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ABSTRACT 

Cognitive Radio (CR) deals with the designing of intelligent wireless 

communication systems through the use of transceivers that are capable of 

automatically detecting and accessing vacant communication channels in the 

radio bandwidth while avoiding the ones occupied, with the aim of 

maximizing the utilization of the Radio Frequency (RF) spectrum and 

minimizing the interference of users. In primary transmitter detection i.e. non-

cooperative spectrum sensing, the licensed primary users (PUs) are detected 

based on the signal received by the unlicensed secondary users (SUs). This 

paper provides an insight into one such method, namely, the energy detection 

technique, which has low computational and implementation complexities, 

and is extremely generic. However, the detection of weak PU signals across a 

noisy channel is a challenging endeavor and calls for a more sophisticated 

approach. A matched filter can be used to obtain additional information 

regarding the channel activity, help individuate the transmitted pulses from 

the noise and reduce the effects of unlicensed signal interference. The 

proposed algorithm attains results from a matched filter and implements it 

within the energy detector, analyzing the signals over an Additive White 

Gaussian Noise (AWGN) channel for a range of Signal-to-Noise Ratios 

(SNRs), which are then evaluated through Receiver Operating Characteristic 

(ROC) curves with probability of detection (Pd) and probability of false alarm 

(Pf) as performance metrics. 

Keywords: spectrum sensing, matched filter, energy detection, primary user 

signal, signal-to-noise ratio, energy threshold 
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Introduction 

Spectrum scarcity is fast becoming a critical global issue in the field of 

wireless communication due to the increasingly high demand for the use of 

the limited natural resource that is the electromagnetic RF spectrum. Static 

allocation of the spectrum bands leads to the underutilization of the available 

spectrum, and since wireless operators are allotted exclusive licenses for 

operating in particular frequency bands, the conventional approach to 

spectrum management is notoriously stringent.  CR technology comes as a 

solution which recompenses greatly for the problem of spectral congestion 

and scarcity through opportunistic usage of the RF bands that are left vacant 

by the licensed PUs, and through enabling Dynamic Spectrum Access (DSA) 

which leads to an efficient use of the scarce resource in question.  

One of the most imperative aspects of the CR technology according to 

[1] is the ability to measure, sense, learn, and be aware of the parameters 

related to the radio channel characteristics, including knowledge about the 

availability of spectrum and power, networks and nodes, the entire 

infrastructure as so we speak; the user requirements, local policies and the 

operating precincts. Spectrum sensing can thus be defined as the task of 

obtaining cognizance regarding the spectrum occupancy, as well as perceiving 

the presence and activity or transmissions of the PUs within a particular 

licensed spectrum at one location, which can be obtained by using geo-

location and database, beacons, or by local spectrum sensing at CRs. 
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1.1 Motivation 

Energy detection is the most conventionally used spectrum sensing 

technique, predominantly for each potential signal to be detected without any 

prior knowledge, despite its menial performance compared to that of other 

non-cooperative sensing techniques like matched filter detection and 

cyclostationary feature detection. Since an energy detector is unable to 

differentiate the target signal from intrusive signals, the SUs must be silenced 

while it operates, and when loss of control messages and time synchronization 

errors occur, the coordination becomes subject to fiascos. Some SUs may then 

transmit even during a silent period, causing a false alarm at the energy 

detector if no PU signals are present [2]. Keeping this perception in mind, 

with the hopes of formulating a plausible solution to the problem of unlicensed 

interference in transmitter detection, we have chosen this topic in particular 

for our dissertation. 

 

1.1.1 Problem Statement 

The purpose of spectrum sensing is to determine the status of the 

spectrum and the transmission of signals of the PUs by periodically sensing 

the target frequency band and the incumbent operations [3]. However, the 

energy detector is vulnerable to the ambiguity of noise power or variance, and 

it can merely detect the presence of a signal but cannot differentiate its type. 

For instance, if signals from SUs share the same channel with the PU, without 

having any prior knowledge about the signal that is transmitted, a CR may 

well be unaware of its source and be unable to make this distinction. So the 

detection error would be high in the presence of signal sources that are not the 
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licensed PUs, detecting the transmitted pulses in the noisy received signal 

would turn out to be highly problematic. All in all, the energy detection 

technique may not always be insured and its performance may even prove to 

be inadequate in comparison to other non-cooperative spectrum sensing 

techniques by nature, therefore it requires the appendage of others.  

 

1.1.2 Solutions 

When the information of the signal from a licensed user is known, the 

modulation and packet format, a matched filter is the optimal linear filter for 

maximizing the SNR in the presence of additive stochastic noise, which here 

in the case of our dissertation, is stationary Gaussian noise. Hence, our 

proposed algorithm cartels the result from a matched filter and implements it 

within the energy detector for a low SNR regime. It strives to upgrade the 

performance of energy detection after comparing a known signal, i.e. the 

template of the PU signal, with the received signal of the unlicensed SU 

through cross-correlation. Our algorithm requires minimal changes in 

hardware and therefore can be implemented; in fact, the international standard 

IEEE 802.11 already uses matched filtering to detect incoming packets, which 

aids in the maintenance of packet synchronization [2] - these built-in matched 

filters can be used to improve the performance of spectrum sensing in CRs. 

 

1.1.3 Methodology 

We constructed the matched filter template by making use of the Phased 

Array System Toolbox in ©MATLAB 2017a, cross-correlation between the 

template and the received signal by the SU was done to create the final signal 
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and energy which was to be the test statistic. Keeping in mind that the test 

statistic was obtained from a fixed number of samples and an SNR value, we 

considered the conventional method of energy detection with an energy 

threshold under Constant False Alarm Rate (CFAR) in [4] which we 

compared the test statistic with. After calculating the Pd, we generated the 

ROC curve, which is a graphical plot illustrating the investigative ability of a 

binary classifier system (PU present or PU absent) while its distinguishing 

threshold is varied. ROC curves for a range of low SNRs were also produced, 

and a number of comparisons drawn between the conventional energy 

detection algorithm and the enhanced algorithm aided by matched filter. The 

developed algorithm had been tested extensively before the writing of this 

paper commenced. 

 

1.2 Objective 

As for the parameters allied with spectrum sensing, it can be said that 

the higher the Pd, the better the PUs are protected from unlicensed 

interference. Through the SUs’ perspective, the lower the Pf, the more the 

chances of the channel being reused while it is available [5]. Our objective 

therefore is to explore the Energy detection technique, and leverage a matched 

filter prior to the energy threshold comparison in a noisy environment, in order 

to enhance the performance and reduce unlicensed interference. Our goal is to 

obtain the best ROC curve possible with the maximum Pd and minimum Pf. 
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1.3 Thesis Outline 

Various aspects of spectrum sensing shall be discussed throughout this 

thesis dissertation, and the paper will comprise of five different chapters, the 

outlines of which are given as follows. Starting with the introduction of 

spectrum sensing in CR networks in Chapter 1, the challenges of unsolicited 

interference between the PUs and SUs are discussed. We propose a novel 

approach to solving them and outline what we aspire to achieve with our 

algorithm. The spectrum sensing concepts and a review of all the background 

research done in pursuance of devising our algorithm is defined in Chapter 2.  

The enhanced algorithm is proposed and its design explained in Chapter 3, 

along with its overall system implementation. Chapter 4 explains the analysis 

of the results obtained and the evaluations made. Finally, the concluding 

remarks related to our work are explained and the plans and scope for future 

works are presented in Chapter 5.  

 

1.4 Thesis Contribution 

The first part of the thesis consists of a literature review of important 

background knowledge, an in-depth survey of which has been carried out for 

comparative study. We have formulated the novel algorithm in order to 

overcome the limitations of the energy detection technique and utilize the 

advantages of the matched filter, although it is heavily dependent upon the 

energy threshold formula by Dr. Ying-Chang Liang in [5]. The code is based 

on the conventional energy detector, the modifications that have been made 

were implemented through the computing environment of ©MATLAB. 



 
 

6 
 

 

Literature Review 

This chapter contains the necessary information gathered from all of 

the background research that has been conducted, and the related existing 

work summaries. 

 

2.1 Wireless Communication Systems 

The basic building blocks of radio communication are radio waves, and 

waves with different frequencies have different propagation characteristics, 

each of which is suitable for a specific wireless application. The range of 3 

kHz to 300 GHz is primarily used for wireless communication worldwide, and 

assigned to different licensed entities by the government.  

Figure 1: Radio Spectrum allocated for Wireless Communications [6] 

The various wireless communications systems available today differ in 

terms of data rate of transmission, geographical coverage area, transmission 

power, and mobility support for users. However, the challenges including 

radio resource allocation/management and medium access control, rate 
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control, handoff and mobility management, quality of service (QoS) 

provisioning, and security unanimously exist for all [3]. 

 

Table 1: Radio Frequency bands [6] 

Abbreviation Designation Frequency 

Range 

Uses in Wireless 

Communications  

ELF Extremely low 

frequency 

3 Hz–30 Hz - 

SLF Super low 

frequency 

30 Hz–300 Hz - 

ULF Ultralow 

frequency 

300 Hz–3000 

Hz 

- 

VLF Very low 

frequency 

3 kHz–30 kHz Maritime navigation 

signals 

LF Low frequency 30 kHz–300 

kHz 

Navigational aids 

MF Medium 

frequency 

300 kHz–3000 

kHz 

AM radio, Maritime 

radio 

HF High 

frequency 

3 MHz–

30MHz 

Short-Wave radio, 

Radio-telephone 

VHF Very high 

frequency 

30 MHz–

300MHz 

VHF TV, FM radio, 

Navigational aids 

UHF Ultra high 

frequency 

300 MHz–

3000MHz 

UHF TV, Cellular 

phone, GPS 

SHF Super high 

frequency 

3 GHz–30 

GHz 

Space and satellite, 

Microwave system 

EHF Extremely high 

frequency 

30 GHz–300 

GHz 

Radio astronomy, 

Radar 
 

2.1.1 Licensed and Unlicensed Spectrum 

The apparent spectrum under-utilization has primarily driven CR 

technology, which is a new and emerging concept in wireless access. The two 

types of CR networks are distinguished based on the spectrum bands, namely 
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the licensed and the unlicensed bands. The Unlicensed bands include 

Industrial, Scientific and Medical (ISM) bands such as 902–928MHz, 2.4–

2.5GHz, and 5.725–5.875GHz. Furthermore, ISM bands are also shared with 

non-ISM applications, e.g., Bluetooth: 2.402–2.48GHz; IEEE 802.11/WiFi: 

2.45 and 5.8GHz bands; and IEEE 802.15.4, ZigBee and other personal area 

networks: 915MHz and 2.45GHz bands - these bands can be utilized by CRs. 

For the licensed bands on the other hand, the spectrum is licensed into 

different applications, e.g., aeronautical and maritime communications: 300–

535 kHz; AM radio: 535 kHz and 1.605 MHz; and LTE-North America: 700 

MHz, 800 MHz, 1.9 GHz, 1.7/2.1GHz and 2.6 GHz  [6]. One instance of the 

CR technology trying to justifiably overcome the under-utilization of 

spectrum can be seen from the Wireless Regional Area Network (WRAN) 

standard which operates in unused television (TV) channels in 698–806MHz. 

 

2.1.2 Software Defined Radio 

The Federal Communications Commission (FCC) defines a Software 

Defined Radio as “a device in which the operating parameters are controlled 

by software, allowing the radio to be programmed to transmit and receive on 

a variety of frequencies and/or to use one or more different transmission 

formats supported by its hardware design [7].”  Therefore the frequency range, 

modulation type, maximum output power, as well as the circumstances under 

which the transmitter operates, in accordance with Commission rules, can be 

altered for a Software Defined Radio (SDR) by making a change in software 

without making any changes to hardware components that affect the RF 

emissions. 
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2.1.3 Introduction to Cognitive Radio 

The term Cognitive Radio was first published in an article by Joseph 

Mitola III in 1999, where it was defined as “The point in which wireless 

personal digital assistants (PDAs) and the related networks are sufficiently 

computationally intelligent about radio resources and related computer-to-

computer communications to detect user communications needs as a function 

of use context, and to provide radio resources and wireless services most 

appropriate to those needs” [8]. He had first proposed the concept a year 

earlier in a seminar at KTH (the Royal Institute of Technology in Stockholm). 

In other words, a CR can be defined as an intelligent wireless 

communication system that is aware of its surrounding environment i.e. 

outside world, and uses the methodology of understanding-by-building to 

learn from the environment and adapt its internal states to statistical variations 

in the incoming RF stimuli by making corresponding changes in certain 

operating parameters (e.g., transmit-power, carrier-frequency, and 

modulation strategy) in real-time [9]. In a CR network, cognitive users (CU) 

opportunistically use the spectrum allocated to the primary network without 

causing destructive interference with the PU and vacate the spectrum instantly 

when the incumbent appears [10]. 

The experiments conducted by FCC demonstrates that at any given time 

and location, between 80% and 90% of the licensed spectrum remains 

underutilized. These temporarily unused spectrum slots are called spectrum 

holes or white spaces, which result in spectral inefficiency [6]. The low 

spectrum usage in licensed bands coupled with the true scarcity of radio 

spectrum may eventually hinder the growth of wireless applications. The 
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primary features of a CR transceiver thus include radio environment 

awareness and spectrum intelligence. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Cognitive Radio Network architecture 

 

2.1.4 Primary and Secondary Users 

In cognitive radio terminology, primary users (PUs) can be defined as 

the users who have higher priority or legacy rights on the usage of a specific 

part of the spectrum. On the other hand, secondary users (SUs), which have 

lower priority, exploit this spectrum in such a way that they do not cause 

interference to primary users. Therefore, SUs need to have cognitive radio 

capabilities, such as sensing the spectrum reliably to check whether it is being 

used by a PU and to change the radio parameters to exploit the unused part of 

the spectrum [1]. 
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2.2 Cognitive Radio Features and Potential 

The last few decades have witnessed some of the most astounding 

levels of advancement in the market for wireless devices and networks, which 

has furthered an unparalleled evolution. Regulatory agencies in nations all 

around the globe are now facing the need to allocate chunks of spectrum to 

different wireless services and applications. Technologies such as Multiple-

input multiple-output (MIMO) communications, cooperative communications 

and heterogeneous networks as elaborated in [6] do enunciate the goal of 

meeting the rising demand and effective utilization of spectrum. Regardless, 

spectrum scarcity continues to create challenges for our generation and 

mounting fear for the next. The need for higher data rates is increasing as an 

upshot of the transition from voice-only communications to multimedia type 

applications, as stated in [1]. Given the confines of the natural frequency 

spectrum, it is evident that the current static frequency allocation schemes 

simply cannot accommodate the requirements of the growing number of 

higher data rate devices and applications. The problem aggravates as some 

frequency bands in the spectrum are heavily used, while others are left 

unoccupied for the most part, and these potential spectrum holes or white 

spaces result in the underutilization of available frequency bands. Now is the 

time for an upsurge of innovative techniques that can offer new ways of 

sensing and exploiting the available spectrum. CR technologies shall provide 

exactly that, and spectrum sensing will uncover spectrum for use in 

dimensions that until now have been unreachable. 

IEEE 802.22 is the international standard which uses the CR concept to 

access the spectrum allocated to TV services (i.e. licensed systems) to provide 
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Wireless Regional Area Network (WRAN) services to unlicensed users. 

Being the first worldwide effort to outline a standardized air interface based 

on CR techniques for the adaptable use of TV bands on a non-interfering basis, 

IEEE 802.22 uses tactics like geo-location and spectrum sensing for spectral 

awareness. According to the recent most ruling by the FCC the CRs operating 

in the TV broadcast channels, otherwise known as TV Bands Devices, do not 

necessarily require spectrum sensing. However, the use of spectrum sensing 

is still not overshadowed because of the handful of advantages it bears over 

the geo-location database access approach, where a CR must have connection 

to the internet or any other communication infrastructure, and know its geo-

location information before using the database, both of which may not always 

be accessible. The single point of failure in the database only approach gives 

rise to security concerns, making it all the more evident that CRs need to be 

fortified with spectrum sensors [2]. Spectrum sensing is traditionally 

perceived as the computation of spectral content only, which is the 

measurement of the RF energy over the spectrum; however, it also involves 

obtaining the spectrum usage characteristics across multiple dimensions such 

as frequency, time, geographical space, angle and code [1]. 

 

2.2.1 Cognitive Radio Architecture 

A cognitive user (CU) has the ability to learn the radio’s operating 

environment and adapt to the real-time conditions of its operation, and 

furthermore, it can independently alter transmission parameters and 

characteristics for a more flexible, efficient, and comprehensive use of the 

available spectrum while reducing the risk of harmful interference with the 
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PUs [7]. Within the protocol architecture of CR, the RF front-end in the 

physical layer is implemented based on the SDR transceiver. The adaptive 

protocols in the MAC, network, transport, and application layers need to be 

aware of the variations in the CR environment and should consider the traffic 

activity of PUs, the transmission requirements of SUs, and variations in 

channel quality, etc.  

 

 

 

 

 

 

 

Figure 3: Cognitive Radio protocol stack [3] 

To link all modules, a CR control is used to establish interfaces among 

the SDR transceiver, adaptive protocols, and wireless applications and 

services. The module uses intelligent algorithms to process the measured 

signal from the physical layer, and receive information on transmission 

requirements from the applications to control the protocol parameters in the 

different layers [3]. 
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2.2.2 Cognitive Radio Interfaces 

A typical radio in today’s world interacts with a number of external 

systems, including the radio user, the network (via a base station), sensors 

(e.g., spectrum sensor, GPS) and other resources accessible through the 

network, e.g., other users (social network), informational resources (the Web 

resources, or more generally the Information Cloud) [11]. 

Figure 4: External interfaces of Cognitive Radio [11] 

 

2.2.3 Dynamic Spectrum Access 

Dynamic spectrum access (DSA) is a new spectrum sharing paradigm 

that allows SUs to access the abundant spectrum holes or white spaces in the 

licensed spectrum bands [12]. It has been proposed as an alternative policy to 

allow the radio spectrum to more efficiently be used, wherein a piece of 

spectrum can be allocated to one or more PUs. However, the use of that 

spectrum is not exclusively granted to these users, although they have higher 

priority in using it. SUs can access the allotted spectrum as long as the PUs 
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are not temporally using it, or can share the spectrum with the PUs as long as 

it can properly be protected. By doing so, the radio spectrum can be reused in 

an opportunistic manner or shared all the time; thus, the spectrum utilization 

efficiency can significantly be improved [13].  

Figure 5: The cognition cycle [14] 

 

2.2.4 Functions of Cognitive Radio 

Spectrum Sensing: Being the chief component for the establishment of 

a CR, spectrum sensing is the detection of unused spectrum i.e. spectrum holes 

or white spaces in the RF bandwidth (which are seen as windows of 

opportunity by the SUs) as well as the presence and transmissions of the PUs.  

Spectrum Management: The management of spectrum is the selection 

of the best available channels in terms of the strength of the received signal, 

interference with the PUs, energy efficiency, transmission power, number of 

users, quality of service, security requirements etc.  
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Spectrum Mobility: Spectrum mobility is the upkeep of seamless 

communication in order to retain adaptability i.e. to let go of a channel when 

a licensed PU is detected through a spectrum handoff and switch to a new 

vacant spectrum band.  

Spectrum Sharing: While focusing primarily on power allocation, 

spectrum sharing is the coordination of access to a spectrum band by a number 

of users. 

              

2.2.5 Cognitive Radio Components 

 

Figure 6: Components in a Cognitive Radio System [15] 

The three approaches to identifying spectrum opportunities include 

database registry, beacon signals, and spectrum sensing. Therefore, there must 

be at least one reconfigurable radio component with multiple parameters, 

including operating frequency and bandwidth. A sensing engine will be able 

to accept inputs from either this radio component, or other sources including 

networked nodes, data sources on the Internet and geo-location data. The 
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system can have a policy database that determines what behavior is acceptable 

in what circumstances, which can be dynamically configurable allowing for 

policy changes. The system must have a reasoning engine that accepts inputs 

from the sensing engine and the policy database, which is capable of learning, 

based on experience. Finally, a configuration database would maintain the 

current configuration of the radio components. A simple CR system might 

have a single reconfigurable radio component accepting sensing information 

from a single local node and no external data sources. [15]. 

 

2.3 Spectrum Sensing in Cognitive Radio 

Figure 7: Spectrum hole (or spectrum opportunity) [3] 

A CR transceiver detects a vacant spectrum in terms of band, location, 

and time and presumes the method of accessing it without interfering with the 

transmission of the licensed user. As defined in [9], a spectrum hole is a band 

of frequencies assigned to a PU, but, at a particular time and specific 

geographic location, the band is not being utilized by that user, which is a gold 
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mine for CRs. As soon as a CR starts to utilize a white space, it no longer has 

a choice regarding the sensing mode and has to sense the band proactively at 

periodic intervals. This will ensure timely detection of any PUs trying to 

reclaim the band, as mandated by the regulatory bodies [16], keeping in mind 

that avoiding interference with potential PUs in the vicinity is one of the most 

fundamental requirements of a CR. Primary user networks on the other hand, 

are not required to change PU infrastructure for spectrum sharing with 

cognitive networks. Sensing schemes of different sensitivities and rates are 

required for detecting different classes of PU signals, for instance, it is much 

easier to detect TV broadcast signals over GPS signals [17].  

As for the cross-layer functionalities of a CR, the physical layer carries 

out sensing, cognition (PU detection: energy and footprint) and adaptation 

(optimization of spectrum usage: power band and modulation), unlike the 

MAC layer which combines sensing measurements and jointly allocates 

spectrum. The various kinds of spectrum sensing in the physical layer are 

shown below in Figure 8. 

 

Figure 8: Types of Spectrum Sensing [3] 
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2.3.1 Non-Cooperative Spectrum Sensing 

Non-cooperative spectrum sensing is used by an unlicensed SU to 

detect the transmitted signal from a licensed user by using local measurements 

and local observations. Notable non-cooperative sensing algorithms include 

matched filter detection, energy detection and cyclostationary feature 

detection, the advantages and disadvantages are mentioned in Table 2. 

Techniques requiring prior knowledge about the PU’s signal for comparing 

particular signal features to the SU’s received signal are called coherent signal 

detection techniques, e.g. matched filter. Non-coherent detection techniques 

compare the received signal to a threshold defined on the basis of features that 

are independent of primary signal knowledge, e.g. energy detection [18].  

 

Table 2: Summary of the Non-Cooperative Spectrum Sensing techniques [3] 

Sensing Algorithm Advantages Disadvantages 

Energy Detection No prior information 

required 

and low cost 

Cannot work in low SNR; 

cannot 

distinguish primary and 

other 

secondary users 

Matched Filter Optimal performance 

and low 

cost 

 

Prior knowledge of 

primary user’s 

signal is required 

Cyclostationary 

Feature Detection 

Robust in low SNR 

and 

interference 

 

 

Partial information of 

primary 

user; high computation 

cost 
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2.3.2 Cooperative Spectrum Sensing 

The main idea of cooperative sensing is to enhance the sensing 

performance by exploiting the spatial diversity in the observations of spatially 

located CR users. CR users can share their sensing information via 

cooperation in order to make a combined decision, which is irrefutably more 

accurate than individual decisions [19]. There are broadly two approaches to 

cooperative spectrum sensing, namely, the centralized approach and the 

distributed approach. 

 

2.3.3 Interference-Based Spectrum Sensing 

In interference-based sensing, the sensing algorithm measures the 

noise/interference level from all sources of signals at the receiver of the 

licensed user. This information is used by an unlicensed user to control the 

spectrum access without violating the interference temperature limit. 

Alternatively, an unlicensed transmitter may observe the feedback signal from 

a licensed receiver to gain knowledge on the interference level [3]. 

 

2.3.4 Channel Sensing Hypothesis 

Statistical hypothesis testing is archetypally performed in spectrum 

sensing, in order to test the sensing results for a binary decision on the 

presence of PUs. It is a classical hypothesis testing approach, where H0 is the 

null hypothesis, which states that there is no primary signal in a certain band, 

and H1 is the alternative hypothesis, which confirms the presence of the PU in 

that frequency band. A test statistic is compared with a specific threshold to 
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discriminate between the two hypotheses, and system performance is 

evaluated in terms of probability of detection Pd and probability of false alarm 

Pf. The model for signal detection at time t can be described as [4]: 

𝒙(𝒕) = {
𝒏(𝒕), 𝑯𝟎

   𝒉 ∗ 𝒔(𝒕) + 𝒏(𝒕), 𝑯𝟏
                                   (𝟏) 

where x(t) is the received signal at an unlicensed SU, h is the channel gain, 

s(t) is the transmitted signal of the licensed PU which is presumed to be a 

Gaussian random process with variance σs
2, and n(t) is the Additive White 

Gaussian Noise (AWGN), which is a basic noise model used in information 

theory to mimic the effect of many random processes that occur in nature, 

having a zero-mean and variance σn
2. The performance of a spectrum sensing 

technique is generally measured in terms of the following metrics that are 

expressed in terms of mathematical probability [3]:  

 

Probability of detection, Pd = Prob {decision = H1|H1} 

Probability of false alarm, Pf = Prob {decision = H1|H0} 

Probability of missed detection, Pm = Prob {decision = H0|H1} 

 

Table 3: Channel Sensing Hypothesis in Spectrum Sensing [3] 

 SU Response (Decision / Hypothesis) 

PU Present PU Absent 

PU 

Signal  

Present Correct detection (Pd) Missed detection  (Pm=1-Pd) 

Absent False alarm (Pf) Correct rejection 
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Enhanced Energy Detection Using Matched Filter  

The detection of a signal in the presence of noise requires processing 

which is governed by the characteristics of the noise and the signal; when the 

noise is Gaussian and the signal has a known form, the appropriate processing 

technique is a matched filter or its correlator equivalent. When the signal has 

an unknown form, however, it is appropriate to consider the signal as a sample 

function of a random process. When the signal statistics are known, this 

knowledge can often be used to design suitable detectors [20]. 

 

3.1 Conventional Energy Detection Algorithm 

The energy detector is built around the principle that the transmitted 

signal will only be perceived by comparing the output of the energy detector 

against a threshold which depends on the signal and noise variance. The noise 

variance is an explicit parameter for the design of the energy detector; all 

existing works assume a perfect knowledge of the noise level at the receiver, 

which allows for an appropriate threshold design. In this case the Energy 

detector works with arbitrarily small values of probability of false alarm (Pf) 

by using a sufficiently large observation time, t, signals received with low 

SNR values, and a predefined suitable threshold energy level under Constant 

False Alarm Rate (CFAR). Signal-to-noise ratio (SNR) generically refers to 

the dimensionless ratio of the desired signal to the level of background noise, 

it parameterizes the performance of optimal signal processing systems when 

the noise is Gaussian [21]. In practical radar signal detection systems, 
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detecting a target automatically in a non-stationary noise and clutter 

(unwanted echoes in electronic systems) background while maintaining a 

constant probability of false alarm is difficult. Constant False Alarm Rate 

(CFAR) detection, which refers to a common form of adaptive algorithms 

used in radar systems to detect target returns against a background of noise, 

clutter and interference, is the key to solving this problem [22]. The two chief 

metrics governing the detection performance phenomenon of an algorithm for 

spectrum sensing are as follows:  

Probability of detection (Pd): A CR has detected the presence of a PU 

when the spectrum band is occupied i.e. correct detection of the signal. 

Probability of false alarm (Pf): A CR has detected the presence of a PU 

when the spectrum band is in fact free i.e. incorrect detection of the signal.  

The sensing decision can be formulated into a binary hypothesis as 

given in equation (1). H0 and H1 are the hypotheses 0 and 1 which denote that 

the PU is absent and present, respectively.  

After passing through a noise pre-filter or a Band Pass Filter (BPF) over 

a bandwidth, the received signal is denoted as x(t) (t = 1,2,...,N), N being the 

number of samples used in the sensing algorithm. Here, n(t) represents the 

Additive White Gaussian noise (AWGN), assumed to be independent and 

identically distributed with zero-mean and variance σ2
n; s(n) is the PU signal, 

also assumed to be an independent and identically distributed random process 

with zero-mean and variance of σ2
s , and h is the channel gain. With the signal 

and noise variance, the SNR for random variables can be defined as:  [21] 

𝑺𝑵𝑹 =  
𝝈𝒔

𝟐

𝝈𝒏
𝟐

                                                   (𝟐) 
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When there are sufficient sample points N, the decision threshold can 

be derived for a target Pd or Pf. Under hypothesis H1, the threshold λPd can be 

set for a constant detection rate (CDR) as the following: [5] 

𝝀𝑷𝒅
= (𝝈𝒏

𝟐+𝝈𝒔
𝟐) (𝟏 +

𝑸−𝟏(𝑷𝒅)

√𝑵
)                               (𝟑) 

Similarly, under hypothesis H0, the threshold λPf can be set for Constant 

False Alarm Rate (CFAR) as the following: [5] 

𝝀𝑷𝒇
= 𝝈𝒏

𝟐 (𝟏 +
𝑸−𝟏(𝑷𝒇)

√𝑵
)                                     (𝟒) 

The threshold based on CFAR is commonly applied in conventional 

energy detection algorithms; hence, we have employed the equation (4) in our 

formulated algorithm. 

 

3.2 Design of our Algorithm 

Matched filter detection is appropriate when the transmission of a 

licensed user has pilot, preambles, and synchronization word or spreading 

codes, which can be used to create the template for spectrum sensing [3]. Once 

the matched filter template is created in the network simulator, as described 

in the segment 3.5 ‘Simulation Setup using ©MATLAB 2017a’, and a fixed 

SNR value is set, one can proceed with the steps in our devised algorithm. 

The SNR expressed in a logarithmic scale in decibels (dB) can be calculated 

once the ratio of the signal variance and the noise variance is determined, 

using the formula in [21]:  
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𝑺𝑵𝑹 = 𝟏𝟎 𝒍𝒐𝒈𝟏𝟎

𝝈𝒔
𝟐

𝝈𝒏
𝟐

                                            (𝟓) 

Since we are implementing Gaussian signals, we assumed for our 

sensing algorithm, a noise variance with zero-mean and variance 1, i.e. σn
2=1. 

Substituting this value into (5) the value of the signal variance can be attained, 

which is used to construct the transmitted signal of the PU for our algorithm. 

The formula for the signal variance, as expressed in equation (6), is therefore: 

𝝈𝒔
𝟐 = 𝟏𝟎

(
𝑺𝑵𝑹
𝟏𝟎

)
                                                  (𝟔) 

We fixed the value of Pf to a range of 0 to 1, and considered a minimal 

value of 100 samples for our sample size N, which means Pf that will have at 

least a minimum of 100 values set in between 0 and 1. Since we implemented 

an energy threshold under Constant False Alarm Rate, (keeping in mind that 

Q-function is the tail distribution function of the standard normal distribution) 

after incorporating the value of noise variance in the equation given by Dr. Y. 

C. Liang [5], we derived the formula of energy threshold, as follows: 

𝝀 = (
𝑸−𝟏(𝑷𝒇)

√𝑵
+ 𝟏)                                           (𝟕) 

Following the determination of the energy threshold, we considered 

10,000 Monte Carlo simulations in order to achieve our desired output. 

However, if the number of Monte Carlo simulations goes higher, the 

randomness will decrease and the ROC curves will become smoother. In each 

iteration we generated a noise vector of sample size N, which has a zero-mean 

and a variance of 1, using the built-in function for generating random values 

in ©MATLAB. This was done to create the Additive White Gaussian Noise 
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(AWGN) for the background in our simulation environment. A real valued 

Gaussian signal was generated to be the PU signal by carrying out the product 

of the square-root of signal variance achieved from equation (6), and another 

vector of random values for the additive stochastic noise within the 

transmitted signal. We then added the signal and the AWGN together to 

simulate a realistic received signal at the SU. 

Moving onto the crucial part of our algorithm, where we cross-

correlated the received signals with the matched filter template of the PU 

signal previously generated through built-in functions of ©MATLAB 2017a, 

the parts that were matched with the received signal samples at the SU, were 

maximized. We used these resulting signals, considered absolute values and 

mathematically squared them, just like the squaring device in a traditional 

energy detector does. We then used these values to determine the energy 

received from the signal after integrating the squared value over a 

substantially large period of time. Monte Carlo methods provide a way out of 

complicated exponential increase in computation time, which was greatly 

useful for our algorithm. By the central limit theorem, this method displays 

1/√N convergence, and that is what we have used in finding the signal energy. 

For variance reduction, we used importance sampling in the Monte Carlo 

Method, as elaborated in [23].  

𝑬 = ∫ |𝒙(𝒕)|𝟐𝒅𝒕                                               (𝟖)
∞

−∞

 

This received energy, E, in equation (8) was used as the test statistic for 

our algorithm, and we therefore compared it with the energy threshold we 

obtained in equation (7); the results were stored for all of the 100 samples with 
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accordance to the Binary hypothesis. We divided the number of detections 

(where the signal energy, E was greater than the energy threshold, λ) by the 

number of Monte Carlo simulations, in order to find the Pd. We obtained the 

probability of missed detection (Pm) by subtracting the Pd from 1. We then 

found the ROC curves with the resulting values of Pd and Pf.  

 

3.2.1 Block Diagram 

The block diagram for our proposed sensing algorithm as defined in 

Figure 9 has been created following the footsteps of the conventional energy 

detector. 

 

Figure 9: Block diagram for Enhanced Energy Detection Algorithm using 

Matched Filter 

The received signal at the SU first passes through a Band Pass Filter 

(BPF), which is deployed to isolate or filter out certain frequencies that lie 

within a particular band or range of frequencies. Following this, the matched 

filter template of the PU signal is determined, and then cross-correlation is 

carried out between the two signals. After this stage, the final received signal 

is taken, and passed through a squaring device and an integrator. Finally, the 

signal energy is compared with the energy threshold obtained through 

operation under CFAR. 
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3.2.2 Flowchart  

 

Figure 10: Flowchart for Enhanced Energy Detection Algorithm using 

Matched Filter 

The flowchart of our proposed model is presented in Figure 10 which 

describes how the final deductions regarding the channel occupancy are made 

– if the calculated energy of the signal received at the SU is greater than that 

of the threshold, it can be said that the PU is present. If the calculated energy 

of the signal received at the SU is less than that of the threshold, it can be 

inferred that the PU is absent, and a spectrum hole or white space is available. 
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3.3 Pseudo-code 

The pseudo code for our proposed algorithm is given below, the design 

of which has been previously explained. 

 

Fix the number of samples N 
for A fixed value of SNR 

    Acquire signal variance σs2 using SNR  

    Fix Pf to have 100 values between 0 and 1 

    Generate matched filter template for cross correlation parameters 

    for x = 1:length(Pf) 

        for mcs = 1:10000 

            Generate noise n (t) with mean 0 and variance 1 

            Generate real valued Gaussian signal s (t) 

            Add noise and signal to get the received signal x (t) 

            Cross-correlate received signal & matched filter template 

            Acquire energy by squaring the absolute value of the signal  

            Take the average of the energy obtained to get E 

            Construct energy threshold λ using formula 
            if Signal energy E is greater than the energy threshold λ  

                Increase counter value for no of detections 
            end 

        end 

  Calculate Pd by dividing the no of detections by the total no of 

simulations 

    end 

    Plot the resulting Pd with the fixed Pf 
end 

 

3.4 Simulation Setup using ©MATLAB 2017a 

We used Phased Array System Toolbox™ in ©MATLAB 2017a, 

specifically the LinearFMWaveform object from the package ‘phased’ which 

creates a linear FM pulse waveform. After generating the step response, we 

implemented the getMatchedFilter function to obtain the matched filter 

coefficients for waveform. Lastly, we used phased.MatchedFilter to create the 

object which we then passed through the step function one more time to 

generate the final template. We used the built-in random function to generate 
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the AWGN, to be the background noise in our environment. We used the same 

function to generate the additive stochastic noise in the real valued Gaussian 

primary signal that was transmitted by the PU. In order to do a cross-

correlation between the PU signal template and the received signal at the SU, 

we used the built–in cross-correlation function, and proceeded with the 

detection algorithm. 
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Results and Evaluation 

This segment contains the results analysis and evaluation of our devised 

algorithm, the results obtained from implementing the enhanced energy 

detection algorithm using matched filter in ©MATLAB 2017a generated the 

following figures.  

 

4.1 Signal Construction 

Figure 11 shows the construction of the received signal at the SU using 

the real valued Gaussian PU signal and the Additive White Gaussian Noise.  

Figure 11: Construction of the Received Signal 

 

4.2 Cross-correlation of Signal and Matched Filter Template 

In signal processing, cross-correlation is a measure of similarity of two 

series as a function of the displacement of one with respect to the other, where 

the parts which are almost identical and in phase with one another are 
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maximized. This is also known as a sliding dot product or sliding inner-

product. In our algorithm, we used the received signal at the SU and the 

matched filter template to carry out cross-correlation.  

The SU using matched filter, in actuality, is receiving the correlation 

function of the input signal and the desired PU signal. When there are several 

communicators using the same channel without phase coherence, it is 

desirable that the cross-correlation functions be small in absolute value [24]. 

Figure 12 shows the difference between a received signal before and after 

cross-correlation.  

Figure 12: Received Signal before and after Cross-correlation 
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4.3 Signal Energy and Energy Threshold   

Figure 13 shows the energy comparison for the conventional and the 

enhanced energy detection algorithms with the energy threshold. 

Figure 13: Energy Comparison of the Algorithms with Threshold 

 

Here, the red solid line represents the signal energy detected from the 

enhanced energy detection algorithm, and the blue solid line represents the 

signal energy from the conventional energy detection algorithm. The light 

blue area in the graph represents the energy threshold under Constant False 

Alarm Rate (CFAR), with which we made appropriate comparisons following 

the channel sensing hypothesis. 
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4.4 Pd vs. Pf of the Algorithms at a Fixed SNR Value 

Figure 14: Pd vs. Pf for the Algorithms at a Fixed SNR 

If we compare the two algorithms at a fixed SNR value of -10dB as in 

Figure 14, it is evident that the enhanced energy detection algorithm using 

matched filter outperforms the conventional algorithm of energy detection. 

According to the spectrum sensing requirements set by the standard IEEE 

802.22 for detection accuracy, the specifications on probability of false alarm 

and probability of detection are [25],  

Pf ≤ 0.1 

Pd ≥ 0.9 
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While considering Pf = 0.1, the Pd for the conventional algorithm is 

approximately 0.42, whereas the Pd for the enhanced algorithm is 

approximately 0.96. The simulation results show that our proposed algorithm 

is justified in accordance to the IEEE 802.22 requirements, and it can 

considerably improve the system performance of a conventional energy 

detector. 

 

4.5 Pm vs. Pf of the Algorithms at a Fixed SNR Value 

Figure 15 is a plot of probability of missed detection (Pm) vs. probability 

of false alarm (Pf). The value of Pm for the enhanced algorithm is substantially 

lower than that of the conventional algorithm, which is satisfactory. 

Figure 15: Pm vs. Pf for the Algorithms at a Fixed SNR 
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4.6 ROC Curves for a Range of SNR Values 

Figure 16: ROC Curves for Conventional Energy Detection at Different 

SNRs 

The resulting graph formulated in Figure 16 is an ROC curve for a set 

of five different low signal-to-noise ratios (SNRs) within the range of -25 dB 

to -5 dB. The value of Pd varies from 0.18 to 0.84 for the conventional energy 

detection algorithm when Pf = 0.1. For the ROC curve of the enhanced energy 

detection algorithm using matched filter, as shown in Figure 17, the value of 

Pd varies from 0.925 to 0.985 when Pf = 0.1. 
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Figure 17: ROC Curves for Enhanced Energy Detection using Matched 

Filter at Different SNRs 
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Conclusion and Future Work 

CR strives to accommodate the vastly increasing number of wireless 

applications [10], services and technologies of the 21st century through reliable 

spectrum sensing and dynamic allocation of spectrum bands, thus providing an 

enticing solution to the problem of spectral congestion and scarcity. Through 

statistical analysis and learning of the sensing accuracies, complexities, advantages 

and drawbacks, overall design and implementations, and the associated challenges, a 

thorough investigation was done by us in pursuance of determining an optimized 

method for spectrum sensing. This last chapter concludes our dissertation, and covers 

our plans and scope for future work. 

 

5.1 Conclusion 

The energy detector can be termed as a blind detector as it does not consider 

the nature of the signal, and the presence of a PU is ascertained only when the energy 

from the received signal levels crosses the energy threshold. It has low computational 

complexities and can detect the signal even if the user signal statistics are unfamiliar, 

however, it displays poor performance in low SNR environments and has the inability 

to distinguish between signal, noise, and interference. Our proposed novel algorithm 

can substantially improve the system performance of a conventional energy detector 

and help reduce unlicensed interference during spectrum sensing in cognitive radio 

networks. The simulation results show that our algorithm is justified in accordance 

to the IEEE 802.22 requirements, the results obtained from the enhanced energy 

detection algorithm aided by matched filter were quite satisfactory in terms of the 

performance metrics of Pd and Pf, since a high value of Pd decreases the interference 



 
 

43 
 

inflicted upon PUs and a low value of Pf decreases the amount of missed spectral 

opportunities in the secondary network.  

 

5.2 Future Work 

Our plan is to take this dissertation further on the basis of making the algorithm 

more tuned and fit for real-world scenarios. We also hope to draw mightier 

comparisons of our devised algorithm with the state-of-the-arts, and hereby carry out 

a better performance analysis of the results obtained. Due to the lack of time and 

competence we have been unable to work for proper signal modulations, therefore 

our goal for the future is to apply Quadrature Amplitude Modulation (QAM) with 

Orthogonal Frequency-Division Multiplexing (OFDM) onto the signals for our 

proposed novel algorithm. By applying QAM with OFDM onto the signals, the 

bandwidth of each channel can be reduced by the number of multiplexed sub-carriers 

plus a guard band, so channel interference will be significantly less. Since there 

already exists a method and circuit for fine timing synchronization in the OFDM 

baseband receiver for IEEE 802.11A/G Wireless Local Area Network (WLAN) 

standard, and the protocol IEEE 802.22 is compatible with all other 802 protocols in 

the past, our algorithm will require minimal changes in the hardware and can be 

implemented.  
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