• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Report, BSc (Electrical and Electronic Engineering)
    • View Item
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Report, BSc (Electrical and Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exoskeleton Arm : the first step of real life iron suit

    Thumbnail
    View/Open
    10321035.pdf (1.099Mb)
    Date
    2015-07
    Publisher
    BRAC University
    Author
    Rahman, Md. Sadiur
    Avi, Md. Tanjil Rashid
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/4320
    Abstract
    Our team is designing an untethered, powered, upper body exoskeleton for use in the fields of rehabilitation and therapeutic application, as well as occupations requiring augmented strength. Though systems exist, past exoskeleton endeavors have led to bulky, expensive, invasive, and tethered solutions. The challenge is to build an exoskeleton system that is inexpensive, streamlined, and wireless. Our solution is unique in that it will be a low-cost, ergonomic device actuated through sensors measuring the user’s motion. Through onboard sensing, the skeleton can provide rich data, such as range of motion for use in physical therapy. This data can be used by doctors and patients to more accurately track improvement over time. With its low cost, hospitals could employ multiple devices and aid a larger audience of patients; the devices could even be used at home for physical therapy, which would dramatically increase quality of life for patients. Outside of physical therapy, augmented strength is applicable to physically intensive occupations, as well as search and rescue operations. Each year, thousands of workers must take leave due to injuries triggered by heavy lifting; with augmented strength, workers could avoid harmful situations.
    Keywords
    Electrical and electronic engineering; Exoskeleton Arm
     
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2015.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 37).
    Department
    Department of Electrical and Electronic Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Electrical and Electronic Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback