio emission from unresolved gas clouds. In its most common

variant, 21 cm intensity mapping, the 21cm emission line of neutral hydrogen is used to trace the gas. The

hydrogen follows fluctuations in the underlying cosmic density field, with regions of higher density giving

rise to a higher intensity of emission. Intensity fluctuations can therefore be used to reconstruct the power

spectrum of matter fluctuations. The frequency of the emission line is red shifted by the expansion of the

Universe, so by using radio receivers that cover a wide frequency band, one can detect this signal as a

function of red shift, and thus cosmic time. This is similar in principle to a galaxy red shift survey, with the

important distinction that galaxies do not need to be individually detected and measured, making intensity

mapping a considerably faster method.Source:Wikipedia
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The approach currently used in cosmic string detection is by taking the entire sky map

and estimate Gµ from it. However the machine learning approaches we are proposing take

the sky map and produce another map with probabilistic estimates of string locations.

From that map we estimate Gµ. The second step used to estimate Gµ is straight forward

whose input is the map of probabilities produced by the neural network. Splitting Gµ in

that following way gives two advantages :1)the likely information of the location of cosmic

string on the sky. 2)Sample complexity for a neural network is much less then to learn to

produce a map of cosmic string location then what would require for a Artificial Neural

Network to produce an estimate of Gµ from the sky map. The reason behind this is that

string effects are highly local and produces one training sample per pixel, instead of one

training sample per full map. Therefore machine learning approach are much better suited

to produce the string location map instead of directly estimating Gµ. This process split up

the problem into two halves 1)produce a probabilistic string map(using machine learning)

2)calculate Gµ from a map of probability (something human can do well).

In the context of machine leaning this is a supervised problem. We need to classify if

a pixels belongs to a string or does not belong to a string. The mechanism we are using

to classify is a dilated convolutional neural network with focal loss. We implemented it

with a convolutional neural network trained on simulations of CMB anisotropy maps with

and without strings and used it to estimate string locations on a CMB sky temperature map.

In the next section we present a Bayesian point of view which focuses on obtaining P (Gµ|δsky)

,the probability distribution of string tension Gµ given a sky map δsky. It has been done

by out-ling a procedure to estimate the string locations in the sky given a sky map and

deriving an expression for P (Gµ|δsky) which uses information about string locations maps.

In section 8 how machine learning can be used to produce probabilistic string location and

in the process optimization of cosmic string in CMB sky map is discussed. Then how ma-

chine learning with a neural network can be implemented is discussed. Then our results
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are compared with previous works to predict location of cosmic strings. It is found on the

work that accurately predict the value of the string tension on simulated maps with a Gµ

as low as 4× 10−9.

0.4 Neural Network prediction for String Location

0.4.1 Supervised Learning

The supervised learning problem seeks to assign labels to data points given a data set of

examples pairs. Suppose we have a data set D=xi, yi|i = 1...N , where xi and yi are the

data points.

Casting the problem of prediction string location a m×m pixels CMB map as a supervised

learning problem, we make the following assignment: A = Rm×m,B = 0, 1m×m, the data

set Dtrain = (δisky, ξ
i)|i = 1...N is made up of N simulated sky temperature maps,δisky, at

different Gµ and the associated string location maps ζ i.Given a pixel j = (j1, j2), ζ
i
sky ≡ 1

or 0 , depends on whether a string is located at the pixel or not. In this context

fw ≡
∏

j∈pixels (fw,j)
ξij (1− fw,j)1−ξ

i
j

is a convolutional neural network,to be desired. with free parameters labeled by w and

finally the error function used is the cross-entropy,

E(w) =
∑

δisky∈Dtrain

∑
j∈pixels
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Then we used focal loss discussed later.

0.4.2 Neural Network

Neural networks are multi-layered [46] functions that approximate a desired function. It

has some weight vectors to parameter. We can define a hypothesis class consisting of neu-

ral network predictors, where all hypothesis share the underlying graph structure of the

network and differ in the weights over the edges. It can be shown that every predictor over

n variables that can be implemented in T(n) can also be expressed as a neural network

predictor of size O(T (n)2), [42] where the size of the network is the number of nodes in it.

Feed forward network are a class of neural network whose underlying graph does not con-

tain cycles. A feedforward neural network is described as directed acyclic graph, G=(V,E)

and a weight function over the edges, w : E → R.A simple 1 layered example of such a

form with h1 ”hidden units” which maps from Rnm is F (x) = W 2σ(W 1x+ b1) + b2.

In general Fmlp = Fn(Fn−1(...F1(x;w1)...;wn−1);wn) The ERM(Empirical Risk Minimiza-

tion ) process is minimizing the objective function E(W ) =
∑N

i ||yi − Fmlp(xi;W )|| . We

can use least square norm or cross entropy for that. For mulilayered function F, the error

landscape is in general non-convex and has multiple local minima. Through non-trivial, it

is nonetheless possible to optimize using various algorithms but most most of them uses the

gradient descent approach. Back propagation algorithm is used to perform gradient decent.

Casting the problem of prediction string locations on an m × m pixels CMB map as a

supervised learning problem, we make the following assignment:

A = Rm×m, B = 0, 1m×m.
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The data set Dtrain = (δisky, ζ
i)—i=1...N is made up of N simulated sky entropy., δisky,

at different Gµ and the associated string location ζ i .

0.4.3 Convolutional Neural Networks

Convolution neural network are special type of neural network specialized in processing

data and learning from it. This has a grid like topology. In most general[45], the convolu-

tion is an operation on two functions of a real valued argument s(t) =
∫
x(a)w(t − 1)da,

that is, s(t) = (x ∗ w)(t)

In machine learning terminology the first argument (the function x) to the convolution

is referred as input and the second argument as the kernel. The output is referred as feature

maps[39].

Figure 1: A convolution of a 2× 2 kernel on a 4× 4 image[49]

In practice, for a kernel k, input x, and output x’ the convolution can be expressed as

x′i,j = b+

kh∑
u=1

kw∑
v=1

xi′,j′ku,v with


i′ = i · sh + i+ sh + u− 1

j′ = j · sw + j + sw + v − 1

(1)

where k is a matrix of weights, the kernel, kh and kw are the height and width of the

matrix, sh and sw are the strides of the kernel on the height and width, and b is a bias
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term. The bias term b and the parameters of the kernel matrix k are free parameters.

In contrast with the previous section, which transformed data stored in a vector into

another vector, convolutions transform data stored on a matrix into another matrix. They

have two unique properties that make them particularly well suited for image data.

• Each component in the output is a produced from a function with only the elements

in the kernel centered on the component location on the previous layer, encouraging

it to build low level spatial feature detectors to progressively build higher level feature

detectors

• The kernel has shared weights for all locations across the image; this allows it to act

identical to classical image processing methods, such as the Sobel Edge Detection

filters, but with learned parameters.

For the more general case with x having multiple input channels, and x′ having multiple

output channels, and both being represented by 3D tensors, the above equation applies with

the more general form:

x′i,j,k = bk +

Wh∑
u=1

Ww∑
v=1

Wd∑
f=1

xi′,j′,fWu,v,f,k

with


i′ = i · sh + i+ sh + u− 1

j′ = j · sw + j + sw + v − 1

(2)

where W is a generalized weight tensor, Wh, Ww and Wd are the height and width and

number of channels of the weight tensor, respectively, f is the number of input channels, k

is the number of output channels.
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0.4.4 Implementation details

We use a 4 layered Convolutional Neural Network introduced in [36], with the weight ten-

sor for each layer being defined by W a, where a = 1, 2, 3, 4, between maps of pixel size

512 × 512. As we process black and white images, W 1
d = 1, and W a

d = 32 for all other

values of a. We also define a bias vector ba, where a = 1, 2, 3, 4 (one for each layer), with

each vector having dimension 32.

This can be interpreted as defining a neural network where each layer (except the first)

takes in a map with 32 channels, that is, vector dimension 32, and outputs a map with 32

channels, that is, vector dimension 32.

The map (W1 ∗ δsky +b1) is a map with the same size as its input, 512× 512. By applying

a non-linearity element-wise (we use tanh), the output x1 = tanh(W1 ∗ δsky + b1) is still a

map of size 512× 512. By applying the four convolutional layers, we get:
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x4 = tanh(W4 ∗ tanh(W3 ∗ tanh(W2 ∗ tanh(W1 ∗ δsky + b1) + b2) + b3) + b4)

We then take the element-wise dot product at each pixel location with the vector ~c

(whose components are learned), producing a scalar pixel value at each pixel location on

the image. We then add a scalar bias b5 to each pixel location, and apply an elementwise

sigmoid nonlinearity. Hence,

fw,j(δsky) ≡ sigmoid(~c · x4 + b5)[j]

We use the sigmoid function as it allows us to interpret the output map as probabilities

that a string exists on a particular pixel, for which the values must be in the range (0, 1).

0.4.5 Dilated Convolutions

”Dilated” (or ”atrous”) convolutions[54] are often used as a computationally cheap method

of increasing the receptive field of a kernel, allowing it to effectively compute higher level

features without the computational cost associated with a larger filter. It does so by

”inflating” the kernel, by inserting spaces between kernel elements[49]. Along with the

kernel size, a new hyperparameter, the dilation rate is introduced, which controls the spaces

between the kernel elements:

22



Figure 2: A convolution of a 3×3 dilated kernel on a 7×7 image, with dilation factor 2[49]

If the dilation factor is d, the convolution operation can be expressed as:

x′i,j,k = bk +

bWh/dc∑
u=1

bWw/dc∑
v=1

Wd∑
f=1

xi′,j′,fWu,v,f,k

with


i′ = i · sh + i− sh + u · d− d

j′ = j · sw + j − sw + v · d− d
(3)

For testing a version of the convolutional neural network with dilated convolutions, we

simply take the network detailed in Section 10.4, and replace the standard convolutions

therein with dilated convolutions, appropriately padding the input where necessary.

0.4.6 Focal Loss

The standard loss used to train a model like this is a per-pixel cross entropy loss, where, if

for notational convenience,

pt =


p if y = 1

1− p otherwise

(4)

then the cross-entropy loss is,

CE(pt) = −log(pt)

Focal loss, introduced in[54], modifies the above crossentropy loss with a modulating
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factor (1− pt)β, down-weighting easy samples, and focusing the training on hard negatives.

Focal loss can then be defined as:

FL(pt) = −(1− pt)βlog(pt)

We hypothesized this loss function to be particularly relevant to the context of cosmic

string detection, as there are many easy negatives, but the hard negatives are the ones

the model fails to classify properly, resulting in increased false positives. We hoped this

modified loss would reduce the number of false positives further.

0.4.7 Training Data

Our model will be trained on the data set in a similar fashion to [53] on numerically

generated CMB temperature maps with and without cosmic string. Which is generated

using the same long string analytical model[35]. To test the performance of our model we

used data augmentation on a few CMB to generate a dummy training set.

0.5 Results: Network Prediction for the String Loca-

tion

We used Keras with Tensorflow background to train our model.Our model will be made

up of 512 × 512 pixels with a resolution of 1 arc minute per pixel. This leads to sky map

showed in Fig 1a. For values of the string tension we will study Gµ ≤ 10−7 . However pure

Gaussian map with Gµ is indistinguishable by eye with the one that has Gµ ≤ 10−7. One

of the unknown value between 1 and 10 is the number of strings per Hubble volume,NH .

We first trained our neural network with a value of NH=1.

We believe, this did not impair the predictive power for input maps with larger NH values.

Then we nested the robustness of our model by adding a few white component. In the

realistic case there would be a lot more noise. Below we highlight results which confirm the
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soundness and power of the Bayesian machine learning framework and its neural network

implementation, that we have presented in [53] and tried to argue why our model will per-

form even better.

we show neural network predictions for the string location map using different values for

Gµ, with NH = 3, and no noise from [53] in figure 2. Here, the shades of grey in the string

answer map correspond to the relative strength of the strings GKS temperature disconti-

nuity.

Figure 1:CMB anisotropy temperature maps of 512 × 512 pixels with a resolution of

1 arcminute per pixel.

(a) The full sky map, δsky. The white and black pixels are +450Kµk and −450µK

anisotropies, respectively. However, Maps with and without strings are indistinguishable

by eye.

(b)String component δstring to the full sky map.

The shades of grey in the prediction maps correspond to the probability of a pixel be-

ing on a string. Completely black pixels are probability 0 and completely white pixels are

probability 1 of being on a string. As Gµ tends to zero, the neural network provides less

information of whether a pixel is on a string or not and the pixel probabilities tend to the
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prior P ((i; j) ∈ string) which is given by the number of pixels on strings in the Answer

map (Fig. 2a) divided by the total number of pixels. Thus as Gµ tends to zero, prediction

map will become more uniformly grey, as 2d shows for [53]. But our neural network with

dilated CNN performs even better with less Gµ.

Figure 2: Neural Network Predictions Without Noise. All the figures correspond to

512× 512 pixels with a resolution of 1 arcminute per pixel. In 2a we show our answer map,
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i.e. the actual placement of long strings in our patch of sky for NH = 3. In 2b, 2c, 2d,

2e(dilated CNN with focal loss) we show neural networks prediction of ξ for different value

of the string tension with no noise. The shades of grey of the strings in the string answer

map correspond to the relative strength of the strings GKS temperature discontinuity. The

shades of grey in the prediction maps correspond to the probability of a pixel being on a

string, with completely black pixels being 0 probability and completely white pixels being

probability 1.

Figure:2e.Prediction with focal loss (Gµ = 10−9)

Looking at Fig. 2, we see that we can reconstruct string locations by eye at G ≈ 10−8.

To compare our results with the wavelet curvelet of ref. [34] look at their figure 3 and 5

for µ = 10−7. Their neural network predictions produces string location maps comparable

to their figure 3 and 5 but for a string tension Gµ an order of magnitude lower. We now
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compare in more detail Their neural network predictions, with the results obtained by using

the Canny algorithm.

As per [53] stated Canny can only distinguish between strings and no strings for a Gµ ≤

10−7[36] and when noise is included this drops to Gµ ≤ 10−6.. These limits are similar to

those obtained in [34]. We present their Canny edge maps in Fig. 3. The pure Gaussian,

no string edge map is given in Fig. 3a, and those for string tension Gµ = 10and 10−7

in Fig. 3b and Fig. 3c, respectively. Fig. 3d shows only those edges that appear in the

Gµ = 10−7map of Fig. 3c but not in the no string map of Fig. 3a. The Canny edge maps

in Fig. 3 are produced with the same procedure described in ref. [32,34]. In particular see

figure 5 in [34] and figures 13, 14 and 15 in [34].

As explained in [31,33], Canny is used to distinguish between maps with and without

strings by looking for an excess number of short edges (a few pixels or less) over the entire

map. This can be noted by looking at Fig. 3d where we show those excess edges that

appear as in a CMB temperature map with Gµ = 10−7. There are hundreds of short edges

comprising of 1862 pixels out of the entire 512× 512 pixel map. This is interpreted as the

long edges due to strings being disrupted by the Gaussian noise. However the extra short

edges found by Canny do not necessarily correspond to string locations as per explained in

[54]. So our networking is performing better though with low confidence because of data

set. Once we can make the perfect simulation to generate the data set the confidence will

raise exponentially.
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Figure 3: Canny Edge Detection Without Noise. All the figures correspond to 512 × 512

pixels with a resolution of 1 arcminute per pixel. In 3a we show the Canny edge map of

pure Gaussian fluctuations without strings. Figures 3b and 3c show the Canny edge map

with Gµ = 10−8 and 10−7, respectively. The true string locations for these maps are given

in Fig. 2a. Fig. 3d shows only those edges that appear in the Gµ = 10−7 map Fig. 3c but

not in the no string map Fig. 3a. The edges in Fig. 3d occupy 1862 of the 512×512 pixels.
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Results

model Gµ Number of pixels cor-

responding to string

pixels

True positive rate

Canny 1× 10−7 310 17%

CNN 1× 10−7 1117 60%

CNN 1× 10−8 1060 57%

CNN 5× 10−9 423 23%

DCNN(Focal) 5× 10−9 965 88%

CNN 1× 10−9 243 13%

RPN 1× 10−9 698 65%

DCNN(Focal) 1× 10−9 779 74%

0.6 Conclusion

This project is an on going project. The model has quite good accuracy on our augmented

data set. The confidence of the model will depend on the simulation used to produce the

data set. Since the simulation for creating the data set is not finished the model has low

confidence. Only two institute have the perfect simulation code and it take significant

amount of computational capabilities to run the simulation. So far we are used data aug-

mentation to create a pretty Small data set from very few images. Our next step will be to

make a perfect simulation which will give higher confidence. Work has already on the way

to do that.So the the earlier results are very promising.

The model can be used to detect string wakes in cm cm intensity maps and so many

other cosmic objects. While applying this frame wok to 21 cm intensity map will require

modifying the network presented here.

Our future plan is to consider realistic string simulation with noise similar to those simu-
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lations discussed in [50]. Once noise is added more sophisticated network be to detect the

string. From our point of view there is great possibility for improvement of the framework

proposed here both by using better architecture here presented in as [51] or using deep

reinforcement learning or goal based learning .

Now a days the general trends in deep learning research has been to improve performance

with deeper network. Such as Google-Net which are used for object classification, image

segmentation and evaluating Go board positions have order of 102 layers and 107 parame-

ters. Training such network requires huge computational capability. So our plan is to use

deep reinforcement learning with many layer to get better performance. Currently both

for simulation to create the data set and training the framework with deeper layer both

requires a lot of computational resources. So our main challenge now is to access such

computational resources.
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