• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering (SoE)
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Report, BSc (Electrical and Electronic Engineering)
    • View Item
    •   BracU IR
    • School of Engineering (SoE)
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Report, BSc (Electrical and Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Current-Voltage characteristics of carbon Nanotube field effect transistor considering Non-Ballistic conduction

    Thumbnail
    View/Open
    10121002, 10121024, 10221077.pdf (3.935Mb)
    Date
    2013-09
    Publisher
    BRAC University
    Author
    Rouf, Nirjhor Tahmidur
    Deep, Ashfaqul Haq
    Hassan, Rusafa Binte
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/2937
    Abstract
    The need for technological advancement in the field of electronics has been ever increasing. Till now silicon has been the prime material of choice for meeting the current demands. However, silicon has its own limitations; Silicon based integrated circuits and the scaling of silicon MOSFET design faces complications like tunneling effect, gate oxide thickness effect etc. which has given the scope for new materials to emerge. The growing academic interest in carbon nanotubes (CNT) as a promising novel class of electronic material has led to significant progress in the understanding of CNT physics including ballistic and non-ballistic electron transport characteristics. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Non-ballistic CNT transistors have been considered, and extended circuit-level models which can capture both ballistic and non-ballistic electron transport phenomenon, including elastic, phonon scattering, strain and tunneling effects, have been developed. The purpose of this paper is to establish a comparative analysis of the transport characteristics of ballistic and non-ballistic carbon nanotubes. The simulation is carried out using MATLAB and the main focus is on the changes in the I-V characteristic curves of elastic scattering effect, bandgap strain effect, tunneling effect and the overall combined effect, varying the parameters such as gate oxide thickness, temperature, dielectric constant, and chirality. The obtained results were then compared to their respective ballistic results. We verified our work by further comparison of our findings with other established academic papers published under the same category.
    Keywords
    Electrical and electronic engineering
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2013.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 103-112).
    Department
    Department of Electrical and Electronic Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Electrical and Electronic Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback