• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering (SoE)
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Report, BSc (Electrical and Electronic Engineering)
    • View Item
    •   BracU IR
    • School of Engineering (SoE)
    • Department of Electrical and Electronic Engineering (EEE)
    • Thesis & Report, BSc (Electrical and Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis and development of I-V characteristics models for nanometer size MESFETs considering fabrication parameters

    Thumbnail
    View/Open
    Mostofa 09221122, Ahmed 09221145, Pia 09221072, Megna 09221136.PDF (9.894Mb)
    Date
    2011-08
    Publisher
    BRAC University
    Author
    Mostofa, Jobia
    Ahmed, Wasi Uddin
    Pia, Ummay Farha
    Meghna, Tanzina Haque
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/1455
    Abstract
    The Metal- Semiconductor Field-Effect-Transistor (MESFET) is used as a paragon in RF amplifier due to its lower stray capacitance and immense radiation hardness. It is imperative to develop rigorous IN characteristic models for nanometer size MESFETs. Therefore, we consider two types of MESFETs, GaAs and high-power SiC MESFETs. For nanometer size GaAs MESFETs, some existing models will be analyzed and by comparing all these models Ahmed et al. model [1] has been preferred and modified. An algorithm will be developed for the optimization of model parameters to predict the I-V characteristics of nanometer range GaAs MESFETs with different aspect ratios as well as for different bias conditions. The root mean square (RMS) error technique will be used to compare the models . An improved compact nonlinear DC I-V characteristic model will also be delineated for high-power SiC MESFETs . Due to their high thermal conductivity, the SiC devices dissipate larger power resulting an extensive rise in operating temperature . This self heating increases the crystal temperature and commences a negative differential conductance (NDC) because of the change in mobility of the device. An algorithm will also be developed to find out the optimum model parameters using RMS error method. The proposed models will be compared with the experimental results. The proposed models should be a useful tool for upcoming integrated circuits with GaAs and high-power SiC MESFETs.
    Keywords
    Electrical and electronic engineering
    Description
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2012.
     
    Cataloged from PDF version of thesis report.
     
    Includes bibliographical references (page 42-43).
    Department
    Department of Electrical and Electronic Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Electrical and Electronic Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback