• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine learning approach for improving decision support in ICU

    Thumbnail
    View/Open
    12201043, 13301081, 14201057_CSE.pdf (1.835Mb)
    Date
    2018-07
    Publisher
    BRAC University
    Author
    Siddiquee, Mohib Billah
    Fuad, Mostofa Jamil
    Azmain, Md. Fahim
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/11602
    Abstract
    Patients in the intensive care unit (ICU) receive a deep observation for controlling and responding to their rapidly changing physiological conditions. The quality of their care depends on clinical staff combining large amounts of clinical data to understand the severity of their illness. Actually in real time doctors and nurses have to take care of huge amount of data. Sometimes, they cannot focus on all the parameters at the same time. After collecting all the parameters, they take decisions. A lack of early recognition of physiologic decline can play a major role in failure to rescue patients. Early prediction is one of the important tasks in the ICU. In this paper, we propose a machine learning approach to improve decision support in ICU. In the proposed model decision tree will be used to predict the future health condition of patients. The curve of the decision tree of the proposed model will show how severe the patient‘s condition is. It will also show the health improvements and decrements. In this model there is option for controlling the lifesaving machines of ICU like ventilation machine, blood warmer machine and syringe pump machine. To control the machines this model uses logistic regression algorithm. It will use some independent variables to predict the decision of automatic intervention. Using the proposed model doctors can easily monitor the health of ICU patients. As it predicts risks, doctors can take early preparation for worst situation. Automatic intervention decisions for ICU machines can save lives in critical moments. As a whole, the model is specially designed for coronary care unit of ICU.
    Keywords
    ICU
    LC Subject Headings
    Machine learning; Artificial intelligence
    Description
    This thesis is submitted in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2018.
     
    Cataloged from PDF version of thesis.
     
    Includes bibliographical references (pages 37-41).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback