• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Mathematics and Natural Sciences (MNS)
    • Master of Science in Biotechnology
    • Thesis (Master of Science in Biotechnology)
    • View Item
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Mathematics and Natural Sciences (MNS)
    • Master of Science in Biotechnology
    • Thesis (Master of Science in Biotechnology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of transpeptidation reaction of the insulin precursor for efficient yield recovery during downstream processing

    Thumbnail
    View/Open
    12176013_MNS.pdf (1.306Mb)
    Date
    2017
    Publisher
    BRAC University
    Author
    Ali, Syed Morsalin
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/9334
    Abstract
    Nowadays Yeast cell is a popular host for recombinant human insulin production where initially it secrets insulin precursor fusion protein with N-terminal spacer peptide and deletedthreonineB30, followed by a small C-peptide connected with its A andB chains. The insulin precursor is then purified and subsequently converted into human insulin ester via a slow transpeptidation reaction (hydrolysis and coupling) in presence of both trypsin and O-tert-Butyl-L-threonine –tert-butyl ester (O-Thr-ester). Transpeptidation reaction is very critical for recovery of insulin at the least expenses of the aforementioned chemicals. In this study a protocol has been developed where certain parameters have been changed in congruence with published data. The major focus was to use low amount of trypsin and O-Thr-ester for the transpeptidation reaction as well as changing organic solvent composition, water content, pH, time and temperature. In this study, a two-step transpeptidation reaction has been proposed instead of one-step reaction process by separating the cleavage step from the coupling step so that each reaction was performed under its optimal condition. Through this method, the total the conversion of insulin ester increased 57.44% and the reaction time was reduced 58.33% by using the same amount of trypsin and O-Thr-ester compared with the one-step method and available published data. Thus, this two-step transpeptidation strategy was simple, efficient, suitable for scale-up and cost effective and could be used for the pharmaceutical production of human insulin.
    Keywords
    Insulin; Downstream processing; GDM; Adenosine triphosphate; Diabetes mellitus
     
    Description
    This thesis report is submitted in partial fulfillment of the requirement for the degree of M.Sc in Biotechnology, 2017.
     
    Cataloged from PDF version of thesis.
     
    Includes bibliographical references (pages 49-53).
    Department
    Department of Mathematics and Natural Sciences, BRAC University
     
     
    Collections
    • Thesis (Master of Science in Biotechnology)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback