• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sentiment analysis for Bangla microblog posts

    Thumbnail
    View/Open
    10101037 & 10101038.pdf (1.918Mb)
    Date
    2014-01
    Publisher
    BRAC University
    Author
    Shaika, Chowdhury
    Chowdhury, Wasifa
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/2902
    Abstract
    Sentiment analysis has received great attention recently due to the huge amount of user-generated information on the microblogging sites, such as Twitter [1], which are utilized for many applications like product review mining and making future predictions of events such as predicting election results. Much of the research work on sentiment analysis has been applied to the English language, but construction of resources and tools for sentiment analysis in languages other than English is a growing need since the microblog posts are not just posted in English, but in other languages as well. Work on Bangla (or Bengali language) is necessary as it is one of the most spoken languages, ranked seventh in the world [13]. In this paper, we aim to automatically extract the sentiments or opinions conveyed by users from Bangla microblog posts and then identify the overall polarity of texts as either negative or positive. We use a semi-supervised bootstrapping approach for the development of the training corpus which avoids the need for labor intensive manual annotation. For classification, we use Support Vector Machines (SVM) and Maximum Entropy (MaxEnt) and do a comparative analysis on the performance of these two machine learning algorithms by experimenting with a combination of various sets of features. We also construct a Twitter-specific Bangla sentiment lexicon, which is utilized for the rule-based classifier and as a binary feature in the classifiers used. For our work, we choose Twitter as the microblogging site as it is one of the most popular microblogging platforms in the world.
    Keywords
    Computer science and engineering
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2014.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 47).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback