• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Accelerating ant colony optimization by using local search

    Thumbnail
    View/Open
    tablefinal.pdf (1.385Mb)
    Date
    2015-08
    Publisher
    BRAC University
    Author
    Tabassum, Nabila
    Haque, Maruful
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/4369
    Abstract
    Optimization is very important fact in terms of taking decision in mathematics, statistics, computer science and real life problem solving or decision making application. Many different optimization techniques have been developed for solving such functional problem. In order to solving various problem computer Science introduce evolutionary optimization algorithm and their hybrid. In recent years, test functions are using to validate new optimization algorithms and to compare the performance with other existing algorithm. There are many Single Object Optimization algorithm proposed earlier. For example: ACO, PSO, ABC. ACO is a popular optimization technique for solving hard combination mathematical optimization problem. In this paper, we run ACO upon five benchmark function and modified the parameter of ACO in order to perform SBX crossover and polynomial mutation. The proposed algorithm SBXACO is tested upon some benchmark function under both static and dynamic to evaluate performances. We choose wide range of benchmark function and compare results with existing DE and its hybrid DEahcSPX from other literature are also presented here.
    Keywords
    Computer science and engineering; Ant colony optimization
     
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2015.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 42-45).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback