• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A machine learning approach to predict movie box-office success

    Thumbnail
    View/Open
    13301028,13301019_CSE.pdf (1.629Mb)
    Date
    2017
    Publisher
    BRAC University
    Author
    Quader, Nahid
    Gani, MD. Osman
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/9015
    Abstract
    Making a prediction of society’s reaction to a new product in the sense of popularity and adaption rate has become an emerging field of data analysis. The motion picture industry is a multi-billion dollar business. And there is a huge amount of data related to movies is available over the internet and that is why it is an interesting topic for data analysis. Machine learning is a novel approach for analyzing data. Our paper proposes a decision support system for movie investment sector using machine learning techniques. In that case, our system will help investors related with this business to avoid investment risks. The system will predict an approximate success rate of a movie based on its profitability by analyzing historical data from different sources like IMDb, Rotten Tomato, Box Office Mojo and Meta Critic. Using different machine learning algorithms, Natural Language Processing and other techniques the system will predict a movie box office profit based on some features like who are the cast and director members, budget, movie release time, various types of movie rating, movie reviews and then process that data for classification.
    Keywords
    Movie industry; Machine learning; Vector machine; SVM; Neural network; Sentiment analysis
     
    Description
    This thesis report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2017.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 56).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback