• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Data and Sciences (SDS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sentiment analysis using Natural Language Processing (NLP) & deep learning

    Thumbnail
    View/Open
    17101456, 17101106, 17301063_CSE.pdf (967.9Kb)
    Date
    2021-09
    Publisher
    Brac University
    Author
    Islam, Kazi Minhazul
    Reza, Md. Safkat
    Yeaser, MD. Samin
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/15823
    Abstract
    It is an age of the Web and electronic media, and social media stages are one of the foremost frequently used communication mediums these days. But a few individuals utilize these platforms for a noxious reason and among those negative angles "Cyberbullying" is predominant. The way of monitoring user opinions throughout social media platforms such as Twitter and Facebook have been proven to be an e ective way of learning practically all of the consumers' thoughts which can open the door of potential future implementations. General emotion inspection can give us important data. The examination of supposition on informal communities, for example, Twitter or Facebook, has become an amazing method for nding out about the clients' sentiments and has a wide scope of utilizations. Notwithstanding, the productivity furthermore, the exactness of notion examination is being blocked by the di culties experienced in characteristic language handling (NLP). As of late, it is established that profound learning models are potential answers to the drawbacks of NLP. Natural language processing refers to a process that enables the machine to act like human and decreases the space between the person and the machine. Thus, NLP readily communicates with the computer in a straightforward sense. NLP has gained several uses in recent times. Each one of them are extremely e ective in daily life. An example can be a device which can be handled by voice commands. Several research workers are putting e ort on this idea in order to make even more real-life applications Natural Language Processing has tremendous potential to facilitate the use of computer interfaces for humans, as people will ideally communicate in their own language to the computer instead of learning an exclusive language based on computer instructions. In case of programming, traditional programming language's importance has always been underrated. This concept is questionable. We believe that modern Natural Language Processing techniques can make possible the use of natural language to express programming ideas, thus drastically increasing the accessibility of programming to non-expert users. Our team thinks that the implementation of natural language to convey programming concepts may be made possible by contemporary natural language processing techniques so that programming is accessible to inexperienced consumers substantially. The following paper surveys the most recent analysis that have utilized profound methodology how to take care of conclusion investigation issues, for example, assessment extremity. Models utilizing term recurrence opposite record recurrence (TF-IDF) and content insertion was implemented to an arrangement of datasets. At last, one similar examination of the exploratory outcomes was carried out in respect to several models and information highlights.
    Keywords
    NLP; Deep learning; Cyber bullying; Racism; Social media; Prediction; Bi-directional; LSTM
     
    LC Subject Headings
    Machine learning; Natural language processing (Computer science); Human-computer interaction
     
    Description
    This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2021.
     
    Cataloged from PDF version of thesis.
     
    Includes bibliographical references (pages 19-21).
    Department
    Department of Computer Science and Engineering, Brac University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback