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Abstract 

 

This paper proposes a multi-stage fire detection model that consists of chromatic 

segmentation, shape analysis and differential optical flow estimation. At the initial phase, color 

segmentation is carried out which takes into account some of the existing state of the art color 

segmentation directives and employs a majority voting system among them to obtain the possible 

fire-like regions. The extracted sections are then passed onto a shape analyzer which verifies the 

authenticity of the candidate regions by inspecting the dynamics of shape. The distinctive change fire 

exhibits over time in its area-perimeter ratio is at the bedrock of this analyzer. Further evaluation is 

carried out by another analyzer that measures the turbulence of fire evaluated by an enhanced 

differential optical flow tracking algorithm. The Lucas-Kanade Tracking algorithm has been 

employed and extended to achieve this. The assessment of performance of the enhanced techniques 

was carried out by utilizing a versatile dataset containing videos from the MIVIA and Zenodo dataset. 

The dataset consists of a diverse array of different environments such as indoor, outdoor and forest 

fire. Some environments with no fire were also included to assess the rate of false positives. The 

model has successfully showed an improved accuracy of 95.62% when tested for the aforementioned 

dataset. 

Keywords: Fire Detection, Color Segmentation, YUV color space, Shape Analysis, Optical Flow 

Analysis, Fast Features From Accelerated Segment Test, Lucas Kanade Tracker 
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CHAPTER 01 

Introduction 

 

Fire is regarded as one of the earliest human inventions and this innovation led to the inception 

of human civilization. Despite its many merits, fire can prove to be dangerous if it gets out of hand 

and claim thousands of lives and cause insurmountable damage to property. Early fire detection has 

therefore, become increasingly important as fire hazards can directly endanger personal security and 

belongings. Thus, this paper proposes a model that can help mitigate the casualties due to a fire 

incident by efficiently identifying fire at an earlier stage of its occurrence. Using a score-based color 

rule approach and an enhanced optical flow analysis technique, the proposed system allows for an 

efficient early detection of fire that outperforms similar models. 

 

1.1 Motivation 

A fact sheet published by World Health Organization (WHO) states that an estimated 180,000 

deaths are caused per year due to burns and a significant portion of these injuries victims receive 

primarily due to fire incidents. Majority of these incidents occur in low to middle income countries 

such as Bangladesh. Recently, there has been an upsurge of fires erupting not only in Dhaka but all 

over the country which according to experts is a result of unplanned urbanization and a lack of 

adherence to following the National Building Code when constructing new buildings. In 2017 alone 

Dhaka itself saw 3,020 incidents. Ever year factory fires not only take countless lives, they also 

stagnate the economy of our country by slowing down the RMG sector. The Gulshan Market fire that 

broke out in January, 2017 engulfed the happiness of many. Hence, it is undoubtedly a matter of great 

importance to detect fire within a short notice in order to minimize the fatality. 

Although sensor-based fire detection systems that rely on heat or smoke to detect fire are 

already found everywhere, these systems have multiple limitations. Firstly, these sensors are limited 

in terms of area coverage and thus needs to be densely distributed, which raises the installation and 

maintenance costs [1]. Secondly, heat and smoke do not disperse right away which makes these 

sensors naturally slow in detecting these signals. To mitigate these limitations, fire detection 

techniques based on computer vision have been gaining momentum recently [1, 2]. They also give an 

additional edge over conventional detection systems because they can be easily integrated as a 
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component of existing video surveillance systems which most industries or companies already use to 

monitor buildings and the surrounding environment. 

State of the art computer vision algorithms utilizing multiple phases of pattern recognition can 

make early fire detection feasible. For high accuracy, these phases analyze various distinguishable 

features of fire, including its distinctive color, shape, flickering, growth etc. This paper employs YUV 

color segmentation, analysis of shape and an enhanced optical flow analysis technique to detect fire 

in a robust manner. 

 

1.2 Contribution Summary 

Previously, a number of researchers have worked on different fire detection models each with 

its own merits and demerits. Many of these models rely heavily on the color segmentation done at the 

beginning of the process. A limitation of many chromatic filtering algorithms is that they perform a 

logical conjunction of all these rules to segment out the region of interest [3]. For distant flames we 

have found that this approach often fails to detect the flame properly. As later steps usually require 

the output from this step, a failure to extract a blob in this step means the later steps do not even get 

the chance to present their own evaluation, resulting in poorer overall accuracy. We have taken a 

more liberal approach to overcome this limitation by taking the vote of all the rules and segmenting 

the image based on majority decision. This increases the accuracy of detecting candidate fire like 

regions for further analysis wherever needed.  

Another thing to take into account is that such detectors alone are not sufficient enough for 

detecting fire in diverse environments and also for not triggering an alarm when there is no fire. Many 

algorithms therefore incorporate other characteristics of fire such as shape, growth, flickering etc. in 

order for more accurate identification. The model proposed in this paper incorporates shape analysis 

and proposes an enhanced optical flow analysis of fire to eliminate the chances of producing false 

alarms as well as increasing the accuracy of detection. This approach has produced an accuracy of 

95.62%. 

 

 

 

 

 



4 | P a g e  

1.3 Thesis Outline 

The rest of the paper is outlined as follows. Chapter 2 outlines the previous works done in the 

field of computer vision based fire detection. Next, chapter 3 describes the proposed model including 

the implementation specifics. Chapter 4 goes on to illustrate the experimental results based on a 

versatile dataset and the performance comparison of competing models. Finally, chapter 5 concludes 

the paper specifying its difficulties and limitations while stating possible future paradigms the system 

can be expanded to. 
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CHAPTER 02 

Literature Review 

 

2.1 Static Image Processing 

One paradigm of computer vision based fire detection focuses mainly on analyzing static 

digital images. Images are represented as a set of pixels which are the smallest addressable and 

controllable element of a picture rendered on a screen. Many researches on classification of fire have 

been carried out by analyzing singular frames containing fire in different scenarios [4]. Bulk of the 

dataset they have used contains static pictures and the inspection for fire have been done by mostly 

taking into account the color properties and shape of fire as discussed in this section. 

 

2.1.1 Color Spaces 

Color spaces or color models are mathematical formulations that help represent the chromatic 

information a color image exhibits. Color information of fire is crucial for its detection since non-

chemical fire exhibits a distinctive color. As a result, some form of color evaluation can be found 

across all models of fire detection. Chromatic information can be found out using color segmentation 

algorithms that rely on multiple color models such as RGB [2], YCbCr [4], L*a*b* [1], YUV [5], 

HSI [6, 7], HSV [8] or even a combination of different color spaces [9]. There are however mainly 

five major color models: CIE, RGB, YUV, HSI and CMYK. Most of the other color models are 

simply a subdivision of these models. For the purpose of fire detection, images are typically analyzed 

under RGB, CIE, LAB (or La*b*), HSI or YUV color spaces. A quantitative analysis of these color 

spaces show us that some of them perform better than the others on the list. 

 

2.1.1.1 RGB 

The RGB color space consists of the chromaticity of three additive primaries: Red, Green and 

Blue. Each of these three primaries define the intensity of color as an integer between 0 and 255 or 0 

and 1. For example, if the RGB value for a pixel is (1, 0, 0) then the pixel is completely red in color. 

Although a very simplistic color model, it is so widely used because most surveillance cameras use 

this color space by default and while analyzing the images obtained from these cameras, no further 

conversion to other color spaces is required, leading to improved performance. 
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2.1.1.2 La*b* 

The Lab color space has three dimensions for mathematically representing all perceivable 

colors. L represents lightness, whereas a* and b* represent green-red and blue-yellow components of 

color respectively. The color channel L exhibits darkest black when L=0, and brightest white when 

L=100. When the channels a* and b* are null, they represent true neutral gray. The positive a* axis 

corresponds to red color components while the negative a* axis corresponds to green. Similarly, the 

positive and negative b* axis corresponds to yellow and blue color components respectively. The 

La*b* color space is an excellent choice when accuracy matters the most as shown in Table 1. 

 

2.1.1.3 YUV  

The breadth of the terms Y′UV, YUV, YCbCr, YPbPr, etc. can be overlapping and is a 

frequent source of confusion. Y′ denotes the luma component (the brightness) whereas U and V are 

chrominance (color) components; luminance on the other hand is labeled by Y – the prime symbols 

(') signify gamma compression [4] with ‘luminance’ standing for physical linear-space brightness, 

while ‘luma’ stands for (non-linear) perceptual brightness. Y can range from 0 to 1 (or 0 to 255 in 

digital formats), while U and V falls in the range of -0.5 to 0.5 (or -128 to 127 in signed digital form). 

Standards exist to limit these ranges further so that the resulting unused bits can be utilized to indicate 

metadata like synchronization. 

 

Figure 1. A visual representation of the YUV color space [10]. 
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2.1.1.4 Selecting an appropriate color model 

One common color model to undertake in fire detection systems is RGB [2]. The reasoning 

behind selecting this model is the simplicity it offers and that it requires no further processing or 

conversion as virtually all cameras record videos directly in RGB color space. Contrary to [2], [6] 

and [7] for good reasons adopts HSI color space for extracting the color information from frames. 

RGB color model has the disadvantage of being dependent on illumination whereas HSI is less 

sensitive to brightness change causing a lesser number of false positives (FPs).  Added to that, YUV 

and YCbCr color spaces also give an edge over RGB as they take into account the chrominance and 

luminance component which can be processed independently [11]. Celen et al. carried out an 

experiment to find out which color spaces were the most suitable for forest fire detection [12]. 

Possible fire like regions were identified using the values of three different channels obtained from 

different color models. The likelihood of each channel was obtained from a lookup table and 

thresholding the obtained value learned through a learning algorithm. The probability of a pixel being 

a fire pixel was calculated by the product of the likelihoods each channel as shown in equation (1). 

 

𝑃(𝐶1; 𝐶2;  𝐶3) = 𝑃(𝐶1) ∗ 𝑃(𝐶2) ∗ 𝑃(𝐶3)                                          (1)    

where 𝐶1, 𝐶2 and 𝐶3 represent the values of channel 1, channel 2 and channel 3 in any color space 

of a pixel. 

 

The comparative analysis laid out by Celen gave an idea of which color spaces work the best 

in the domain of fire detection which is depicted in Table 1. It is apparent from the comparison that 

CIE Lab and YUV surpass others in terms of performance.  
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Table 1: Performance comparison among various color spaces 

Color space Accuracy (%) Recall (%) Precision (%) Specificity (%) 

CIE Lab 92 95 94 75 

CIE Luv 82 99 82 3 

CIE XYZ 84 99 84 13 

HLS 87 87 97 89 

HSV 87 99 87 33 

RGB 86 98 87 31 

YUV 90 96 92 62 

Other Methods 73 63 79 83 

 

 

2.1.2 Color space conversion 

Typically CCTV cameras provide output in RGB color space. Therefore, conversion of color 

spaces is required if processing is to be done in some other color space. As demonstrated in Table 1, 

CIE Lab and YUV are the most accurate color models for fire detection. For our study, we’ve however 

decided to use YUV as the conversion is computationally lesser expensive and it’s almost as good as 

La*b*. Compared to YUV, HSI is thus less suitable for real-time detection. As optical flow analysis  

is an expensive process by itself, to increase overall performance it is important to minimize the time 

spent in other expensive phases like color space conversion. The conversion from RGB to YUV is 

performed using equation (2) as demonstrated in [11]. 

 

[
𝑌
𝑈
𝑉
] =  [

0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

] × [
𝑅
𝐺
𝐵
]                                    (2) 

Where Y, U, and V corresponds to the Y channel, U channel and V channel of the image and domains 

for Y, U and V are [0,255], [-111,111] and [-157,157] respectively. 
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2.1.3 Color Segmentation 

Over the last few decades, a number of rules has been developed to classify fire pixels using 

raw red, green and blue (RGB) information in color images [2]. Chen et al. adopted a statistical RGB 

color model and used the intensity and saturation of the red component in addition to a binary 

background mask with median filtering [13]. The method utilizes statistical color values and is fairly 

straightforward in its depth and implementation. The rules put forth by Chen et al. are depicted in 

equation (3) and (4).   

 

𝐼𝑅(𝑥) − 𝐼𝐺(𝑥) > 0                                                              (3) 

𝐼𝐺(𝑥) − 𝐼𝐵(𝑥) > 0                                                              (4) 

where 𝐼𝑅(𝑥) , 𝐼𝐺(𝑥)  and 𝐼𝐵stand for the intensity values for red channel, green channel and blue 

channel of a pixel x respectively. For fire pixels, the value of red channel is greater than the green 

channel and that of green is greater than blue [2]. 

 

𝐼𝑅(𝑥) − 𝜏𝑅 > 0                                                                (5) 

𝐼𝑠(𝑥) − (255 − 𝐼𝑅(𝑥))
𝜏𝑆

𝜏𝑅
   > 0                                                  (6) 

where 𝜏𝑅  and 𝜏𝑠 stands for the threshold values which were not specified in [2]. However, 

experimentally it has been found that the best results were obtained when 𝜏𝑅 = 135  and 𝜏𝑠 = 53. 

 

Different versions of the formulae originally formulated by Chen are found in existing 

literature. Celik and Huseyn et al. [1] for example derived and enhanced new rules based on YCbCr 

which were later modified and adopted in [4]. One such rule derived in the RGB color space detailed 

the fact that the R component for a fire pixel must be greater than the mean of values in the R channel. 

Liang-Hua et al. implemented their work on HSV [8] and Jareerat et al. employed their technique in 

both HSV and YcbCr color spaces [9]. A statistical model based on YUV color space is also exploited 

in [14], where instead of a trivial heuristic, the thresholding of candidate fire pixels is reliant on a 

support vector machine. 

Rossi and Akhloufi interestingly used both RGB and YUV color spaces [15]. Applying K-

means clustering to the V channel of the YUV color space showed promising prospect while detecting 

fire. For the sake of their research the value of k was set to 2; one for fire and one for background.  
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2.1.4 K-means Clustering  

K-means clustering through repeated calculation allows to find centers of natural clusters 

within given data. It is used to find K number of partitions based on a given set of attributes. Vector 

space is utilized to represent the object attributes. The main objective is to mitigate the average intra-

cluster variance as outlined in [15] and shown by equation (7). 

 

𝑉 =  ∑ ∑ ||𝑥𝑗 − 𝑚𝑖||
2

𝑥𝑗 ∈ 𝑆𝑖

𝑘
𝑖=1                                                     (7) 

where 𝑆𝑖 are the clusters in 𝑖 ∈ [1, … , 𝑘], the centroid of the points 𝑥𝑗 ∈ 𝑆𝑖is given by 𝑚𝑖 and k 

represents the number of clusters. 

  

The first level of segmentation using K-means clustering showed promising prospect but the 

number of false positives it raised was too high and so a learning strategy in RGB color model using 

3D Gaussian model to represent fire pixels was used to create a reference color model for fire pixel 

classification. In dynamic video processing, such complex analysis on each pixel is computationally 

expensive and therefore, in our study we have adhered mostly the simplistic rules set out by Celik et 

al. [4] as they are just as accurate but computationally cheaper. 

  

2.1.5 Contour extraction 

In order to make the fire detection system more robust, geometric characterization of fire have 

also been taken into account in a number of different models [16]. One such method to adopt is 

contour extraction. Contour extraction is popularly used because only focusing on the chromatic 

properties of fire may give rise to a high rate of false positives. Most contour extraction algorithm 

uses some form of edge detector operator [16]. Canny edge detector has been utilized in [17] in order 

to detect large space fires. A diversion of this was seen in [18] where, Bheemul et al. adopted a model 

for contour extraction that does a horizontal line by line analysis of the change in brightness in a 

frame. The main disadvantage of applying these contour extraction techniques in single frames is that 

they fail to consider that fire is a phenomenon that changes over time. Thus, if analysis is done on a 

set of frames obtained from dynamic videos rather than one frame, the output obtained is more 

accurate.  

 

 



11 | P a g e  

2.2 Dynamic Video Processing 

A video is a sequence of ordered frames. Analyzing a set of video frames is more useful when 

it comes to detecting fire because it is a spatiotemporal occurrence. While processing videos some 

form of preliminary segmentation is done either by the chromatic segmentation explained beforehand 

or by background substitution to extract the region of interest. 

 

2.2.1 Foreground detection or Background subtraction 

Fire is a phenomenon that undergoes rapid transformation over time. Considering this fact, 

many models attempt to detect the moving pixels between consecutive frames to figure out a region 

of interest. Further analysis is then performed on the blobs obtained based on some other feature of 

fire [5, 11]. The notable methods followed for background subtraction are frame differencing [19], 

median filtering [6], Gaussian average and background mixture model. Frame differencing is done 

by first taking a background reference frame and then taking any frame at time t to perform an image 

subtraction between the two frames. The background reference frame thus has to be updated 

iteratively as new frames arrive. The method proposed by Cho et al. used a binary background mask 

in conjunction with median filtering to minimize noise and accurately detect moving fire-like regions 

[6]. Shon et al. and Celik et al. use the intensity values of pixels and compares the changes to a 

threshold over time to detect fire like regions [1, 11]. In [11] the threshold was experimentally 

obtained to be 3. In the work of [20], Gaussian mixture models are used to separate the moving 

foreground from the stationary background. Although Gaussian mixture model is highly accurate, it 

is heavy on its use of computational resources. In the context of real-time fire detection, this makes it 

less valuable and inapplicable for most cases. 
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(a) 

 

(b) 

 

(c)  

 

(d) 

Figure 2. (a) and (b) shows two consecutive frames. (c) is the result of frame differencing while (d) 

is the result of median filtering. 

It is however expected that foreground detection algorithms will return a lot of spurious non-

fire regions. Any red fire like objects such as a moving red vehicles, a person wearing a red t-shirt 

etc. are also likely to be detected. That is why, further feature extraction must be done to verify the 

detection. 
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2.2.2 Tertiary Feature Extraction 

Some features of fire such as contour, flickering, area of growth etc. and the spatiotemporal 

differences among them can be used to make the fire detection system more robust. Different models 

proposed so far uses different features of fire to enhance the accuracy of the models.  

 Wang et al carried out an experiment on different edge detection algorithms to find out which 

ones work the best. It was seen that Canny edge detector has many pseudo-edges and weren’t very 

effective in terms of being continuous [17]. There also exists the popular Sobel operator that has 

excellent accuracy but is expensive in performance. Edge detection algorithms are good for detecting 

the contour of fire. Since fire has a disorderly shape, the contour is an interesting feature to analyze. 

This forms the basis of many shape analysis algorithms as well [16].  

 Flickering detection is also something that frequently appears in academia. This includes 

features that arise from eddies effect, and also the inherent fluctuation of colors on the surface of fire. 

Suchet et al. in [21] has employed an algorithm that analyzes the vortex shedding frequency to 

determine fire. Khan et al. in [19] has also used a novel algorithm that detect the fluctuation of the 

blue component in fire pixels. While flickering is a good indicator of fire, it can also result in a lot of 

false positives in other luminous objects like the sun. 

 It is common knowledge that fire grows over time. The analysis of growth is also thus an 

important feature that is often extracted for detection. This is often used in tandem with shape 

analysis. In [5] for example, Foggia et al. calculates the perimeter-area ratio of potential fire blobs in 

order and measures the variation over time to detect the change in shape and area of fire. In [19] Khan 

et al. has also taken a simple frame differencing approach to detect regions that have static area over 

time and eliminating them to reduce false positives. This step on its own is not usually very reliable 

so other steps are always incorporated to make this more robust. 

Another important feature that has also been seen in research is the turbulent nature of fire. 

Optical flow analysis techniques are usually utilized to exploit this feature for successful detection of 

fire. In [22] for example the dynamic texture of fire is analyzed by forming a feature vector based on 

a customized point-wise optical mass transport algorithm. Although exceptionally accurate, the 

algorithm is too computationally heavy to be useful for real-time detection. There are more traditional 

Horn-Schunck [23] and Lucas-Kanade [21] tracking algorithms that are also very reliable, with 

Lucas-Kanade lending easier on computational resources. In the proposed model, an enhanced 

method making use of Lucas-Kanade Tracker is introduced. The next section will give an outline of 

how general optical flow analysis is applied to fire detection and overview the LKT algorithm. 
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2.2.3 Optical Flow Tracking 

Optical flow is the translation, reflection, rotation, scaling, shearing or other types of 

transformation of objects, edges or other features in a video from one frame to another which can also 

be relative to the movement of the observer. Translation, reflection and rotation are examples of 

Euclidean transformation whereas scaling and shearing are examples of affine transformations. There 

are also projective transformations but in the context of optical flow analysis for fire detection, we 

are mostly concerned with affine transformations. Figure 3 shows the transformation of simple 

features or objects (like the letter ‘L’) that can be tracked by optical flow estimation algorithms. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. (a) Shows the rotational transformation of the letter ‘L’. (b) Shows the reflective 

transformation of the letter ‘L’ in y axis (c) Shows the translational transformation of the letter ‘L’. 
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Here, 
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 represents the translation matrix which when applied over 𝑥, 𝑦 and 𝑡 yields the 

translated coordinates 𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦 and 𝑦 + 𝑑𝑡. This is a simple example of an affine 

transformation where length and angles are preserved. 

Typically, optical flow estimation is used to evaluate the transformations that an object in a 

scene has undergone. This can be used to calculate the motion or instantaneous velocity vectors of 
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the features detected in a scene. It is frequently used in robotics vision where a robot uses optical flow 

estimation techniques to detect objects in its visual periphery which are then subsequently tracked 

according to its needs [24]. Movement detection, visual odometry, structure estimation and robot 

navigation in general requires the motion estimation capabilities of optical flow algorithms. The 

important field of video compression has also directly emerged from the techniques developed from 

research of optical flow analysis [25]. There are multiple techniques to determine the optical flow, 

including naïve approaches like phase correlation and block-based methods. More advanced methods 

use differential analysis that calculates partial derivatives of the image signal. Methods in this family 

include Lucas-Kanade, Horn-Schunck, Buxton-Buxton, Black-Jepson etc. An indicator of a good 

flow estimation is its ability to both quantitatively and qualitatively evaluate the motion of objects in 

a real-time stream. The differential methods fall in this category. 

All these methods have some constraints in common that must be satisfied for successful 

evaluation. Optical flow estimation techniques try to calculate the motion between two consecutive 

frames at time 𝑡 and 𝑡 + 1. Differential techniques like Lucas-Kanade and Horn-Schunck require 

calculating partial derivatives of the two consecutive frames with respect to the spatiotemporal voxel 

position at (𝑥, 𝑦, 𝑡) where 𝑥 and 𝑦 are spatial coordinates and 𝑡 is the temporal coordinate in the image 

sequence. This consequently requires three fundamental assumptions or constraints that must hold at 

all times for a good estimation of optical flow. Firstly, the intensity must be equal in every voxel 

(𝑥, 𝑦, 𝑡), secondly, the motion must be small enough from 𝑡 to 𝑡 + 1, and lastly, the neighboring pixels 

of pixel (𝑥, 𝑦) at given time 𝑡 must have similar motion. The constraints are discussed in detail in the 

next sections. 
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Figure 4. Optical flow tracking of cars moving across the screen [27]. It is to be noted that the velocity 

vectors of each object are all uniformly pointing in the same direction as their movement. 

 

2.2.3.1 Constancy of brightness 

For a voxel 𝑉 at (𝑥, 𝑦, 𝑡), let us consider 𝐼(𝑉) to be the intensity information. Given that the voxel 𝑉 

has moved from position 𝑥 to 𝑥 + ∇𝑥, 𝑦 to 𝑦 + ∇𝑦, and 𝑡 to 𝑡 + ∇𝑡,  the constraint can then be 

effectively expressed as: 
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𝐼(𝑉)  =  𝐼(𝑥, 𝑦, 𝑡)  =  𝐼(𝑥 + ∇𝑥, 𝑦 + ∇𝑦, 𝑡 +  ∇𝑡) (9) 

where x, y and 𝑡 are spatiotemporal coordinates and I is the magnitude of intensity. 

The equation in (9) signifies that that the brightness of a voxel must be constant. Also, by 

solving the Taylor series approximation for (9), we can derive the Optical Flow equation [26]: 

I𝑥u + I𝑦v + I𝑡 = 0 (10) 

Here, 

𝐼𝑥  =
𝜕𝐼

𝑑𝑥
 

(11) 

𝐼𝑦  =
𝜕𝐼

𝑑𝑦
 

(12) 

𝑢 =
𝑑𝑥

𝑑𝑡
 

(13) 

𝑣 =
𝑑𝑦

𝑑𝑡
 

(14) 

 

𝐼𝑥  and 𝐼𝑦 are the partial derivatives of the image brightness along the spatial dimensions 𝑥 and 𝑦 

respectively whereas 𝐼𝑡 is the gradient along the temporal dimension. 𝑢 and 𝑣 on the other hand 

are the horizontal and vertical optical flows respectively. 

However it is not possible to solve the optical flow equation (10) because it has two unknown 

variables u and v. Differential optical flow techniques propose various methods to deal with this, 

Lucas-Kanade being one of them. The solution provided by Lucas-Kanade will be described in later 

in the paper. 

This constraint can largely be ignored by simply converting the frames in the video stream to 

grayscale using any well-known conversion algorithm [28] which normalizes the brightness 

information. There are more accurate non-linear gamma correcting algorithms but we want this phase 

to be as fast as possible without forgoing the ability to satisfy the constraint. The lightness method of 
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conversion provides a good tradeoff between accuracy and efficiency by allowing a fast conversion 

with a decrement of contrast that is suitable for our purposes. The formula for the lightness method 

is represented by equation (15). 

 

𝐺𝑟𝑎𝑦(𝑥, 𝑦) =
𝑚𝑎𝑥(𝑅(𝑥, 𝑦), 𝐺(𝑥, 𝑦), 𝐵(𝑥, 𝑦)) +  𝑚𝑖𝑛(𝑅(𝑥, 𝑦), 𝐺(𝑥, 𝑦), 𝐵(𝑥, 𝑦))

2
 

(15) 

where 𝑅(𝑥, 𝑦), 𝐺(𝑥, 𝑦), 𝐵(𝑥, 𝑦) are the color channels for the pixel (𝑥, 𝑦) respectively and 

𝐺𝑟𝑎𝑦(𝑥, 𝑦) is the corresponding grayscale value. 

 

 

 

(a) 

 

(b) 

Figure 5. Showing the original image in RGB color space and (b) showing the image in grayscale 

converted using the lightness method in (15) 

2.2.3.2 Similarity of nearby motion 

The constraint requires that the pixels surrounding a given pixel (x, y) must be coherent in 

terms of both direction and displacement over time. This implies that neighboring pixels of the tracked 

feature must have similar motion to the pixels of the tracked feature. This is because algorithms like 

the Lucas-Kanade method divides the original frame into small subsections and treats each of these 

subsections to have a constant velocity. For a 3x3 subsection, we have nine points in total which are 

assumed to have similar motion. This results in trying to solve nine equations with two unknowns but 
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a better approach is to use the weighted least-square fit of the optical flow equation (21). Lucas-

Kanade attempts to perform this by minimizing the equation (16). 

 

∑ [I𝑥u + I𝑦v + I𝑡]
2
𝑊2

𝑥 ∈ k 

 
(16) 

where k is a 3x3 subsection of a frame and W is a window function that accentuates the constraints at 

the centroid of each subsection k. 

The final solution of the minimization problem in (16) which can be solved to get the optical 

flow estimation: 

 

[
𝑢
𝑣
] = [

∑ 𝐼𝑥
2 𝑊2 ∑𝐼𝑦𝐼𝑥𝑊

2

∑𝐼𝑥𝐼𝑦 𝑊2 ∑𝐼𝑦
2 𝑊2 ] [

−∑ 𝐼𝑡𝐼𝑥 𝑊2

−∑𝐼𝑡𝐼𝑦 𝑊2] 
(17) 

where u and v are the optical flow vectors. 

A fast implementation of the generalized differential Lucas-Kanade algorithm at first 

calculates the gradient components 𝐼𝑥 and 𝐼𝑦 using a kernel and uses another difference filter to 

calculate 𝐼𝑡 between two consecutive frames. The components are then smoothed with a isotropic 5x5 

kernel and the linear equations in (28) are subsequently solved. This further requires the calculation 

of eigenvalues which are then compared against a noise threshold, which finally gives the values of 

𝑢 and 𝑣. The method is outlined visually in Fig 6. 
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Figure 6. A fast implementation of generalized Lucas-Kanade optical flow tracking algorithm 
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The flow of the algorithm is simple. The input is some features or points that we want to track 

and the output is [𝑢 𝑣] or the horizontal and vertical flow vectors. However, because the algorithm 

requires dividing the image into small subsections with each subsection having similar motion, this 

assumption might not always hold true. The constraint is a bit trickier to handle for videos of low 

resolution or where the object being tracked is very distant in the image signal. There are no 

generalized workarounds but typically image pyramids are used to deal with this problem:  

 

 

 

Figure 7. An image pyramid showing 5 levels of blurring and subsampling [29]. Depending on the 

requirements, we either go up or down the pyramid. When we go up, we effectively ‘zoom down’ 

the large motions into small motions and vice versa. 
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2.2.3.3 Small temporal transformations 

 

For a feature undergoing transformation from frame at time 𝑡 to 𝑡 +  ∇𝑡, either the value of  

∇𝑡 or the transformation of the features being tracked must be small enough. To put it in simple words, 

either the object being tracked must move really slowly over time, or the frame rate of the video 

stream has to be high enough for reliable tracking of the object. This ‘temporal persistence’ has been 

expressed in [21] as: 

 

𝜕𝐼

𝜕𝑥
|(

𝜕𝑥

𝜕𝑡
) + 

𝜕𝐼

𝜕𝑡
|
𝑥(𝑡)

= 0 
0
→ 𝐼𝑥𝑣 + 𝐼𝑡 = 0 

0
→  𝑣 =  −

𝐼𝑡
𝐼𝑥

 
(18) 

where, 𝐼𝑥𝑣 is the partial derivative of the image brightness and 𝐼𝑡 is the gradient along time 

 

This constraint is rather easy to satisfy by simply having a frame rate greater than 10 fps. To 

put that into perspective, most real-time video streams like CCTV cameras have a frame rate of at 

least 15 fps, so we do not have to consider anything additional. However, if the tracked object 

undergoes really large transformations, just having a good frame rate does not necessarily solve the 

problem. This is still not a significant hindrance as we can use image pyramids again to eliminate the 

small motions by going up the pyramid and ‘zooming’ out the large motions into small motions. By 

applying Lucas-Kanade on the zoomed version, we can get the optical flow vectors along with the 

scale [21]. Therefore having both a good frame rate and applying image pyramids alongside the 

Lucas-Kanade method serves to effectively satisfy the constraint. It is then necessarily true that using 

image pyramids with iteration in tandem with the Lucas-Kanade algorithm yields an overall better 

performance and that is what the proposed model uses as well. 
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CHAPTER 03 

Proposed Model 

 

3.1 Block diagram of the proposed model 

 
 The proposed model consists of several different phases analyzing the input stream based on 

their own expertise. The basic workflow of the model is outlined in Figure 8. 

 
Figure 8. Block diagram of the proposed model 
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3.2 Chromatic segmentation in YUV Color Space 

Before the process of chromatic segmentation is initiated, the first step that is to be carried out 

is the fragmentation of input video.  The process is relatively simple and can be carried out merely 

by using library tools. The extracted frames from the input video stream are then turned in for 

chromatic segmentation. 

At the very beginning of the chromatic segmentation phase, the appropriate color space 

conversion from RGB to YUV is to be made. The conversion algorithm has been previously expressed 

in (2). The output of the conversion is illustrated in figure 9. 

 

(a) 

 

(b) 

Figure 9. (a) Showing the original frame from a forest fire video in RGB color space. (b) Showing 

the resulting image after conversion to YUV color space. 

It is a commonly observed fact that non-chemical fire possesses a characteristic color that 

almost always exists in the red-yellow range. In most models of fire detection, chromatic 

segmentation exploiting this distinctive feature thus naturally acts as the primary trigger to sense the 

presence of fire. There are many different types of segmentation models, some of them well-devised 

using established techniques from the field of computer vision, others based on naïve heuristics and 

experimental inspection. Celik in [4] proposes a collection of six color rules that have been 

empirically verified. It is based on the observation that pixels in most flames exhibit a red component 

value that is greater than the green component value and the green component value being greater 

than the blue component value [4]. The hypothesis is represented by equation (19). 

𝑅(𝑥, 𝑦) ≥ 𝐺(𝑥, 𝑦) > 𝐵(𝑥, 𝑦) (19) 

 

Equivalent counterpart of these rules in the RGB plane are also found to exist in the YUV 
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plane. After using the well-known formula in [11] to convert the image from RGB to YUV, these 

equivalent rules can be used to classify a pixel as a fire pixel. For the generic pixel (𝑥, 𝑦) in a frame, 

the rules can be expressed as: 

 

𝑟1(𝑥, 𝑦) = {1 𝑖𝑓 𝑌(𝑥, 𝑦) > 𝑈(𝑥, 𝑦) 

      0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(20) 

𝑟2(𝑥, 𝑦) = {1 𝑖𝑓 𝑉(𝑥, 𝑦) > 𝑈(𝑥, 𝑦) 

     0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(21) 

where 𝑟(𝑥, 𝑦) indicates a pixel at the coordinates (𝑥, 𝑦) which acquires the value of 1 if it manifests 

fire-like color and 0 otherwise. 

Furthermore, it is also experimentally established that in the case of a fire pixel, its Y channel 

value is noticeably larger than the average Y channel value of the whole frame. These constraints can 

be further formulated as [5]:  

 

𝑟3(𝑥, 𝑦)  =  {1 𝑖𝑓  𝑌(𝑥, 𝑦)  >  𝑌𝑚𝑒𝑎𝑛 

     0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(22) 

𝑟4(𝑥, 𝑦)  =  {1 𝑖𝑓 𝑈(𝑥, 𝑦)  <  𝑈𝑚𝑒𝑎𝑛 

     0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(23) 

𝑟5(𝑥, 𝑦)  =  {1 𝑖𝑓 𝑉(𝑥, 𝑦)  >  𝑉𝑚𝑒𝑎𝑛 

     0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(24) 

 

Similarly, the average values of the Y, U and V channels in the YUV color space for an 𝑀x𝑁 

image can be delineated as follows:  

 

Ymean = (
1

M∗N
) .∑ ∑ Y(i, j)

N

j=0

M

i=0
  

(25) 
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Umean = (
1

M∗N
) .∑ ∑ U(i, j)

N

j=0

M

i=0
  

(26) 

Vmean  =  (
1

M∗N
) .∑ ∑ V(i, j)

N

j=0

M

i=0
  

(27) 

where 𝑌(𝑖, 𝑗), 𝑈(𝑖, 𝑗) and 𝑉(𝑖, 𝑗) are the Y, U and V channel values respectively of a pixel located in 

the position (i, j) of a frame. 

Moreover, it has also been gauged that there exists a notable difference between the U and V 

channel values for a fire pixel [4]. 

 

|𝑉(𝑥, 𝑦)–  𝑈(𝑥, 𝑦)|  ≥  𝑡𝑐 (28) 

However, in our experimental analysis we have observed that equation (28) does not perform 

equally as well when the flames in the scene are relatively brighter. We have achieved a slightly better 

performance in the aforementioned condition by simply splitting (28) into two equations (29) and 

(30) and making a minor modification to it to get rid of the threshold value: 

𝑟6(𝑥, 𝑦)  =  {1  𝑖𝑓 ( 0.025 ∗  𝑉(𝑥, 𝑦) –  0.025 ∗  𝑈(𝑥, 𝑦)  −  1)  > 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(29) 

𝑟7(𝑥, 𝑦)  = {1 𝑖𝑓 ( 0.025 ∗  𝑈(𝑥, 𝑦) –  0.025 ∗  𝑉(𝑥, 𝑦)  −  1)  > 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

(30) 

(a) (b) 

 

(c) 

Figure 10. (a) shows the original frame of a bright flame at a close proximity. (b) shows the image 

segmented using (28). (c) shows the image segmented using (29) and (30). It shows a slightly better 

inclusion of the region of fire compared to (b). 
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Another disadvantage noticed in many color filtering algorithms [2, 3] is that they perform a 

logical conjunction of all the formulae in their model to select the region of fire. This results in 

occasional failure when the fire in the frame is not at close proximity. It is also to be noted that as 

subsequent phases rely on the output of this phase, failure to extract a blob in this phase means the 

subsequent phases will not even get the opportunity to offer their own assessment, resulting in a 

reduction of overall accuracy. The proposed model attempts to overcome this limitation by 

incorporating a liberal score based system where each individual rule can submit their own vote. The 

final selection of pixels is based on the decision of the majority as expressed in equation (31): 

φ𝑀(𝑥, 𝑦) = ∑ r𝑘(𝑥, 𝑦)

7

𝑘=1

 

𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑥, 𝑦) = {1 𝑖𝑓 φ𝑀(𝑥, 𝑦) ≥ 𝑀 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

 

 

(31) 

Where 𝑀 denotes the number of rules that must provide an affirmative response. The value of 𝑀 

has been flexibly adjusted to 4. φ𝑀 (x, y) is the number of rules that has selected pixel (𝑥, 𝑦) as a 

fire pixel. 𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑥, 𝑦) is a candidate fire pixel (𝑥, 𝑦) which acquires the value of 1 in case of 

an actual fire pixel and 0 otherwise. 
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Although a smaller value for M in (31) does result in more false positives, we do not want to 

miss out any potential fire pixel by having a too restrictive set of rules. The smaller the value for 𝑀 

in (31), the greater the amount of false positives. The subsequent phases are designed to remediate 

this problem and eliminate any false positives arising in this phase. As is evident in Figure 11, the 

majority decision rule can extract fire regions more accurately. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 11. (a) shows a frame from a video with a fire generated in a bucket in indoor condition. (b) 

shows the binary mask of (a) without the majority voting rule specified in (31) applied. (c) shows the 

binary mask of (a) when majority voting rule is applied. 

A flow diagram illustrating the entire chromatic segmentation phase with our enhanced 

majority voting rule is outlined in Figure 12. 
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Figure 12. An overview of the chromatic segmentation part of the proposed model 
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3.2 Growth Analysis 

 

Another typical attribute inherent to flames is its complex boundaries and its expeditious 

fluctuation as a function of time. In this phase of our model, extracted blobs from two successive 

frames from the chromatic segmentation phase is chosen for analysis. A ratio of the perimeter and 

area of the blobs in both the frames is calculated as suggested in [5]: 

 

𝑅𝑡  =
𝑃𝑡

𝐴𝑡
 

(32) 

 

It is predicted that the ratio calculated in (32) for fire blobs should be markedly larger than the 

ratio calculated for ordinary rigid objects that somehow mistakenly slip through the chromatic 

segmentation stage. To further validate the region, the ratio for a blob extracted in frame 𝑡 is compared 

with the blob closest to the centroid of the previous blob in frame 𝑡 + 1 as specified in equation (33). 

 

𝑆𝑡𝑣  =
𝑟𝑡 – 𝑟𝑡+1

𝑟𝑡
 

(33) 

 

The growth analysis phase classifies the frame 𝑡 as a fire scene if  𝑆𝑡𝑣 in (33) is larger than a 

threshold 𝑡. This is the type of task that is usually suitable for machine learning algorithms but as this 

phase of the model is less of our focus, for our dataset 𝑡 has been simply adjusted to be 0.4. This 

analysis phase exists solely to remove spurious blobs of ordinary non-fire objects that evince the 

characteristic color of fire. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 13. (a) and (b) shows two sequential frames at times 𝑡 and 𝑡 + 1 from an outdoor video 

containing both fire region and non-fire region that shares the color of fire. (c) Shows the binary mask 

of the frame before growth analysis is undertaken (d) Shows the binary mask of the frame after the 

growth feature has been analyzed. It is apparent that nearly all of the non-growing regions in the scene 

has been successfully removed. 

A flow diagram illustrating the entire process of growth analysis of fire over a sequence of 

two frames is outlined in Figure 14. 
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Figure 14. A flow diagram that illustrates the growth analysis phase of the proposed model 
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3.3 Optical Flow Analysis 

Fire is a turbulent spatiotemporal phenomenon with its edges and inner texture exhibiting a 

disorderly displacement as a function of time. Fire plumes in general do not exhibit any specific 

pattern or shape and the velocity vectors of the feature points on the texture of fire plumes are very 

unstable and non-deterministic. Verily, this feature is so distinctive of fire that being able to detect it 

cuts down the amount of false positive by a great degree. In order to calculate the optical flow of fire, 

Suchet in [21] adopts the Lucas Kanade optical flow pyramid. We propose an enhanced model based 

on the optical flow analysis algorithm that is derived from [21] but has superior precision and is less 

expensive in terms of computing resources, making it better suited for early detection of fire. Figure 

15 shows the turbulence of fire over three consecutive frames.  

 

   

Figure 15. The highly chaotic behavior of flames with no definitive structure or shape 

 

Optical flow analysis techniques can help us understand the turbulent nature of fire better. 

Utilizing the Lucas Kanade optical flow tracking algorithm, the proposed model makes an attempt to 

take advantage of this behavioral trait of fire. As described previously in the literature review, the 

Lucas Kanade tracker requires a set of corners or features to be tracked and it returns an array of flow 

vectors for every corner being analyzed. The implication is that features or corners of interest must 

be detected at first in the surface of the potential fire regions. As a consequence, this makes the quality 

of tracking analysis have partial dependency on the feature or corner detection algorithm used. In our 

investigation we have observed that the importance of this detail is often left out in models 

incorporating optical flow analysis including [21].  
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3.3.1 Corner-detection 

There are many different corner or feature detection algorithms to choose from. The most 

common one is the Shi-Tomasi detector which is a slight modification of the original Harris corner 

detector. Harris corner selects a corner based on certain criteria. A function takes two eigenvalues for 

every pixel and manipulates them to calculate a score. If the score for a pixel exceeds a threshold, it 

is marked as a corner. Shi-Tomasi on the other hand does away with the function and uses the 

eigenvalues alone to calculate the score. It was experimentally verified that this criteria for scoring 

performs much better [30]. With just a minor modification, Shi-Tomasi can achieve much better 

performance than Harris.  

However, for real-time optical flow analysis, we find that even Shi-Tomasi corner detection 

is relatively expensive. Testing several detection algorithms, we settled with the Features from 

Accelerated Segment Test (FAST) algorithm as it provides the best performance without a forsaking 

accuracy [31]. Flow analysis is a computationally intensive operation, so we want this initial feature 

extraction step to be as fast as possible. To choose a point 𝑃 at pixel (𝑥, 𝑦) as a corner, the FAST 

detector at first considers a Bresenham circle of radius 3 around 𝑃. Then it looks at the intensity of 

the candidate point 𝑃 and compares it to its surrounding points in the Bresenham circle. The 

constraints for the classification can be written as [32]: 

 

∀𝑥 ∈  S, 𝐼𝑥  >  𝐼𝑝 + 𝛼 (34) 

∀𝑥 ∈  S, 𝐼𝑥 < 𝐼𝑝 − 𝛼 (35) 

where 𝑆 is the set of 𝑁 neighboring pixels in the Bresenham circle, 𝐼𝑥 the intensity of the candidate 

pixel 𝑥,  𝐼𝑝 the intensity of the candidate point and 𝛼, a threshold value for intensity 

 

If either of the two constraints specified in equations (34) and (35) can be satisfied, the 

candidate pixel 𝑃 is selected as a corner. If learning algorithms are not utilized, the value of N is 

usually concretized to be 3/4th of the total number of pixels in the Bresenham circle, which is 12. This 

can result in over-classification but this is good enough for our purposes as it provides a good tradeoff 

between performance and accuracy.   

 

 

 



35 | P a g e  

 

(a) 

 

(b) 

 

(c) 

Figure 16. The original fire frame (b) Showing features detected by Shi-Tomasi and (b) showing 

features detected by FAST detector. As can be seen, both the detectors have a very similar quality of 

detection. 

For the frame in Figure 16 (a), it is obvious that both detectors are good in terms of accuracy. 

Furthermore, FAST detector is also found to be better in performance when profiled as shown in 

Table 2. 

 

Table 2: The two algorithms Shi-Tomasi and FAST compared in performance timing for a single 

frame. Both tried to find up to 50 corners in the scene. 

Algorithm 

 

Average Performance Timing (seconds) 

Shi-Tomasi 

 

0.076 

FAST 0.031 

 

From Table 2, it is evident that FAST detector is more than two times faster than Shi-Tomasi 

Detector. From Figure 16, we have also seen that both are equally accurate in terms of detection. As 

a whole therefore this is the corner detector of our choice. We use the FAST detector algorithm to 

rapidly detect up to 50 corners in the regions containing fire-like colors. These corners are then 

provided to the Lucas-Kanade Tracker (LKT) algorithm which subsequently tracks their positions 

from frame 𝑡 to 𝑡 + 1. 
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3.3.2 Motion velocity vector calculation 

The LKT algorithm uses the steps described in Figure 6 to calculate the flow vectors [𝑢 𝑣] 

of the corners passed to it. These represent the velocity vector for all the corners in their respective 

frames which can be represented by equations (36) and (37). 

 

𝑝 =  [𝑝𝑥, 𝑝𝑦]𝑖, 𝑖 = 0, 1, 2, … , 𝑛 (36) 

𝑞 =  [𝑞𝑥, 𝑞𝑦]𝑖, 𝑖 = 0, 1, 2, … , 𝑛 
(37) 

 

where 𝑝 and 𝑞 denote the starting and ending points of a corner detected in frame 𝑡 to frame 𝑡 + 1, 

and 𝑛 indicating the number of corners. 

 

 

(a) 

 

(b) 

Figure 17. (a) Shows the original frame from a video with fire in outdoor condition. (b) Shows the 

velocity vectors calculated of corners detected in the flame region in (a). 

Using the vectors calculated in equations (36) and (37) we can have an approximate estimate 

of the complexity by measuring the average flow rate in the frame: 

𝐹 =
1

𝑛
 ∑√(𝑝𝑥𝑘 − 𝑞𝑥𝑘)2 + (𝑝𝑦𝑘 − 𝑞𝑦𝑘)2 

𝑛

𝑘=1

 

 

(38) 

where, 𝑛 is the number of corners and 𝑘 is an iterator over the number of corners 
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This complexity of flow rate portrays the shambolic, non-deterministic movement of local 

features on the surface of fire. As a result, compared to ordinary objects, this value for fire will 

typically be larger. This is also where the proposed technique starts to take a different direction from 

[21]. Suchet initially calculates the flow rate and takes note of it as a reference value. The flow rate 

is then calculated 𝑛 times for the next 𝑛 frames and the calculated values are compared to the initial 

reference value to have a measure of the variation of flow rate. Afterwards, the measured variation is 

compared with a threshold that was determined empirically. The exact value of 𝑛 is also not 

mentioned which is why it was hard to perfectly reproduce their expected result in our research. The 

equations of their model is described in (39). 

 

𝐹𝑣  =
1

𝑛
∑(

1

𝑚
 ∑(√(𝑝𝑦𝑖 − 𝑞𝑦𝑖)2  +  (𝑝𝑥𝑖 − 𝑞𝑥𝑖)2)  − 𝐹𝑎)

𝑚

𝑖=0

)

𝑛

𝑗=1
𝑗

 

 

(39) 

Where 𝑛 is the number of frames to calculate the flow rate in and 𝐹𝑎 is the initial flow rate 

 

Moreover, the threshold of 2 that 𝐹𝑣 in (39) was claimed to exceed in case of fire [21], also 

proved to be unsound for our dataset. When tested against a more versatile dataset, as presented in 

our experimental analysis, this approach results in a startling amount of false positives, confining the 

practicality of this method to a more limited set of environments. 

The proposed technique on the other hand directly uses the value of flow rate complexity to 

evaluate the possibility of fire. The value of 𝑛 has been concretized to 10 as this has yielded the best 

result for the overall analysis. The average flow rate is thus calculated ten times for ten consecutive 

frames. A counter is maintained that keeps track of the number of times a threshold α is exceeded. 

Every time there is a hit in the counter, it means the flow rate in the scene is unusually large. Finally, 

if the complexity happens to exceed the threshold at least half of the times in 𝑛 attempts, the 𝑛-frames 

sequence is designated as a fire scene. To keep the computational complexity at a minimum, the 

corner detection and LKT algorithms are not applied on the video stream at all times. Instead it only 

kicks in when a blob is detected from the shape analysis step. A flow diagram of the process is 

illustrated in Figure 6. 

However, the detector can still be misfired when one is trying to intentionally create a 

turbulent motion with an object. Turbulence can be better estimated by calculating the optical mass 
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transport of fire. The equation for this is formulated in (40). 

𝑇 = 𝑀𝑒𝑎𝑛 (
𝐼

2
 | 𝑝𝑂𝑀𝑇 ∗ 𝑞𝑂𝑀𝑇 |1

5) 
(40) 

Where 𝑇 is the turbulence of the velocity vectors, and 𝑝𝑂𝑀𝑇 and 𝑞𝑂𝑀𝑇 being the optical mass transport 

values for the vectors. 

This turbulence is then trained for by using a neural network. Over 1000 frame sequences are 

extracted and trained using scaled conjugate gradient back-propagation. It has been able to extract a 

pattern that yield very good results. Overall, not only does this reduce the amount of intensive 

computation, there is also a significant cutback on the amount of false positives as clear in the 

experimental result in Table 4. A comparative analysis of the chaotic velocity vectors for fire and 

uniform, smoother velocity vectors for non-fire scenes is illustrated in Figure 18 and Figure 19. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 18. (a) and (b) Shows the original frames of a fire ablaze up close. (c) and (d) Shows the 

respective velocity vectors of (a) and (b). As noticeable, the velocity vectors are quite shambolic and 

disperse for fire. 
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The chaotic motion vectors in the fire scenes in Figure 18 is also easily discernible from the 

relatively smooth motion vectors in the non-fire scene in Figure 19. 

 

(a) 

 

(b) 

Figure 19. (a) Shows the original frame of sunlight beaming through a forest consisting of trees and 

leaves exhibiting the distinctive color of fire. (b) Shows the respective motion vectors. 

The model as a whole provides satisfactory results when tested on a diverse dataset. Chapter 4 

will discuss in details the experimental analysis phase and how it excels over some of the competing 

models. 
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CHAPTER 04 

Experimental Analysis 

 

4.1 Experimental Setup 

To assess the efficacy of the proposed model, the system has been tested using a diverse 

dataset containing videos of a wide range of scenarios. The dataset has been predominantly populated 

using videos from the Mivia [5] dataset and some using Zenodo and YouTube. The dataset includes 

both videos containing fire of varying illumination and non-fire videos that contains ordinary objects 

exhibiting fire-like color. They are in all sorts of environments including indoor, outdoor and forest 

fires. All of the videos have been adjusted to 320x240 resolution. Some of the scenarios in the dataset 

are depicted in Table 3.  

 

4.1.1 Sample scenes from the dataset 

 

Table 3. Sample scene and description of videos in the dataset. 

Video Fire Outdoor Description Thumbnail 

Fire1 Yes Yes A fire generated in a bucket with a backdrop 

exhibiting fire-like color 

 

Fire2 Yes Yes A fire set in a very distant region, hard to notice 

 

Fire6 Yes Yes A fire generated in a red ground 

 

Fire8 Yes Yes A forest fire with black and white smoke in the 

background 
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Fire13 Yes No A fire generated in a bucket 

 

Fire33 Yes No A close shot of a fireplace 

 

Fire35 Yes No A fire set by a woman in a kitchen sink 

 

Fire15 No Yes Smoke plumes from a bucket with sunlight 

shimmering in the background 

 

Fire27 No Yes Distant smoke in a city with red buildings 

 

Fire32 No Yes A forest with trees and leaves having 

characteristic color of fire with sunlight 

shimmering in the background  

Fire24 No No Smoke in a room with light in the background  

 

Fire30 No No A man moving with a red ball with red lockers 

in background 
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4.1.2 Methodology of calculating accuracy 

The proposed model performs three steps to classify a scene as fire. First it does chromatic 

segmentation based on majority voting rules, then it eliminates the spurious regions via growth 

analysis and then finally passes the remainder blobs to the optical flow analysis phase for flow vector 

detection. The flow analysis technique takes 10 frames at a time to analyze the motion vectors and 

based on the complexity over these 10 frames, it evaluates the turbulence and classifies the 10-frame 

sequence as fire. If the scene has fire, it gives 1 as output and 0 otherwise. Thus to calculate the overall 

accuracy of the detection, the output of the last step is compared with the actual scenario in the video. 

If it matches, we consider it as a correct detection, if it doesn’t we consider it as an incorrect detection. 

If the phenomenon is one such where the ground truth is that fire exists and if fire is detected, then it 

is considered a true positive (TP), otherwise if it is labelled as non-fire, then it is deemed as a false 

negative (FN). Conversely, if the situation is one such where the ground truth is that fire doesn't exist 

and if fire is not detected, then it is considered a true negative (TP), otherwise if it is labelled as fire, 

then it is deemed as a false positive (FP). Table 4 shows the percentages of true positives and false 

positives by the models presented by [19] and [20] as well as the proposed model. The performance 

of the detector is further analyzed using the precision and recall values. Precision is a ration that 

represents the relevant information among the retrieved information. It is used in conjunction with 

recall that represents the amount of relevant information gathered from the total amount of relevant 

information. Precision and recall can be calculated using (40). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(40) 

where 𝑇𝑃 and 𝐹𝑃 stands for the true positive and the false positive values respectively. 

 

The two quantities are often used in conjunction to find out the F1 score to give a single 

quantification of the model. Equation 41 shows how the F1-score is calculated. 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(41) 
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4.2 Experimental Results 

The whole proposed model has been simulated and furthermore other models have been 

chosen for comparative analysis. The models were tested against the entire dataset and different 

criteria were recorded and tabulated in Table 4. 

Table 4: The accuracy of different videos in the dataset, containing both fire and non-fire videos. 

 Khan Suchet Proposed Model 

Video True 

Positive 

(%) 

False 

Positive 

(%) 

True 

Positive 

(%) 

False 

Positive 

(%) 

True 

Positive 

(%) 

False 

Positive 

(%) 

1 (Fire) 95.6 7.8 90.3 8.2 92.3 4.3 

2 (Fire) 76.5 0 81 0 77.1 0 

3 (Fire) 98.2 0 97.7 0 98.5 0 

4 (Fire) 100 0 100 0 100 0 

5 (Fire) 98.5 0 98.6 0 92.4 0 

6 (Fire) 93.5 15.6 92.5 12.4 94.9 21 

7 (Fire) 100 0 100 0 100 0 

8 (Fire) 100 0 100 0 100 0 

9 (Fire) 95.8 4.2 94 22.2 97.5 12 

10 (Fire) 100 0 100 0 100 0 

11 (Fire) 100 0 97 0 98.8 0 

12 (Fire) 99.2 0 99.5 0 98.1 0 

13 (Fire) 85 6.72 81 17 91 12.5 

14 (Fire) 96 5.1 95 2.5 96.5 3.2 

15 (Not) 90.3 3.2 91 5.6 91 2.3 

16 (Not) 100 0 100 0 100 0 

17 (Not) 95 5.6 92.2 2.9 92.4 2.2 

18 (Not) 95.5 12.6 94.5 10.1 95 7.5 

19 (Not) 100 0 100 0 100 0 

20 (Not) 72 0 91 5.6 91 0 
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Table 5: The accuracy of the proposed model compared to Khan [19] and Suchet [21]. 

 

As shown in the comparative analysis in Table 5, the proposed model has produced an overall 

accuracy of 95.62% in its ability to detect the true fire scenes correctly, which is better than the 

accuracy of both Khan and Suchet’s techniques. Additionally, it has also obtained a lower false 

positive rate of 3.25%. The precision and recall of the proposed model was also recorded and 

tabulated in Table 6. The precision and recall of the competing models are also tabulated in Table 7. 

Table 6: Precision and recall of the proposed model in identifying fire among the different videos in 

the dataset, containing both fire and non-fire videos. 

Video True 

Positive 

(%) 

False 

Positive 

(%) 

False 

Negative 

(%) 

True 

Negative 

(%) 

Precision 

 

Recall 

1 (Fire) 92.3 4.3 7.7 95.7 0.9554865 0.923 

2 (Fire) 77.1 0 22.9 100 1 0.771 

3 (Fire) 98.5 0 1.5 100 1 0.985 

4 (Fire) 100 0 0 100 1 1 

5 (Fire) 92.4 0 7.6 100 1 0.924 

6 (Fire) 94.9 21 5.1 79 0.8188093 0.949 

7 (Fire) 100 0 0 100 1 1 

8 (Fire) 100 0 0 100 1 1 

9 (Fire) 97.5 12 2.5 88 0.8904109 0.975 

10 (Fire) 100 0 0 100 1 1 

11 (Fire) 98.8 0 1.2 100 1 0.988 

12 (Fire) 98.1 0 1.9 100 1 0.981 

Model Average Fire Detection Accuracy Average False Fire Detection 

Accuracy 

Khan 94.56% 4.04% 

Suchet 94.77% 4.33% 

Proposed 95.62% 3.25% 
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13 (Fire) 91 12.5 9 87.5 0.8792270 0.91 

14 (Fire) 96.5 3.2 3.5 96.8 0.9679037 0.965 

15 (Not) 91 2.3 9 97.7 0.9753483 0.91 

16 (Not) 100 0 0 100 1 1 

17 (Not) 92.4 2.2 7.6 97.8 0.9767441 0.924 

18 (Not) 95 7.5 5 92.5 0.9268292 0.95 

19 (Not) 100 0 0 100 1 1 

20 (Not) 91 0 9 100 1 0.91 

Table 7: Precision and recall of the models proposed by Khan and Suchet for the given dataset. 

 Khan Suchet 

Video Precision  Recall Precision  Recall 

1 (Fire) 1 0.91 0.916751269 0.903 

2 (Fire) 0.924564797 0.956 1 0.81 

3 (Fire) 1 0.765 1 0.977 

4 (Fire) 1 0.982 1 1 

5 (Fire) 1 1 1 0.986 

6 (Fire) 1 0.985 0.881792183 0.925 

7 (Fire) 0.857011916 0.935 1 1 

8 (Fire) 1 1 1 1 

9 (Fire) 1 1 0.808950086 0.94 

10 (Fire) 0.958 0.958 1 1 

11 (Fire) 1 1 1 0.97 

12 (Fire) 1 1 1 0.995 

13 (Fire) 1 0.992 0.826530612 0.81 

14 (Fire) 0.926733537 0.85 0.974358974 0.95 

15 (Not) 0.949554896 0.96 0.942028986 0.91 

16 (Not) 0.965775401 0.903 1 1 

17 (Not) 1 1 0.969505783 0.922 

18 (Not) 0.944333996 0.95 0.903441683 0.945 

19 (Not) 0.883441258 0.955 1 1 

20 (Not) 1 1 0.942028986 0.91 
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Figure 20 shows the graphical representation of F1-scores of different models in comparison 

to the proposed model. 

 
Figure 20. Comparative bar histogram of F1score for fire samples 
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Figure 21. Comparative bar histogram of F1score for non-fire samples 

 

The ROC curves for the neural network trained is displayed in Figure 22. As it can be seen 

the ROC curves are pretty good for the dataset used, which means it has a high true positive rate and 

still maintains a low false positive rate. 
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Figure 22. The ROC curves for the neural network trained for detecting turbulence 

 

4.3 Analysis 

 
 The proposed model has successfully been able to detect fire in diverse environments and 

have given a satisfactory performance. It is apparent from the experimental results that the accuracy 

of the proposed model surpasses that of [19] and [21]. The primary reasons behind this being the fact 

that this model incorporates a majority voting system of color rules that most other models do not. It 

also uses an effective optical flow algorithm that decreases the number of false positives.  Contrary 

to [21], this model uses a faster algorithm for edge detection and thus the performance time for the 

proposed model is faster. 
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CHAPTER 05 

CONCLUSION 

 

5.1 Concluding Remarks 

To sum up, we have put forward a robust fire detection system in this paper that attempts to 

explore various properties of fire such as color, shape and shambolic motion. Two of the most 

rudimentary optical traits of fire were detected using a collective chromatic segmentation algorithm 

and contour analysis. At the tertiary step of the procedure, we have employed enhanced Lucas-Kanade 

optical flow algorithm to distinguish the turbulent movement of fire plumes. A miscellaneous dataset 

have been used to test the proposed model and the model has been further compared with some 

existing models and by doing so, the efficiency of the proposed model have been established. 

Although the model showed promising prospect, an average accuracy of 95.62% to be precise, it is 

not without limitations. Future work can incorporate fixing these limitations to make the system more 

robust. 

 

5.2 Limitations and Future Works 

Although our system shows an improved accuracy compared to existing models, there still 

remains room for improvement. The proposed model does not work well for chemical fire as they 

exhibit other colors besides the typical red-yellow range, but this should not pose much of a problem 

since in most cases hazardous fires are non-chemical fire. However, this is something that a proper 

fire detection system should incorporate. Another limitation of the system is that, it does not take into 

account that the incoming videos from the CCTV cameras could change in orientation. Meaning the 

model makes the assumption that the video is obtained from a static camera. This also should not 

pose a big threat since the surveillance cameras that our model is targeting does not really have 

unstable motion. An interesting approach to the one we have already adhered would be to incorporate 

a hybrid neural network and training it with a collection of flow rate complexities as a feature vector. 

This could potentially help reduce false positive rates by an even greater degree. Also, instead of just 

calculating the average flow vector, there could be other interesting patterns regarding the flow rate 

which could be exploited but we have not explored.  
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