• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Early detection, segmentation and quantification of coronary artery blockage using efficient image processing technique

    Thumbnail
    View/Open
    13101068,13101016,13101072,13101204_CSE.pdf (2.857Mb)
    Date
    2017
    Publisher
    BRAC University
    Author
    Shakir, Mohsinul Bari
    Hossain, Mohammad Amzad
    Shams, Khan Mohammad Aymaan
    Akib, Faisal Raihan
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/9495
    Abstract
    Advancements in computing speed and power have made revolutionary changes in medical science practices and this is no different for cardiology. Such advancements in computer sciences have made the existing medical tests of heart into being. These tests are: ECG, CTA, & Echocardiogram. CTA (Computed Tomography Angiography) is a widely used imaging technique to visualize arterial and venous vessels throughout the body. In clinical practice, the analysis mainly relies on visual inspection or manual measurements by experienced cardiologists. The proposed method aims towards a full automation of the detection of coronary artery blockage through some image processing techniques so that the system does not have to rely on any human’s inspection. The goal of the research is to implement the proposed image processing techniques so that the system can detect the narrowing area of the wall of coronary arteries due to the condensation of different artery blocking agents. This detection is crucial for further analysis of the heart. The research suggests that the system will require a 64-slice CTA image as input. After the acquisition of the desired input image, it will go through several steps to determine the region of interest. This research proposes a two stage approach that includes the pre-processing stage and decision stage. The pre-processing stage involves common image processing strategies while the decision stage involves the extraction and calculation of two feature ratios to finally determine the intended result. In order to get more insights of the subject of these examinations, this research has proposed the use of an algorithm to create a 3-D model. Moreover, the system to work more precisely and effectively, use of several techniques have been suggested including parallel processing with shared memory allocation between the CPU and the GPU. Using the parallel processing technique not only makes the whole process at least 7 times faster, but also helps several stages of the process work more effectively.
    Keywords
    Segmentation; Quantification; Artery blockage; Coronary blockage; Image processing technique
     
    Description
    This thesis report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2017.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (pages 50-53).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback