• Login
    • Library Home
    View Item 
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    •   BracU IR
    • School of Engineering and Computer Science (SECS)
    • Department of Computer Science and Engineering (CSE)
    • Thesis & Report, BSc (Computer Science and Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Emotion recognition using brian signals based on time-frequency analysis and supervised learning algorithm

    Thumbnail
    View/Open
    16241002,14101072,14301059_CSE.pdf (1.269Mb)
    Date
    2018-04
    Publisher
    BRAC University
    Author
    Hossain, Prommy Sultana Ferdawoos
    Shaikat, Istiaque Mannafee
    George, Fabian Parsia
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10361/10188
    Abstract
    Over the years many groundbreaking research involving Brain Computer Interface (BCI), has been conducted in order to study emotions of human beings, to build better-quality human-machine interaction systems. On the other hand, it is also quite possible to log the activities of brain in real-time and then use it to distinguish patterns related to emotional status. BCI creates a mutual understanding between the users and its environment for measuring emotions through brain activities. Electroencephalogram (EEG) is a well-accepted method to measure the brain activities. Once the system records the EEG signals, we analyze and process these activities to distinguish different emotions. Previous researchers used standard and pre-defined methods of signal processing area with fewer channels and participations to record their EEG signals. In this thesis, a novel method was proposed that extracted features from EEG signals based on time-frequencies analysis and supervised learning algorithm was used to classify different emotional states. Our proposed method provides 92.36% accuracy by using a benchmark dataset, where 32 participants were used to carry out this experiment.
    Keywords
    Brain Computer Interface (BCI); DEAP; IAPS; Emotion recognition; Brian signals; Learning algorithm
     
    Description
    This thesis is submitted in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2018.
     
    Cataloged from PDF version of thesis.
     
    Includes bibliographical references (pages 40-49).
    Department
    Department of Computer Science and Engineering, BRAC University
    Collections
    • Thesis & Report, BSc (Computer Science and Engineering)

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback
     

     

    Policy Guidelines

    • BracU Policy
    • Publisher Policy

    Browse

    All of BracU Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2008-2019 Ayesha Abed Library, Brac University 
    Contact Us | Send Feedback