
A Multi-Level Random Key Cryptosystem based on DNA
Encoding and State-Changing Mealy Machine

by

Towshik Anam Taj
21366026

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
BRAC University
February 2023

© 2023. BRAC University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Towshik Anam Taj
21366026

i

Approval

The thesis/project titled “A Multi-Level Random Key Cryptosystem based on DNA
Encoding and State-Changing Mealy Machine” submitted by

1. Towshik Anam Taj (21366026)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on February 28, 2023.

Examining Committee:

Supervisor:
(Member)

Muhammad Iqbal Hossain, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Amitabha Chakrabarty, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

ii

Examining Committee: (Cont.)

External:
(Member)

Mohammad Zahidur Rahman, PhD
Professor

Department of Computer Science and Engineering
Jahangirnagar University

Internal:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
BRAC University

Internal:
(Member)

Amitabha Chakrabarty, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

iii

Ethics Statement (Optional)

This is optional, if you don’t have an ethics statement then omit this page

iv

Abstract

Cryptography allows our data to be transmitted without giving sensitive information
away. This is the art of hiding the information from the malicious third party and
make the data accessible to only the sender and the receiver. Building a complex
cryptosystem has always been a challenge which can provide relentless security and
is infeasible to break. This paper discusses about a hybrid cryptosystem which
is inspired from the concepts of DNA cryptography and it is further strengthened
using multiple components. A random key is used which is generated using run
test of randomness, different DNA encoding combinations and a state changing
random state mealy machine is used for further strengthening the security. This
paper provides a detailed discussion regarding every components the authors used
to build the system and also discusses about the combined system that has been
built. This paper also discusses about the effectiveness and the performance of the
proposed system to give an overview of its security measures and also provides some
comparative analysis with existing works to back the claim on improved security
features.

Keywords: Cryptography, DNA Cryptography, Key Generation, Run Test of
Randomness, Encryption, Decryption, Mealy Machine, State Changing Mealy
Machine, DNA Encoding

v

Dedication (Optional)

A dedication is the expression of friendly connection or thanks by the author towards
another person. It can occupy one or multiple lines depending on its importance.
You can remove this page if you want.

vi

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to my thesis supervisor Dr. Muhammad Iqbal Hossain sir for his kind
support and advice in this work. He helped me whenever any issue was required
solving.
And finally to my parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

vii

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Dedication vi

Acknowledgment vii

Table of Contents viii

List of Figures x

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Objective . 2
1.4 Paper Outline . 3

2 Related Works 4

3 Methodology 6
3.1 Key Generation . 6
3.2 Mealy Machine . 9
3.3 In-Shuffle . 12
3.4 Encryption and Decryption . 12

4 Case Study 17
4.1 Encryption Process . 17

4.1.1 Key Generation . 17
4.1.2 Encryption . 18

4.2 Decryption Process . 20

viii

5 Result & Analysis 23
5.1 Experimental Setup . 23
5.2 Prevention Against Attacks . 23

5.2.1 Brute-Force Attack . 23
5.2.2 Known Plaintext Attack . 24
5.2.3 Ciphertext Only Attack . 24
5.2.4 Man in The Middle Attack . 26
5.2.5 Differential Cryptanalysis Attack 26

5.3 Encryption and Decryption Time . 27
5.4 Avalanche Effect . 27

5.4.1 Changing 1 Key Bit . 28
5.4.2 Modifying State Change Operation 28
5.4.3 Modifying Encoding Operation 29

6 Conclusion 31

Bibliography 33

ix

List of Figures

3.1 A Random State Mealy Machine . 9
3.2 Mealy Machine After Changing State 10

5.1 Frequency of DNA Bases in Selected Ciphertexts for Small Data . . . 24
5.2 Frequency of DNA Bases in Selected Ciphertexts for Medium Data . 25
5.3 Frequency of DNA Bases in Selected Ciphertexts for Big Data 25

x

List of Tables

3.1 Transition Tables . 10
3.2 Transition Tables After Changing Configuration 11
3.3 Encoding Sequences . 11

4.1 Transition Tables After Quantity . 19
4.2 Transition Tables After Quantity2 . 19
4.3 Transition Tables After Quantity . 21
4.4 Transition Tables After Quantity2 . 22

5.1 Time taken for Encryption and Decryption Part 1 26
5.2 Time taken for Encryption and Decryption Part 2 26
5.3 Changes in Decrypted Text for 1-bit Change in Key for Small Data . 27
5.4 Changes in Decrypted Text for 1-bit Change in Key for Medium Data 27
5.5 Changes in Decrypted Text for 1-bit Change in Key for Big Data . . 28
5.6 Changes in Decrypted Text for Modifying A State Change Operation

for Small Data . 28
5.7 Changes in Decrypted Text for Modifying A State Change Operation

for Medium Data . 29
5.8 Changes in Decrypted Text for Modifying A State Change Operation

for Big Data . 29
5.9 Changes in Decrypted Text for Modifying An Encoding Operation

for Small Data . 29
5.10 Changes in Decrypted Text for Modifying An Encoding Operation

for Medium Data . 30
5.11 Changes in Decrypted Text for Modifying An Encoding Operation

for Big Data . 30

xi

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

δ Delta

µ Expected No of Runs∏
Product

σ Standard Deviation∑
Summation

mod Modulus

xii

Chapter 1

Introduction

Cryptography is the art of hiding necessary information from the third party to
whom the information is not intended but make the information available for the
desired party at the same time. In the modern era of vast technological advancement
the cryptographic procedures are also required to be much more complex so that
the security of information is unharmed. DNA cryptography comes with the idea of
being computationally complex while ensuring secure transmission of data. While
various work on DNA cryptography has been done, the research on this field of
cryptography is also required to be evolving on a regular basis to stay in sync with the
modern technology and the code breakers. In this work the authors built a system
inspired from the concepts of DNA cryptography and combined them with other
concepts to build a secure and complex cryptosystem. The authors also provided
comparative analysis with existing works of DNA cryptography to give an overview
of the system’s security trait and also necessary analysis were given regarding the
system’s unique security traits to support the argument of the system being secure.

1.1 Background

Deoxyribonucleic Acid (DNA) is the building element of animal kingdom. DNA
stores all the basic information of all humankind and other animals, which passes
on from one generation to another. DNA is composed of nucleotides which contains
four types of bases, Adenine (A), Guanine (G), Cytosine (C) & Thymine (T). While
all these seems very biological, in the field of computer science DNA has its own
usefulness. Hameed [5] stated that 10 trillion DNA molecules can be fitted into a
space of a marble while only 1 gram of DNA can store 215 petabytes (215 million
gigabytes) of data. So it is possible to fit all the data centers into test-tubes if har-
nessing the computational power of DNA is possible while it would also save tons of
electricity as DNA operations are done using chemical reactions. To fit the idea of
using DNA in the field of computer science, the idea of DNA computing came and
from DNA computing came DNA cryptography. The field of DNA cryptography is
not new in the field of cryptographic research. The idea of solving the computation-
ally complex problems using DNA computing fueled many researchers into looking
into it. While this type of research requires expensive and appropriate laboratory
setup, not everyone has access to these kind of setup. That is why the modern
era researchers mostly adopted the principles of DNA operations, properties and
in some cases mixed them with already established algorithms to build strong and

1

hybrid cryptographic algorithms. They are also the building element of the resulting
ciphertext after encryption in DNA cryptography. The researchers also combined
several ideas and properties and in some cases various works of other researchers to
build hybrid DNA cryptosystem which are also proven as effective and can be used
for transmitting sensitive information through an open channel without having any
risk of exposure as those systems are found to be quite complex to break.

1.2 Problem Statement

The main goal of this work is to build an effective and complex cryptosystem which
will be resistant to various types of attacks and which will be able to transmit data
securely. The understanding of the researchers was multiple security features are
necessary to provide relentless security for the sensitive data so that data does not
go into the hand of the third party if some of the features get compromised. So the
authors decided to build an effective system whose security trait will not depend
on any single feature entirely but a collection of features will protect the data.
The idea of using several security features came so that even if one feature may
get compromised, the other features will still be able to provide necessary security
which is the key motivation for the authors.

1.3 Research Objective

The major contribution of authors in this work is the authors ensured security us-
ing multiple layers and each layer is not dependant on other and is able to provide
relentless security even if one layer gets compromised. The authors broke the whole
system into multiple components and decided to make each component secure au-
tonomously, so that each component of the system can protect sensitive data alone.
The whole system is an integrated version of these security components that protects
the data even if one component gets compromised. In order to build a system that
provides multiple layers of security, the authors took inspiration from various works,
came up with some original ideas and finally combined several features to build a
hybrid system that provides better security than existing works in the field of DNA
cryptography. In this work the authors introduced a new cryptographic algorithm
which is inspired by the DNA cryptography’s principle of being computationally
complex and infeasible to break. The authors used genetic algorithm to generate a
random cryptographic key which was evaluated using the run test of randomness to
ensure the key is generated randomly. The authors broke the plaintext into fixed
sized blocks, encrypted each block using different DNA encoding sequences which
turned the plaintext into DNA sequences, entered the DNA sequences through a
randomly generated state changing mealy machine to generate different DNA se-
quences. And finally changed the mealy machine’s configuration several times using
several mathematical operations to make it ready for encrypting the next block of
plaintext. The authors ensured the same set of operations and calculations for both
the sender and the receiver side for both encryption and decryption operation. The
authors mainly focused on increasing the security of the entire system, some com-
promise has been done on other attributes such as encryption and decryption time.
But the authors showed that even after compromising a bit on time, this system

2

provides better result in terms of encryption and decryption time than most systems
and this system’s unique security traits provide better security than similar existing
work. The authors discussed the entire process briefly and provided a case study for
better understanding of the proposed work. The authors also provided appropriate
analysis to evaluate the work which includes how the system can resist various types
of attacks and comparative analysis with existing works that ensures the authors
has been successful in building a more secure and effective cryptosystem.

1.4 Paper Outline

• Chapter 2: This chapter includes overview of the works that are similar and
relevant to proposed scheme. That includes the works that used the principles
of DNA cryptography, works that used similar principles for different format
of data and also the works that introduces hybrid methods based on DNA
cryptography and other schemes to build strong cryptosystems.

• Chapter 3: This chapter gives a detailed overview of the system that has
been built. This chapter discusses about the components that has been used
to build the system as a whole such as key generation procedure, measuring
randomness of the key, mealy machine and related operations, in-shuffle and
finally discusses about the system as whole, the encryption and the decryp-
tion procedure and also includes key generation, encryption and decryption
algorithm.

• Chapter 4: This chapter provides a detailed case study that demonstrates
how the system works using a simulation of both the encryption and the de-
cryption operation.

• Chapter 5: This chapter discusses about how the system is resistant of vari-
ous types of attacks and also it provides analysis regarding its security traits
based on three types of data which are small, medium and big. This chapter
also includes evaluation of the system’s security traits that also includes com-
parative analysis and evaluation of the security traits of the system’s unique
components.

• Chapter 6: This chapter draws conclusion of all the discussions regarding
this work and also discusses about a few areas on which some works can be
done in the future.

3

Chapter 2

Related Works

The basic idea of DNA Cryptography comes from DNA computing which is an active
field of research. Adleman [1] intended to use the properties of molecular biology to
solve one of the most known problems in the field of computer science and applied
mathematics, “The Hamiltonian Path”. After the success of Adleman, so many
researchers such as Lipton [2] intended to adopt his techniques to solve constraint
satisfaction and NP complete problems. Their research on DNA computation cre-
ated possibilities for expanding it further into the field of cryptography. The modern
era researchers adopted properties of DNA translation, DNA transcription, molec-
ular biology and other principles to create strong cryptographic algorithms which
are computationally complex. Pramanik et al. [6] proposed a simple idea where
they used “The Watson-Crick Complementary” to encrypt the data and transmit
the encrypted data sequentially through an open channel. Their method needs a
secure channel to transmit the key that is required for the encryption. Their method
focused mostly on biological properties and principles to adopt a novel cryptosystem
and they proposed that one of the practical implementation of their work can be
to use it for One Time Pads. Rafiul et al. [12] on the other hand introduced a
complex cryptosystem which used a dynamic sequence table to convert plaintext to
DNA bases where the table was continuously changed using the fibonacci or any
other mathematical series. After the initial conversion, dynamic DNA encoding is
used to break the received output into different chunks of DNA bases which is also
done using the same mathematical series which was chosen in the first step of the
encryption process. And finally they performed a sequential merge to unite all the
chunks which serves as the final ciphertext. Sayantani et al. [11] included machine
learning upon building a DNA cryptographic algorithm. They used Bi-directional
Associative Memory Neural Network (BAMNN) for key generation. They adopted
DNA transcription and translation techniques into algorithms to convert the plain-
text into encrypted DNA base and used the generated key to add an extra layer of
security. Kalsi et al. [9] used Genetic Algorithm to generate the key where they
used Run Test of Randomness to ensure the generated key’s randomness. They went
further and used Needleman- Wunsch (NW) Algorithm to find the most dissimilar
keys and used an XORed version of two of the most dissimilar keys. Like Sayantani
et al. [11] they also adopted DNA Transcription and Translation into algorithms
to convert the plaintext into DNA bases although their method stayed more true
to the biological operations that occur and the components that are used in those
operations. Sakr et al [21] used a novel approach for encryption. Their work used

4

genetic algorithm to generate a random security key where randomness was mea-
sured using run test of randomness [10]. After that they used amino acid encryption
technique which used amino acid based playfair cipher technique which generates a
protein cipher as cipertext. While all the mentioned work has been used for text
data encryption, there are methods that are introduced for encrypting images based
on the concepts of DNA cryptography. Chirakkarottu et al. [17] introduced a novel
technique that encrypts medical images using two-dimensional Zaslavski map and
DNA cryptography. Their system can work on any type of medical image. They
used two phases, permutation and diffusion while the diffusion phase used the prin-
ciples of DNA cryptography where they converted each pixel of the image into DNA
sequences using DNA digital encoding. This proves that the principles of DNA
cryptography can be used widely and they also can be used on different formats of
data. Hazra et al. [18] combined the concepts of One Time Pad and DNA cryp-
tography to create a two layered security system that uses both the aforementioned
concepts on textual data to encrypt and transfer the data securely. They used a
DNA permutation table to encrypt the data which they receive after completing the
first step of encryption using one time pad. This shows that multiple concepts can
be used sequentially to create a strong and hybrid cryptosystem that may use DNA
cryptography as one of its security feature. Hassan et al. [20] used DNA encod-
ing scheme along with Huffman-Coding that allows to further modify the already
encoded DNA sequence using the frequency of DNA bases so that the ciphertext
becomes more systematically secure with added resistance against pattern analysis
schemes. Paul et al. [8] proposed a DNA cryptography technique that uses symmet-
ric key change method. Their work used XOR operation with a one time pad DNA
sequence for encrypting and transmitting data. However their method is not found
to be appropriate for large messages and the length of the key their work used is
relatively small. Kaundal et al. [7] took inspiration from Fiestel-Cipher which they
combined with the idea of DNA Cryptography that they found from Pramanik et
al. [6]. The later mentioned work used a digital DNA encoding, Kaundal [7] used
DNA hybridization technique along with that DNA encoding and combined them
with Fiestel-Cipher to create their own hybrid algorithm. This algorithm is com-
putationally complex but takes hefty amount of time on encyption and decryption.
Pavithran et al. [19] presented a different kind of idea which involved introducing
a randomly generated finite state mealy machine in their system which helped in
building a very strong cryptographic algorithm. They did not focus on improving
the security much but focused on other attributes such as time and throughput
of their system. Their work used the same configuration of mealy machine over
and over again without any change in it, used a single encoding scheme that they
choose for a term or session. This work took inspiration from their work but the
authors modified their idea to improve the overall security of their system. This
work focused on changing the mealy machine’s configuration at a fixed amount of
interval, used different encoding scheme for different block of plaintext and used a
randomly measured and generated key for the encryption and decryption operation
which improves overall security of the system than the aforementioned work. The
detailed methodology of this work will be discussed in the following section.

5

Chapter 3

Methodology

In this work the authors followed a few steps to complete the entire encryption
and decryption process. Before demonstrating them the authors would like to dis-
cuss about several attributes that has been used in the whole process such as key
generation mechanism, mealy machine, in-shuffle and corresponding details.

3.1 Key Generation

The authors used a proven technique to generate an n-bit length binary key which
is used in the encryption process. That same key was shared by both the sender and
receiver for both encryption and decryption for a particular session. The authors
used Genetic Algorithm to generate the key as the usage of an evolutionary algorithm
generates an appropriate outcome based on specific constraints. The authors ensured
the key’s randomness using run test of randomness [10]. In this particular test
number of runs is calculated for a string. For example in a binary sequence there is
only two types of digits, 0 and 1. So in the following binary sequence ”00011000”
the number of runs will be the number of uninterrupted sequences, which is 3. Run
test of randomness is measured using the Z value where Z can be calculated using
Equation 3.1. In the equation R refers to number of runs in the sequence, µ refers
to the expected number of runs and σ refers to the standard deviation. The value
of µ can be calculated using Equation 3.2 and the value of sigma can be calculated
using Equation 3.3 where n1 refers to the total number of 0’s in the sequence and n2

refers to the total number of 1’s in the sequence. Having lesser number of runs or
having very much greater number of runs can both make a sequence non-random.
That is why hypothesis test is done to declare the sequence is random or not. In
this work the authors used two tailed 5% hypothesis test to ensure the randomness
of the key. The two tailed test refers to two open boundaries, while 5% test ensures
the value of the boundaries which are 1.96 and -1.96. Anything that is scored in
between is declared as random and anything outside this boundary is declared as
not random.

Z =
R− µ

σ
. (3.1)

µ =
2n1n2

n1 + n2

+ 1 (3.2)

6

σ =

√
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
(3.3)

This 5% test ensures a sequence to be found random at a confidence level of 95%.
Using a random key is necessary so that the hacker may not be able to guess it
easily. And further randomizing the key using an already established method gives
the authors huge advantage on building a secure cryptographic algorithm.
Genetic algorithm is used to find new generations of key sequences and run test of
randomness is used to calculate the fitness score of the key sequences. The process
starts with generating two random binary sequences of length N. After that the two
sequences are modified using random selection, multi-point crossover and bit-flip
mutation operation for a fixed number of generations. In this work the maximum
generation number is taken as 100000. Before the crossover operation two random
regions from both binary sequences of same length are selected and an arbitrary value
q is selected where q is any arbitrary value between 1 to 50. After that the selected
sequences are swapped which is referred as the crossover operation. This operation
is repeated q times in each generation. After the crossover operation, any arbitrary
value r is selected range same as q. Then single random element is selected from
both the binary sequences and that element is changed to 1 if the selected element
is 0 and vice versa. This operation is referred as the mutation operation and it is
repeated r times for both the binary sequences. Crossover and mutation operation
are done to bring variety in the binary sequences in each generation so that it is
further randomized in each generation. After the operations are done, the fitness
score are calculated for both the binary sequences using the run test of randomness.
If the score of both binary sequences are within the randomness threshold, in this
work which is in between -1.96 to 1.96, then any one of them is selected as the
final key randomly. And if only one of them is found to have scored in between
the threshold then that sequences is selected as the final key. This whole process is
repeated until the maximum number of generations is reached and the final key is
modified countless times in between the process randomizing the key further. After
the maximum number of generations is reached, the final key is returned and that
key is used between the sender and the receive for a particular session to securely
transmit the data. Algorithm 1 gives an overview of the whole operation of the key
generating process. The key can be shared using a secure channel and also using
the Diffie–Hellman Key Exchange Algorithm to securely transmit the key through
an open channel. The key ensures one layer of security in this work, there are other
layers of security that makes the algorithm very strong against various attacks. The
other components are discussed further in this paper.

7

Algorithm 1 Key Generation Algorithm

1. START

2. Key1← Random Binary String of Length N

3. Key2← Random Binary String of Length N

4. while generation < max generation

5. Q← Any Random Arbritary V alue

6. while iteration < Q

7. Key Chunk1, Key Chunk2← selection(Key1, Key2)

8. Key1, Key2← crossover(Key Chunk1, Key Chunk2) ∪
Unselected Key Region

9. Bit1, Bit2← selection(Key1, Key2)

10. Key1, Key2← mutation(Bit1, Bit2) ∪ Unselected Key Region

11. iteration← iteration+ 1

12. end while

13. score1, score2← fitness function(Key1, Key2)

14. if (−1.96 < score1 < 1.96) and (−1.96 < score < 1.96)

15. final key ← random selection(Key1, Key2)

16. else

17. final key ← Key That Matches Threshold

18. end if

19. generation← generation+ 1

20. end while

21. return final key

22. END

8

3.2 Mealy Machine

Mealy Machine (Hopcroft et al.) [4] is a finite state machine which is consist of b
no of states where b is any positive finite number. If a string of length n is given as
an input to a mealy machine then an output of length n will be provided where the
output is dependant on both the current state and current input. Mealy machine is
defined using six symbols, M = (Q,

∑
, O, δ, f, q0) where,

• Q = A non-empty finite set of states

•
∑

= A non-empty finite set of input symbols

• O = A finite set of output symbols

• δ = Input transition function, where δ: Q x
∑

→ Q

• f = Output transition function, where f : Q x
∑

→ O

• q0 = Initial state

The authors used a finite-state mealy machine for the implementation of the system.
Since the authors worked with DNA cryptography, that is why their mealy machine
is consist of four states to match with four DNA bases. Figure 3.1 refers to a random
state mealy machine which fulfills the requirements of the author’s. The mealy
machine has four states and has 16 transitions. The transitions are tracked using
two tables. Table 3.1 refers to the state table and output table for the particular
diagram.

Figure 3.1: A Random State Mealy Machine

There can be 4C2 = 6 state changes applicable for this mealy machine. State change
(0,1), (0,2), (0,3), (1,2), (1,3) and (2,3) can be initiated in this particular mealy

9

State A T C G
0 1 2 0 3
1 3 1 2 0
2 0 3 1 2
3 2 0 3 1

(a) State Table

State A T C G
0 T A G C
1 C T A G
2 G C T A
3 A G C T

(b) Output Table

Table 3.1: Transition Tables

Figure 3.2: Mealy Machine After Changing State

10

machine. If we apply state change (0,1) then configuration will be updated. Figure
3.2 shows the updated mealy machine.
Table 3.2 shows the updated transition tables where the elements marked as red
indicates that they are unchanged from the previous table despite the change in
configuration. These changes in the transition table is only caused by one state
change operation, it is safe to assume the configuration will be updated in a more
drastic manner if n number of state change operation is done. In this work this state
change concept in mealy machine strengthens the security further.

State A T C G
0 3 0 2 1
1 0 2 1 3
2 1 3 0 2
3 2 1 3 0

(a) State Table

State A T C G
0 C T A G
1 T A G C
2 G C T A
3 A G C T

(b) Output Table

Table 3.2: Transition Tables After Changing Configuration

Combination No 00 01 10 11
0 A T C G
1 A T G C
2 A C T G
3 A C G T
4 A G T C
5 A G C T
6 T A C G
7 T A G C
8 T C A G
9 T C G A
10 T G A C
11 T G C A
12 C A T G
13 C A G T
14 C T A G
15 C T G A
16 C G A T
17 C G T A
18 G A T C
19 G A C T
20 G T A C
21 G T C A
22 G C A T
23 G C T A

Table 3.3: Encoding Sequences

11

3.3 In-Shuffle

In-Shuffle [23] technique is a successful sequential shuffling technique where the
shuffling contents are always divided into two halves and later it is merged in a
sequential manner. It is widely used in casino’s and other gambling chains to keep
track of cards. In mathematics it has sheer significance as well. In this work the
possible state change sequences list is shuffled using In-Shuffle technique Q times
so that the synchronization between the sender and the receiver is intact during
the encryption and decryption process as both sender and receiver are required to
repeat same calculation with 100 percent accuracy. An example is provided using
this work’s state change sequences list for better understanding the concepts of In-
Shuffle technique,
State Change Sequences List = (0,1),(0,2),(0,3),(1,2),(1,3),(2,3)
Now the list will be divided into two halves,
State Change Sequences List = (0,1),(0,2),(0,3) || (1,2),(1,3),(2,3)
Then the first element of the second half will become the first element of the list
and the first element of first half will follow as the second element in the shuffled
list.
State Change Sequences List = [(1,2),(0,1)] (0,2),(0,3) || (1,3),(2,3) The
bracketed elements above indicates that they are shuffled now. Thye same process
will repeat on the not shuffled part as the first element of the second half will join
at the end of the shuffled sequence and the first element of the first half will join
later,
State Change Sequences List = [(1,2),(0,1),(1,3),(0,2)] (0,3) || (2,3)
State Change Sequences List = [(1,2),(0,1),(1,3),(0,2),(2,3),(0,3)]
So the final shuffled sequence stand as,
Shuffled State Change Sequences List = (1,2),(0,1),(1,3),(0,2),(2,3),(0,3)
This In-Shuffle operation is done Q times to make the sequences untrackable for the
hacker as it randomizes the sequence in each shuffle in an ordered manner.

3.4 Encryption and Decryption

Initially the sender and the receiver uses the same default configuration to config-
ure their mealy machine. Before the encryption process is started some necessary
pre-processing is done to make the plaintext free of unicode characters.After that
the plaintext is divided into several N sized blocks. When a block is selected, the
characters of that particular block is converted into their corresponding ASCII val-
ues. Sum of that block’s all ASCII values are also calculated and stored for further
use. Then each ASCII value is converted into its 8 bit binary value. Then the
aforementioned security key is XORed with the binary sequence, thus a new binary
sequence is generated.
Then the updated binary value sequence is encoded into DNA bases using the en-
coding sequence from Table 3.3 that matches the current encoding sequence number
which is calculated using the following formula.

(
∑

ASCII V alues of Current Block+
∑

ASCII V alues of All Previous Blocks)mod 24

. With each block, this encoding sequence number changes as it is dependant on
both the sum of ASCII values of the current block and the sum of ASCII values

12

of all the blocks that has been encrypted so far. From Table 3.3 we can see that
every two binary digit is converted into oe DNA base. So each character is encoded
into four DNA bases. Then that DNA sequence is inserted into the mealy machine
and a new DNA sequence has been generated. After that the encrypted ciphertext
is obtained for that particular block. Then before encrypting the next block, the
current ciphertext is stored and the configuration of the mealy machine is updated.
Firstly, sum of a mathematical series is calculated for m terms where m is the value
of the summation of ASCII values for the current block. The sum of the series up
to m gives a very big value, that is why it is decreased by doing a mod operation,
which gives an arbitrary value q1. In this work fibonacci series is used and 500 is
used as the mod value. As it is discussed before, there can be a combination of six
state change operations for this work. The six state change operations are inserted
into a list and the list is shuffled using In-Shuffle technique q1 times. After that a
loop is taken with the condition of it running q1 times. In each iteration the loop
shuffles the state change combinations list once, picks a state change by performing
a mod using value 6, and lastly initiates the obtained state change. The loop runs
q1 times hence the the configuration of mealy machine is updated q1 times. After
the loop is ended, a newly configured mealy machine is found. Then the the state
change operation is done for another q2 times where q2 is calculated as Total Sum
of all blocks encrypted so far mod Sum of current block. If q2 is found to be zero
then an arbitrary value z is added with q2. This process is done to prevent hacker
from extracting the plaintext accurately if the hacker guesses the sum of the ASCII
values of a particular block. The hacker would still be required to guess the sum of
ASCII values of all the blocks encrypted so far. Algorithm 3 shows the process
of changing mealy machine configuration. After this process is done, another newly
configured mealy machine is found and it is then used for encrypting the next block
of text. And the whole encryption process runs until the plaintext is ended. In
this encryption process, the value of q1 and q2 will not be same every time which
makes it difficult for the hackers to keep track of how many state changes are getting
initiated and in which sequence they are initiating.
The hacker needs to get it correct for straight q1 and q2 times separately and any
mismatch in between will result in complete failure. Furthermore the hacker needs
to guess the exact sum of ASCII values of the current block and also the sum of
ASCII values of all the blocks that are encrypted so far to figure out the mealy
machine’s configuration that will be used to encrypt the next block of text. They
also need to guess the correct encoding sequence that is used to convert the DNA
bases into binary value and vice versa. Each block uses different encoding sequence
so determining the current encoding sequence is necessary, which is also dependant
on the sum of ASCII values of the current block and the sum of ASCII values of all
the blocks that are encrypted so far. The hackers are also required to know the key
which adds another extra layer of security. Algorithm 2 shows the whole process
that has been followed for the encryption.
As for the decryption, the whole encryption process is reversed. The receiver starts
with the same mealy machine configuration as the sender, so it doesn’t bother the
receiver to calculate and configure the same way that the sender’s side does. The
block size for the receiver is 4N as it was discussed before that each character is
converted into four DNA bases. With each block of ciphertext the receiver success-
fully decrypts, they will be able to find the sum of ASCII values for that particular

13

Algorithm 2 Encryption Algorithm

1. START

2. while plaintext not ended

3. if N < length(remaining plaintext)

4. block ← plaintext of length N

5. else

6. block ← plaintext of remaining length

7. end if

8. block ascii← convert ascii(block)

9. SUM ←
∑

All ASCII V alues of block

10. TOTAL SUM ←
∑

All Previous SUM

11. block binary ← convert binary(block ascii)

12. key ← Binary Key of block binary Length

13. block xor ← XOR(key, block binary)

14. block dna1← dna encoding(Current Encoding Sequence, block xor)

15. block dna2← mealy machine sequence(block dna1)

16. Final Cipher Text← Final Cipher Text+ block dna2

17. mealy machine← state change algorithm(SUM)

18. quantity ← TOTAL SUM mod SUM

19. if quantity == 0

20. quantity ← quantity + Z

21. end if

22. mealy machine← state change algorithm(quantity)

23. Current Encoding Sequence← (SUM + TOTAL SUM) mod 24

24. end while

25. return Final Cipher Text

26. END

14

block and will be able to configure the mealy machine accordingly to decrypt the
next block of text. Thus the decryption operation is the complete opposite to the
encryption operation and involves the same set of operations which was done in
the encryption. Algorithm 4 shows the exact process that happens during the
decryption.

Algorithm 3 State Change Algorithm

1. START

2. Series sum←
∑ASCII SUM

1 Fibonacci Series Sequence

3. Quantity ← Series sum mod X

4. while iteration < Quantity

5. in shuffle(State Change Combination List)

6. iteration← iteration+ 1

7. end while

8. while iteration2 < Quantity

9. in shuffle(State Change Combination List)

10. Current State Change Sequence← ASCII SUM mod 6

11. state change(Mealy Machine, Current State Change Sequence)

12. iteration2← iteration2 + 1

13. end while

14. END

15

Algorithm 4 Decryption Algorithm

1. START

2. while ciphertext not ended

3. if 4N < length(remaining ciphertext)

4. block ← ciphertext of length 4N

5. else

6. block ← ciphertext of remaining length

7. end if

8. block dna← mealy machine sequence(block)

9. block binary ← dna encoding(Current Encoding Sequence, block dna)

10. key ← Binary Key of block binary Length

11. block xor ← XOR(key, block binary)

12. block ascii← convert ascii(block xor)

13. SUM ←
∑

All ASCII V alues of block

14. TOTAL SUM ←
∑

All Previous SUM

15. block plaintext← reverse ascii(block ascii)

16. Full P lain Text← Full P lain Text+ block plaintext

17. Current Encoding Sequence← (SUM + TOTAL SUM) mod 24

18. mealy machine← state change algorithm(SUM)

19. quantity ← TOTAL SUM mod SUM

20. if quantity == 0

21. quantity ← quantity + Z

22. end if

23. mealy machine← state change algorithm(quantity)

24. end while

25. return Full P lain Text

26. END

16

Chapter 4

Case Study

Here an example is provided to track the step by step process in both encryption
and decryption. The case study provides a detailed simulation regarding what is
going on in the background in both encryption and decryption process.

4.1 Encryption Process

The authors selected ”Hello World” as the plaintext that is going into the encryption
process. The entire process will start after giving the input plaintext and will end
after getting the combined ciphertext. The first part of the process would be key
generation.

4.1.1 Key Generation

Before going into that the key would be generated using the Key Generation Al-
gorithm as mentioned in Algorithm 3. Since the length of the input string is 11,
for this particular simulation the authors determines the block size N would be 6
for the input characters for ease of understanding the whole process. Hence the
size of the key would be 8N, as each character is converted into their 8 bit binary
counterpart. That is why in this case a key is generated of length 48. Two random
binary sequence is generated at first, if we call them b1 and b2 then let,

b1 = 111001011010100011100111010010001110010010110100
b2 = 010101100011101011111010111010000010011010001101

After that genetic algorithm is deployed and the best key is determined using the
fitness score which uses run test of randomness for generating scores of the two
binary sequences. The process is continued for 100000 generation as mentioned in
Algorithm 3 and the key is randomized countless times in the process which is not
feasible to mention. After the maximum number of generation is reached, the final
key is found which is mentioned below,

Final Key = 000101101000001110111000001010000001000100100000

The fitness score of the key is found to -0.213 which well in between the range -1.96
to 1.96 and can be declared as random. The key can be shared between the sender
and the receiver using either a secure channel or using Diffie-Hellman Key Exchange
algorithm to share it through an open channel.

17

4.1.2 Encryption

Now that the key is found the encryption process can begin. The input text is
inserted.

Input Text = Hello World

The configuration of the mealy machine is initially same for both sender and the
receiver. The authors let the initial configuration be the configuration mentioned in
Table 3.1. Firstly, the first block of plaintext is taken for the encryption process. In
this case which is,

Plain Text Block1 = Hello

After that the characters in current block is converted into their corresponding
ASCII values,

ASCII Block1 = 72 101 108 108 111 95

After that the sum of the ASCII values are calculated for further usage and is also
added to the total sum of all block’s ASCII values so for,

Sum Block1 = 595
Total Sum = 595

After that the ASCII values are converted into corresponding 8 bit binary values
and later XOR operation is done with the Final Key,

Binary Block1 = 010010000110010101101100011011000110111101011111
XORed Binary Block1 = 010111101110011011010100010001000111111001111111

After that the binary values are converted to DNA bases using an encoding sequence
from Table 3.3. In the first block the combination number 0 is used,

Current Encoding Combination Number = 0
Current Encoding Combination = [’A’, ’T’, ’C’, ’G’]
Encoded DNA Block1 = TTGCGCTCGTTATATATGGCTGGG

Then the initial DNA sequence is inserted to mealy machine to find the encrypted
text for block1 using the transition tables 3.1 which is also added with the total
ciphertext which will be the ciphertext of the entire plaintext,

Encrypted Block1 = ACTAATTAACGTTCGTTGCCGCTG
Total Ciphertext = ACTAATTAACGTTCGTTGCCGCTG

After the encryption process is done for block1, the process of updating the con-
figuration is started to the mealy machine and other attributes ready for the next
phase of encryption. Firstly the current combination number is updated using the
mentioned formula in Algorithm 2,

Current Combination Number = Sum mod 24 = 595 mod 24 = 19

Then the value of the Sum is used to modify the mealy machine’s configuration
using Algorithm 3. Firstly the Sum is used to calculate the sum of fibonacci series
up to Sum term, then the operation fibonacci series sum mod an arbitrary value X,
in this case 500 is used as the value X to find the Quantity,

Quantity = Fibonacci Series Sum mod 500 = 298

Then the In Shuffle operation is done Quantity times on the State Change Sequence

18

Combination List to modify the list,

Initial List = [(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)]
Modified List = [(1, 2), (0, 1), (1, 3), (0, 2), (2, 3), (0, 3)]]

After that a loop is taken to run for Quantity times and in each iteration the in
shuffle operation is done on that list once and a state change sequence is selected
and then initiated,

Again Modified List = [(0, 2), (1, 2), (2, 3), (0, 1), (0, 3), (1, 3)]
Stage Change Sequence Number = Sum mod 6 = 595 mod 6 = 1

The element in index 1 of the modified state change sequence list is (1, 2), hence
that state change operation is initiated. These operations are done Quantity times,
the final configuration of the mealy machine is given in Table 4.1,

State A T C G
0 1 3 2 0
1 2 0 1 3
2 3 2 0 1
3 0 1 3 2

(a) State Table

State A T C G
0 G C T A
1 T A G C
2 C T A G
3 A G C T

(b) Output Table

Table 4.1: Transition Tables After Quantity

After that Quantity2 is calculated and the whole stage changing process is done
again for Quantity2 times,

Quantity2 = Total Sum mod Sum = 0 mod 595 = 0 + 10 = 10

As Quantity2 is found to be zero, an arbitrary value Z is added with it. In this case
the value of Z is 10. The modified transition tables after the same operation is done
Quantity2 times are given in Table 4.2,

State A T C G
0 3 0 1 2
1 2 3 0 1
2 0 1 2 3
3 1 2 3 0

(a) State Table

State A T C G
0 C T A G
1 G C T A
2 T A G C
3 A G C T

(b) Output Table

Table 4.2: Transition Tables After Quantity2

All the configuration are now set for encrypting the next block of plaintext. The
process is mentioned descriptively below,

Plain Text Block2 = World
ASCII Block2 = 87 111 114 108 100
Binary Block2 = 0101011101101111011100100110110001100100

Here the length of the block is less than N which is 5. That is why the key length

19

is also modified to adjust the length of the length of Block2 and is taken from the
first 8N bits, in this case this is 40,

Key = 0001011010000011101110000010100000010001
XORed Binary Block2 = 0100000111101100110010100100010001110101
Current Encoding Combination Number = 19
Current Encoding Combination = [’G’, ’A’, ’C’, ’T’]
Encoded DNA Block2 = AGGATCTGTGCCAGAGATAA
Encrypted Block2 = CTGTTACTTGGGTGTGTTCA
Total Ciphertext = ACTAATTAACGTTCGTTGCCGCTGCTGTTACTTGG

GTGTGTTCA

After that the configurations are modified to make it ready for encrypting the next
block of plaintext, since the plaintext is finished so the authors are not inserting the
details further. The final ciphertext that is found is,

Final Ciphertext = ACTAATTAACGTTCGTTGCCGCTGCTGTTACTTGG
GTGTGTTCA

This encrypted text can be transmitted through an open channel as hackers are
unable to retrieve the information from the encrypted text. The decryption process
will take this ciphertext as input and will return the plaintext that is inserted.

4.2 Decryption Process

The encrypted text that is found at the end of the encryption process works as the
input in the decryption process. Algorithm 4 is used for decryption process. All
the initial configurations for the receiver has to be exactly the same as the sender’s
initial configuration. The input text is inserted,

Input Text = ACTAATTAACGTTCGTTGCCGCTGCTGTTACTTGGGT
GTGTTCA

As mentioned before, the configuration of the mealy machine is initially same for
both the sender and the receiver. The initial configuration is as mentioned in Table
3.1. Firstly, the first block of ciphertext is taken for the decryption process. In this
case which is,

Cipher Text Block1 = ACTAATTAACGTTCGTTGCCGCTG

Then the DNA sequence is inserted into the mealy machine and a new sequence is
generated using the transition tables 3.1,

New DNA Block1 = TTGCGCTCGTTATATATGGCTGGG

After that the DNA bases are converted into binary values using a decoding se-
quence from Table 3.3. The encoding operation is reversed here as the DNA bases
are substituted using their binary value as per the decoding combination. As men-
tioned before, in the first block the combination number 0 is used,

Current Decoding Combination Number = 0
Current Decoding Combination = [’A’, ’T’, ’C’, ’G’]
Decoded Binary Block1 = 010111101110011011010100010001000111111001111111

After that the XOR operation is done using the Final Key on the retrieved Binary
sequence,

20

XORed Binary Block1 = 010010000110010101101100011011000110111101011111

After that the binary sequence is divided into 8-bit binary blocks and then are con-
verted into their corresponding ASCII values,

ASCII Block1 = 72 101 108 108 111 95
After that the sum of the ASCII values are calculated for further usage and is also
added to the total sum of all block’s ASCII values so for. And later the ASCII
values are converted into their corresponding characters,

Sum Block1 = 595
Total Sum = 595
Plaintext Block1 = Hello

After the decryption process is done for block1, the process of updating the config-
uration is started for the mealy machine and other attributes to make it ready for
the next phase of encryption. Firstly the current combination number is updated
using the mentioned formula in Algorithm 4,

Current Combination Number = Sum mod 24 = 595 mod 24 = 19

Then the value of the Sum is used to modify the mealy machine’s configuration
using Algorithm 3. The same process is used as mentioned in Encryption using the
same arbitrary value 500,

Quantity = Fibonacci Series Sum mod 500 = 298

Then the In Shuffle operation is done Quantity times on the State Change Sequence
Combination List to modify the list the same way,

Initial List = [(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)]
Modified List = [(1, 2), (0, 1), (1, 3), (0, 2), (2, 3), (0, 3)]

After that a loop is taken to run for Quantity times and in each iteration the in
shuffle operation is done on that list once and a state change sequence is selected
and then initiated,

Again Modified List = [(0, 2), (1, 2), (2, 3), (0, 1), (0, 3), (1, 3)]
Stage Change Sequence Number = Sum mod 6 = 595 mod 6 = 1

The element in index 1 of the modified state change sequence list is (0, 2), hence
that state change operation is initiated. These operations are done Quantity times,
the final configuration of the mealy machine is given in Table 4.3 which is exactly
the same as the encryption process after encryption of block1 was done,

State A T C G
0 1 3 2 0
1 2 0 1 3
2 3 2 0 1
3 0 1 3 2

(a) State Table

State A T C G
0 G C T A
1 T A G C
2 C T A G
3 A G C T

(b) Output Table

Table 4.3: Transition Tables After Quantity

After that Quantity2 is calculated and the whole state changing process is done

21

again for Quantity2 times. The same arbitrary value 10 is used upon Quantity2
being found as zero,

Quantity2 = Total Sum mod Sum = 0 mod 595 = 0 + 10 = 10

The modified transition tables after the same operation is done Quantity2 times are
given in Table 4.4 which also matches the Encryption operation’s tables,

State A T C G
0 3 0 1 2
1 2 3 0 1
2 0 1 2 3
3 1 2 3 0

(a) State Table

State A T C G
0 C T A G
1 G C T A
2 T A G C
3 A G C T

(b) Output Table

Table 4.4: Transition Tables After Quantity2

All the configuration are now set for decrypting the next block of ciphertext. The
process is mentioned descriptively below,

Cipher Text Block2 = CTGTTACTTGGGTGTGTTCA
Decoded DNA Block2 = AGGATCTGTGCCAGAGATAA
Current Encoding Combination Number = 19
Current Encoding Combination = [’G’, ’A’, ’C’, ’T’]
Binary Block2 = 0100000111101100110010100100010001110101

Here the length of the block is less than N which is 5. That is why the key length
is also modified same as encryption,

Key = 0001011010000011101110000010100000010001
XORed Binary Block2 = 0101011101101111011100100110110001100100
ASCII Block2 = 87 111 114 108 100
Decrypted Block2 = World
Total Ciphertext = Hello World

After that the configurations are modified to make it ready for decrypting the next
block of plaintext, since the plaintext is finished so the authors are not inserting the
details further. The final ciphertext that is found is,

Final Ciphertext = Hello World

The retrieved result ensures that this work is capable of transmitting data securely
through an open channel.

22

Chapter 5

Result & Analysis

5.1 Experimental Setup

The proposed system is implemented using Python3 on Google Colab environment.
The data that is used to generate test results is taken from the 20 Newsgroup Dataset
[22], which is a very much widely used dataset across several research works. As this
work focused on text data only, that is why that dataset is considered as suitable
for generating test results

5.2 Prevention Against Attacks

The authors worked on increasing security of the system that was built. The authors
also focused building a system that is going to resist various types of attack. How
the system resists various types of attack and some overview of the system’s security
is discussed ahead.

5.2.1 Brute-Force Attack

Brute Force attack (Salamatian et al.) [15] refers to trying to break the cipher
by guessing all the secret information. In this work this is infeasible because the
attacker will be needing to guess 2n combinations to find the key. The attacker also
have to guess the encoding sequence for each block which can be any among the 24
encoding sequences shown in Table 3.3. Also the attacker will have to guess the exact
flow of the state change operations that happens in two sequences after encrypting
each block and each sequence involves multiple state change operations. Without
guessing the exact configuration of the mealy machine the hacker will not be able to
decrypt the next block and so on. The exact amount of state change operation in a
sequence depends on the sum of the ASCII values of a block and also the following
sequence depends on all the block’s combined sum of ASCII values. The probability
for guessing the sum of a block is

∏n
i=1 1/128, where n is the size of the block. The

probability for guessing the sum of all the block’s ASCII values is
∏Z

i=1

∏n
i=1 1/128,

here Z is the total number of blocks up to this point, which is infeasible, not to
mention the attacker also have to have the correct configuration of the mealy machine
even if they guess a block’s information correctly in the middle. So the probability
of randomly guessing a block of plaintext stands as 1

2n
1
24

(
∏Z

i=1

∏n
i=1 1/128), which

is much higher than Pavithran et al. [19] and is not feasible. This proves that

23

(a) Cipher Text Breakdown for 100 A (b) Cipher Text Breakdown for 100 C

(c) Cipher Text Breakdown for 100 G (d) Cipher Text Breakdown for 100 T

Figure 5.1: Frequency of DNA Bases in Selected Ciphertexts for Small Data

proposed scheme’s security trait is not only dependant on security key, but on other
features as well.

5.2.2 Known Plaintext Attack

Known plaintext attack (Peng et al.) [3] is about finding a relation or pattern
between the ciphertext and the plaintext. In this work this is not possible. The
authors tested the system for three types of data. First one is for small data which
includes 100 A’s, 100 T’s, 100 C’s and 100 G’s, second on is medium data, which
includes 10000 DNA bases of each kind and last one is for big data which includes
100000 DNA bases for each kind. All types of data was encrypted five times each
and the generated results were differential on quantities of DNA bases present in
the ciphertext. Figure 5.1, 5.2 and 5.3 shows that the DNA base frequency is not
identical at all, each time it provides different frequencies. And it also shows that
the DNA bases are mostly evenly distributed hence there is no question of any bias.
Every types of data shows the same consistency on distribution which proves the
effectiveness of proposed system. So finding any type of pattern or relation will be
fruitless in this system.

5.2.3 Ciphertext Only Attack

Ciphetext only attack (Chang et al.) [16] refers to trying to guess some information
such as secret key with having some sort of idea about plaintext. In this work this
would be futile because in Figure 5.1, 5.2 and 5.3 the authors established that sta-
tistical analysis is fruitless in this system, also the mealy machine’s configuration is
continuously changing, hence making it infeasible for considering any sort of analysis
even if some part of plaintext is guessed correctly.

24

(a) Cipher Text Breakdown for 10000 A (b) Cipher Text Breakdown for 10000 C

(c) Cipher Text Breakdown for 10000 G (d) Cipher Text Breakdown for 10000 T

Figure 5.2: Frequency of DNA Bases in Selected Ciphertexts for Medium Data

(a) Cipher Text Breakdown for 100000A (b) Cipher Text Breakdown for 100000C

(c) Cipher Text Breakdown for 100000G (d) Cipher Text Breakdown for 100000T

Figure 5.3: Frequency of DNA Bases in Selected Ciphertexts for Big Data

25

Plaintext
Length

Kaundal et al. [7] Pramanik et al [6] Paul et al.[8]
Encryption
Time (ms)

Decryption
Time (ms)

Encryption
Time (ms)

Decryption
Time (ms)

Encryption
Time (ms)

Decryption
Time (ms)

10 15 37 20 49 18 42
20 27 44 35 68 28 57
40 38 110 49 159 42 123
80 70 270 96 414 84 310
100 96 365 105 530 112 415
500 420 1660 466 1768 486 1896

Table 5.1: Time taken for Encryption and Decryption Part 1

Plaintext
Length

Pavithran et al. [19] Proposed Work
Encryption
Time (ms)

Decryption
Time (ms)

Encryption
Time (ms)

Decryption
Time (ms)

10 11.31 5.87 8.17 6.38
20 16.42 9.57 25.53 24.78
40 31.11 24.75 50.61 42.98
80 62.27 49.11 74.55 73.61
100 85.45 61.25 88.60 90.07
500 312.45 245.75 385.50 392.74

Table 5.2: Time taken for Encryption and Decryption Part 2

5.2.4 Man in The Middle Attack

Man in the middle attack (Mallik et al.) [14] refers to an attacker intercepting the
communication between two or multiple persons. The attacker may try to imper-
sonate someone or try to corrupt the data anyhow, the main goal of the attacker is
to mislead the people and trying to get sensitive information from them by imper-
sonating as someone else. In this work the key is exchanged using either a secure
channel or using a secure and trusted system (Diffie-Hellman Algorithm) through an
open channel. This cancels out the idea that key can be intercepted by a third party.
Also the mealy machine’s configuration between the sender and the receiver would
be exactly identical, therefore it would not be possible for anyone to guess that con-
figuration and impersonate as someone else, this would result in decrypted message
being gibberish hence they would not be able to extract any useful information.

5.2.5 Differential Cryptanalysis Attack

Differential cryptanalysis attack (Cao et al.) [13] refers to analyzing pairs of plain-
text and ciphertext to retrieve the key or canceling out combinations in order to
get boost in finding the key. In this work the plaintext is protected not only by the
key but also the state changing mealy machine which changes states frequently and
encrypts the same text differently in each time. Also different encoding combina-
tions are used for encoding different blocks of plaintext, which makes it much more
difficult. Also the key is proven to be certified random and is shared using a secured
channel or a secured method hence this attack would not work in this system.

26

Plaintext Change in Ciphertext
100 A’s 72%
100 T’s 85%
100 G’s 82%
100 C’s 79%

(a) Pavithran et al. [19]

Plaintext Change in Ciphertext
100 A’s 94%
100 T’s 94%
100 G’s 99%
100 C’s 91%

(b) This Work

Table 5.3: Changes in Decrypted Text for 1-bit Change in Key for Small Data

Plaintext Change in Decrypted Text
10000 A’s 94.89%
10000 T’s 94.73%
10000 G’s 94.42%
10000 C’s 94.23%

Table 5.4: Changes in Decrypted Text for 1-bit Change in Key for Medium Data

5.3 Encryption and Decryption Time

As mentioned before, this work focused on building a more secure system hence the
core constraints face some trade off among time and security feature. The authors
did their best on maximizing the security trait while keeping the time in check. Table
5.1 shows the amount of time taken by existing systems against several length of text
data. This work’s data along with Pavithran et al. [19] is visible in Table 5.2, which
shows this work outperforms all the existing works shown in Table 5.1 regarding time
efficiency while it fell short to Pavithran et al. Point to be noted here is this work
focused on increasing security trait and performs significantly well than Pavithran
et al. which will be discussed in the next section. This work faces a trade off
regarding time for adding the extra security traits such as adding different encoding
sequences for different blocks and introducing state change operation to change the
configuration of the mealy machine before encrypting a block of plaintext. Adding
those traits means that the same set of operations are done for both encryption and
decryption, that explains the amount of time taken for decryption for this work.
While the difference is not significantly high between this work and Pavithran, this
work outperforms previously mentioned work which is discussed in the next section.

5.4 Avalanche Effect

Avalanche effect is an important cryptographic property which states that for only
a tiny amount of change in crucial information such as key or other properties, how
much change it reflects into the resulting decrypted text. In this work the authors
measured the avalanche effect for changing bits of key, modifying the state change
operation and modifying encoding operation.

27

Plaintext Change in Decrypted Text
100000 A’s 95.26%
100000 T’s 94.38%
100000 G’s 94.32%
100000 C’s 94.34%

Table 5.5: Changes in Decrypted Text for 1-bit Change in Key for Big Data

Plaintext Change in Decrypted Text
100 A’s 89%
100 T’s 88%
100 G’s 93%
100 C’s 95%

Table 5.6: Changes in Decrypted Text for Modifying A State Change Operation for
Small Data

5.4.1 Changing 1 Key Bit

In this test only one bit of the security key was flipped and then the decryption
operation was done using the modified security key. Table 5.3 shows a comparison
between Pavithran et al. [19] and this work regarding how much change occurred
in the resulting decrypted text when 1-bit in key is changed during the decryption
process. The lowest amount of change is recorded as 91% while it was 72% in
Pavithran’s work, the difference is significantly huge. The highest amount of change
is recorded as 99% for this work while the highest amount in Pavithran’s work
being 85%. This proves that the proposed scheme provides better security than
the mentioned work. The avalanche effect for 1-bit change in key is also tested for
medium and big data and they also showed significant consistency. For medium
data containing 10000 bases each in plaintexts the lowest amount of change being
94.23% is even higher than the lowest amount of change for small data, while the
highest amount of change for medium data being 94.89%. As for the big data which
contains 100000 bases for each plaintexts records the lowest amount of change being
94.32% and the highest being 95.26%. These stats record the consistency of the
proposed scheme for any size of data.

5.4.2 Modifying State Change Operation

Proposed scheme also has multiple security features added, one of which is state
change operation on mealy machine. This experiment is done by tweaking one
state change operation during the decryption process but every other attribute like
security key is kept unchanged. This experiment is also done for three types of
data, small data includes 100 DNA base for each, medium data includes 10000
DNA bases for each and big data includes 100000 DNA bases each. Table 5.6,
5.7 and 5.8 shows the changes in decrypted text if one state change operation is
modified and do a different state change operation in the middle of changing the
configuration of the mealy machine. For small data the minimum amount of change

28

Plaintext Change in Decrypted Text
10000 A’s 92.38%
10000 T’s 91.10%
10000 G’s 92.31%
10000 C’s 93.72%

Table 5.7: Changes in Decrypted Text for Modifying A State Change Operation for
Medium Data

Plaintext Change in Decrypted Text
100000 A’s 92.60%
100000 T’s 92.42%
100000 G’s 93.55%
100000 C’s 94.16%

Table 5.8: Changes in Decrypted Text for Modifying A State Change Operation for
Big Data

is 89% while the maximum is 95%. For medium data the lowest amount is 91.10%
while the highest being 93.72%. For big data the lowest amount is 92.42% and the
highest amount stands at 93.55%. These three types of data shows that proposed
work has consistency and it does not depend on only one security feature, that the
system is secure on many aspects.

5.4.3 Modifying Encoding Operation

Another security trait of this work is using different encoding sequence for different
blocks. This feature also adds significant amount of security to the system and is
also tested for avalanche effect. This test is also done for three types of data. One
encoding operation was tweaked and another combination was used for a single time
during the decryption process to run this test. Table 5.9, 5.10 and 5.11 shows the
result data of the aforementioned test. For small data the minimum amount of
change is 91% while the maximum is 99%. For medium data the lowest amount is
92.25% while the highest being 93.93%. For big data the lowest amount is recorded
as 90.34% and the highest amount is observed at 94.04%.

These test results prove that this work is not dependant on only one security feature

Plaintext Change in Decrypted Text
100 A’s 91%
100 T’s 97%
100 G’s 99%
100 C’s 94%

Table 5.9: Changes in Decrypted Text for Modifying An Encoding Operation for
Small Data

29

Plaintext Change in Decrypted Text
10000 A’s 92.25%
10000 T’s 93.84%
10000 G’s 93.16%
10000 C’s 93.93%

Table 5.10: Changes in Decrypted Text for Modifying An Encoding Operation for
Medium Data

Plaintext Change in Decrypted Text
100000 A’s 90.63%
100000 T’s 90.34%
100000 G’s 93.07%
100000 C’s 94.04%

Table 5.11: Changes in Decrypted Text for Modifying An Encoding Operation for
Big Data

but multiple security features. Confiscating each of the major security features
resulted in significant amount of change in decrypted text on different sizes of data.
That proves this scheme works consistently for all size of data. While facing the
trade off between time and enhanced security, this work increased the security trait
of the system significantly than existing works while not giving away much regarding
time.

30

Chapter 6

Conclusion

This work proposed a hybrid cryptographic system which uses a key length of N
which is generated using Genetic Algorithm and is evaluated using the run test of
randomness to ensure the randomness of the key. The authors ensured that the key
can be shared using both through a secure channel and through an open channel
using Diffie-Hellman Key Exchange algorithm. Then the plaintext goes through
various cryptographic operations which involves dividing the plaintext into block
sizes on length N, converting the block into corresponding ASCII values, calculate
the sum of the ASCII values, converting the ASCII values into binary and adding
the key and lastly converting the binary sequence to a DNA sequence which uses
different encoding combinations each time and generate a new DNA sequence using
a randomly generated state changing mealy machine. After that various operations
are done to change the configuration of the mealy machine by initiating state change
operation Q times where Q is calculated using the current block’s information and
then the configuration is changed again using Q2 times where Q2 is calculated using
all the block’s information so far. These processes add extra layer of security to
the system and after the change, the mealy machine becomes ready for encryption
operation for the next block and the process continues till it runs out of plaintext to
encrypt. The same set of operations are also carried out in the receiver’s side in a
reverse manner to decrypt the received ciphertext. A case study is provided for the
better understanding of the proposed method. This work proposes a unique idea
which is resistant to most attacks and necessary analysis are provided to back the
claim that this algorithm provides better security. For the future, the authors are
determined to make this system work for other types of data such as image, sound,
video and others and they are also determined to make the system more efficient
and secure and provide more analysis regarding the system.

31

Bibliography

[1] L. M. Adleman, “Molecular computation of solutions to combinatorial prob-
lems,” Science, JSTOR, vol. 266, pp. 1021–1025, 1994.

[2] R. J. Lipton, “Using dna to solve np-complete problems,” Science, vol. 268,
pp. 542–545, 1995.

[3] X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on opti-
cal encryption based on double random phase keys,” Optics letters, vol. 31,
pp. 1044–6, May 2006. doi: 10.1364/OL.31.001044.

[4] J. Hopcroft, Introduction to Automata Theory, Languages, and Computation
(Always Learning). Pearson Education, 2008, isbn: 9788131720479. [Online].
Available: https://books.google.com.bd/books?id=tzttuN4gsVgC.

[5] K. Hameed, “Dna computation based approach for enhanced computing power,”
International Journal of Emerging Sciences, vol. 1, pp. 31–17, Jan. 2011.

[6] S. Pramanik and S. K. Setua, “Dna cryptography,” 2012 7th International
Conference on Electrical and Computer Engineering, pp. 551–554, 2012. doi:
10.1109/ICECE.2012.6471609..

[7] A. K. Kaundal and A. K. Verma, “Extending feistel structure to dna cryptog-
raphy,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 18,
no. 4, pp. 349–362, 2015. doi: 10.1080/09720529.2014.995975. eprint: https:
//doi.org/10.1080/09720529.2014.995975. [Online]. Available: https://doi.
org/10.1080/09720529.2014.995975.

[8] S. Paul, T. Anwar, and A. Kumar, “An innovative dna cryptography tech-
nique for secure data transmission,” International Journal of Bioinformatics
Research and Applications, vol. 12, p. 238, Jan. 2016. doi: 10.1504/IJBRA.
2016.078235.

[9] S. Kalsi, H. Kaur, and V. Chang, “Dna cryptography and deep learning using
genetic algorithm with nw algorithm for key generation,” Journal of Medical
Systems, vol. 42, p. 17, Dec. 2017. doi: 10.1007/s10916-017-0851-z.

[10] M. A. Bujang and F. Sapri, “An application of the runs test to test for random-
ness of observations obtained from a clinical survey in an ordered population,”
Malaysian Journal of Medical Sciences, vol. 25, pp. 146–151, Aug. 2018. doi:
10.21315/mjms2018.25.4.15.

[11] S. Basu, M. Karuppiah, M. Nasipuri, A. K. Halder, and N. Radhakrishnan,
“Bio-inspired cryptosystem with dna cryptography and neural networks,” J.
Syst. Archit., vol. 94, pp. 24–31, 2019.

32

https://doi.org/10.1364/OL.31.001044
https://books.google.com.bd/books?id=tzttuN4gsVgC
https://doi.org/10.1109/ICECE.2012.6471609.
https://doi.org/10.1080/09720529.2014.995975
https://doi.org/10.1080/09720529.2014.995975
https://doi.org/10.1080/09720529.2014.995975
https://doi.org/10.1080/09720529.2014.995975
https://doi.org/10.1080/09720529.2014.995975
https://doi.org/10.1504/IJBRA.2016.078235
https://doi.org/10.1504/IJBRA.2016.078235
https://doi.org/10.1007/s10916-017-0851-z
https://doi.org/10.21315/mjms2018.25.4.15

[12] M. R. Biswas, K. M. R. Alam, S. Tamura, and Y. Morimoto, “A technique
for dna cryptography based on dynamic mechanisms,” J. Inf. Secur. Appl.,
vol. 48, 2019.

[13] M. Cao and W. Zhang, “Related-key differential cryptanalysis of the reduced-
round block cipher gift,” IEEE Access, vol. 7, pp. 175 769–175 778, 2019. doi:
10.1109/ACCESS.2019.2957581.

[14] A. Mallik, A. Ahsan, M. Shahadat, and J.-C. Tsou, “Man-in-the-middle-
attack: Understanding in simple words,” vol. 3, pp. 77–92, Jan. 2019. doi:
10.5267/j.ijdns.2019.1.001.

[15] S. Salamatian, W. Huleihel, A. Beirami, A. Cohen, and M. Medard, “Why
botnets work: Distributed brute-force attacks need no synchronization,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 9, pp. 2288–
2299, Sep. 2019, Publisher Copyright: © 2019 IEEE., issn: 1556-6013. doi:
10.1109/TIFS.2019.2895955.

[16] X. Chang, A. Yan, and H. Zhang, “Ciphertext-only attack on optical scanning
cryptography,” Optics and Lasers in Engineering, vol. 126, 105901, p. 105 901,
Mar. 2020. doi: 10.1016/j.optlaseng.2019.105901.

[17] S. Chirakkarottu and S. Mathew, “A novel encryption method for medical
images using 2d zaslavski map and dna cryptography,” SN Applied Sciences,
vol. 2, Jan. 2020. doi: 10.1007/s42452-019-1685-8.

[18] A. Hazra, C. Lenka, A. Jha, and M. Younus, “A novel two layer encryption
algorithm using one-time pad and dna cryptography,” in Innovations in Com-
puter Science and Engineering: Proceedings of 7th ICICSE, H. S. Saini, R.
Sayal, R. Buyya, and G. Aliseri, Eds. Singapore: Springer Singapore, 2020,
pp. 297–309, isbn: 978-981-15-2043-3. doi: 10.1007/978-981-15-2043-3 35.
[Online]. Available: https://doi.org/10.1007/978-981-15-2043-3 35.

[19] P. Pavithran, S. Mathew, S. Namasudra, and P. Lorenz, “A novel cryptosys-
tem based on DNA cryptography and randomly generated mealy machine,”
Computers and Security, vol. 104, p. 102 160, Dec. 2020. doi: 10.1016/j.cose.
2020.102160. [Online]. Available: https://hal.science/hal-03671929.

[20] S. Hassan, M. A. Muztaba, M. S. Hossain, and H. S. Narman, “A hybrid en-
cryption technique based on dna cryptography and steganography,” in 2022
IEEE 13th Annual Information Technology, Electronics and Mobile Communi-
cation Conference (IEMCON), 2022, pp. 0501–0508. doi: 10.1109/IEMCON56893.
2022.9946512.

[21] A. S. Sakr, M. Y. Shams, A. Mahmoud, and M. Zidan, “Amino acid encryption
method using genetic algorithm for key generation,” Computers, Materials &
Continua, vol. 70, no. 1, pp. 123–134, 2022, issn: 1546-2226. doi: 10.32604/
cmc.2022.019455. [Online]. Available: http://www.techscience .com/cmc/
v70n1/44413.

[22] L. K., 20 newsgroups dataset. [Online]. Available: http://people.csail.mit.edu/
jrennie/20Newsgroups/.

[23] E. W. Weisstein, “In-shuffle,”MathWorld–A Wolfram Web Resource, [Online].
Available: https://mathworld.wolfram.com/In-Shuffle.html.

33

https://doi.org/10.1109/ACCESS.2019.2957581
https://doi.org/10.5267/j.ijdns.2019.1.001
https://doi.org/10.1109/TIFS.2019.2895955
https://doi.org/10.1016/j.optlaseng.2019.105901
https://doi.org/10.1007/s42452-019-1685-8
https://doi.org/10.1007/978-981-15-2043-3_35
https://doi.org/10.1007/978-981-15-2043-3_35
https://doi.org/10.1016/j.cose.2020.102160
https://doi.org/10.1016/j.cose.2020.102160
https://hal.science/hal-03671929
https://doi.org/10.1109/IEMCON56893.2022.9946512
https://doi.org/10.1109/IEMCON56893.2022.9946512
https://doi.org/10.32604/cmc.2022.019455
https://doi.org/10.32604/cmc.2022.019455
http://www.techscience.com/cmc/v70n1/44413
http://www.techscience.com/cmc/v70n1/44413
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
https://mathworld.wolfram.com/In-Shuffle.html

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem Statement
	Research Objective
	Paper Outline

	Related Works
	Methodology
	Key Generation
	Mealy Machine
	In-Shuffle
	Encryption and Decryption

	Case Study
	Encryption Process
	Key Generation
	Encryption

	Decryption Process

	Result & Analysis
	Experimental Setup
	Prevention Against Attacks
	Brute-Force Attack
	Known Plaintext Attack
	Ciphertext Only Attack
	Man in The Middle Attack
	Differential Cryptanalysis Attack

	Encryption and Decryption Time
	Avalanche Effect
	Changing 1 Key Bit
	Modifying State Change Operation
	Modifying Encoding Operation

	Conclusion
	Bibliography

