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ABSTRACT 

 

Technological advancements in one sector integrate with other sectors resulting into 

generation of further developments. GPS is the output from researches for better 

navigation systems, which is now used by field researchers who travel to uncharted 

distant places so that they don’t get lost and of course know where they are going.  

 

Researchers have now brought up a new dimension to our lifestyle with the 

introduction of unmanned vehicles on every possible surface: from air to land and 

above and under water. Unmanned vehicles are no more innovative characters in 

Sci-fi thrillers, but a reality and it is possible using GPS. 

 

Our area of interest for the thesis is the implementation of GPS in an unmanned 

vehicle that would take the input from a user in terms of latitude and longitude and 

then make its way to the destination automatically by creating a path and maintaining 

it till it reaches there. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 
 

Land, marine and air navigation systems have seen many advances with the 

advancements of technologies such as DECCA Navigator System [1], LORAN [2] 

and many more with the latest and the most accurate to date being the Global 

Positioning System or GPS [3] in short.  

 

With the introduction of this service to the civil population, researches resulted into 

commercial units offering navigation aids for automobiles, ships and aircrafts. 

 

1.2 Project Overview 
 

The vehicle consists of two motors, responsible for backward and forward movement 

and right and left rotation respectively, a microcontroller interfaced with a GPS 

device and user input interface. The user inputs the desired destination in terms of 

longitude and latitude. The microcontroller reads the data from GPS device and 

creates a path to the final destination. It then gives necessary signal to the motors. 

As the vehicle starts to move, the microcontroller keeps on taking feedback from the 

GPS device making necessary corrections by constantly sending signal to the 

motors. The process is continued till the vehicle reaches the destination. The block 

diagram in the figure below illustrates the entire process. 
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Fig. 1.1 System Overview 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Pictures of the car with embedded system 



1.3 Global Positioning System 

It is a system by which an object’s position can be pin pointed. A GPS [4] receiver’s 

job is to locate four or more of the satellites revolving the planet, figure out the 

distance to each, and use this information to deduce its own location. This operation 

is based on a simple mathematical principle called trilateration.  

 

A GPS receiver calculates the distance to GPS satellites by timing a signal’s journey 

from satellite to receiver. As it turns out, this is a fairly elaborate process. At a 

particular time (let’s say midnight), the satellite begins transmitting a long, digital 

pattern called a pseudo-random code. The receiver begins running the same digital 

pattern also exactly at midnight. When the satellite’s signal reaches the receiver, its 

transmission of the pattern will lag a bit behind the receiver’s playing of the pattern.  

 

The length of the delay is equal to the signal’s travel time. The receiver 

multiplies this time by the speed of light to determine how far the signal 

traveled. Assuming the signal traveled in a straight line, this is the distance 

from receiver to satellite. Differential GPS (DGPS) [4] helps correct some 

errors. The basic idea is to gauge GPS inaccuracy at a stationary receiver 

station with a known location. Since the DGPS hardware at the station 

already knows its own position, it can easily calculate its receiver’s 

inaccuracy. The station then broadcasts a radio signal to all DGPS-equipped 

receivers in the area, providing signal correction information for that area. In 

general, access to this correction information makes DGPS receivers much 

more accurate than ordinary receivers. 

 
1.4 Micro-Controller 
 

The micro-controller used in the system is ATMEL’s AT89C51. The AT89C51 is a 

low-power, high-performance CMOS 8-bit microcomputer [5] with 4Kbytes of Flash 

programmable and erasable read only memory (PEROM) [6]. The device is 

http://www.howstuffworks.com/question697.htm


manufactured using Atmel’s high-density nonvolatile memory technology and is 

compatible with the industry-standard MCS-51 instruction set and pin-out. The on-

chip Flash allows the program memory to be reprogrammed in-system or by a 

conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU 

with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer 

which provides a highly-flexible and cost-effective solution to many embedded 

control applications.  

 
 
 
 
 
 
 

Fig. 1.3 IC: AT89C51



 

CHAPTER 2: THE OVERALL SYSTEM 
 
2.1 System Data Flow  
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Fig. 2.1 System data flow 

 

This is how the overall system works: 

 

1. First it takes input from the user in terms of longitude and latitude. 

2. Then it takes reading of the current position of the vehicle from the GPS 

device. 



3. Then it takes reading from the electronic compass, which gives the current 

heading. 

4. It then checks whether the current position is equal to the final destination. If 

it is yes then it stops and if it is no then it goes to the next step. 

5. At this point it finds the vertical displacement between current and final 

destination.  

6. Then it finds the horizontal displacement between current and final 

destination. 

7. Using the values of vertical and horizontal displacement, it calculates the 

bearing of final destination from the current position. 

8. It then calculates the difference between bearing of the final destination from 

the current position and the direction the vehicle is currently heading. 

9. Based on the values found the system decides in which direction should the 

vehicle move or should it move at all. The entire process from step 2 is 

repeated till the vehicle reaches the destination. 

 
2.1.1 Calculating vertical displacement 
 

This is how the system calculates the vertical displacement. Figure 2.2 shows the 

flowchart of the algorithm. 

 

1. It checks if the current location is in the northern hemisphere. Based on the 

decision, it takes any of the two paths.  

2. Assuming the current location was in the northern hemisphere, it then checks 

whether the final destination is also in the northern hemisphere. There again 

based on the reading it takes any of the two paths. 

3. Assuming the final position is also in the northern hemisphere, it then checks 

if the current latitude is equal to the final latitude. Based on the decision, it 

takes any of the two paths. 

4. Assuming the current is not equal to final, it then check if the destination 

latitude is greater than the current latitude. Based on the decision, it takes 

any of the two paths. 



5. Assuming the final is greater than current, it then calculates the difference 

between final and current and this gives the vertical displacement. It then 

goes on to the next step which is to find out the horizontal displacement. 
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Fig. 2.2 Vertical displacement calculation flowchart 

 
 



2.1.2 Calculating horizontal displacement 
 

This is how the system calculates the horizontal displacement. Figure 2.3 shows the 

flowchart of the algorithm. 

1. It checks if the current location is in the eastern hemisphere. Based on the 

decision, it takes any of the two paths.  

2. Assuming the current location was in the eastern hemisphere, it then checks 

whether the final destination is also in the eastern hemisphere. There again 

based on the reading it takes any of the two paths. 

3. Assuming the final position is also in the eastern hemisphere, it then checks if 

the current longitude is equal to the final longitude. Based on the decision, it 

takes any of the two paths. 

4. Assuming the current is not equal to final, it then check if the destination 

longitude is greater than the current longitude. Based on the decision, it takes 

any of the two paths. 

5. Assuming the final is greater than current, it then calculates the difference 

between final and current and this gives the horizontal displacement. It then 

goes on to the next step which is to calculate the bearing of the final 

destination from the current location. 

 

From the algorithm of finding the vertical displacement, we find that there are eight 

possible results. Also, the horizontal displacement algorithm gives eight possible 

results. Since the algorithm of finding horizontal displacement is applied immediately 

after the vertical displacement algorithm, thus that leaves us with sixty four different 

combinations. 
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Fig. 2.3 Horizontal displacement calculation flowchart 

 

Putting these sixty four different combinations in a table we found out that different 

formulae need to be used to calculate the bearing of the final destination from the 

current location. Table 2.1 to 2.8 shows the results of the bearings. 

 



Table 2.1  

Calculation of bearing (C=N,F=N,C≠F F>C) 

1 

C=N 

F=N 

C≠F 

F>C 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB1 BB2 BB3 BB2 BB1 BB2 BB1 BB3

Table 2.2  

Calculation of bearing (C=N, F=N, C≠F, F<C) 

2 

C=N 

F=N 

C≠F 

F<C 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB7 BB8 BB5 BB8 BB7 BB8 BB7 BB5

 



Table 2.3  

Calculation of bearing (C=N, F=N, C=F) 

 

3 

C=N 

F=N 

C=F 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB4 BB6 STOP BB6 BB4 BB6 BB4 STOP 

 

Table 2.4 

Calculation of bearing (C=N, F≠N) 

 

4 

C=N 

F≠N 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB7 BB8 BB5 BB8 BB7 BB8 BB7 BB5



 

Table 2.5 

Calculation of bearing (C≠N, F=N) 

5 

C≠N 

F=N 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB1 BB2 BB3 BB2 BB1 BB2 BB1 BB3

 

Table 2.6  

Calculation of bearing (C≠N, F≠N, C≠F, F>C) 

6 

C≠N 

F≠N 

C≠F 

F>C 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB7 BB8 BB5 BB8 BB7 BB8 BB7 BB5



Table 2.7  

Calculation of bearing (C≠N, F≠N, C≠F, F<C) 

7 

C≠N 

F≠N 

C≠F 

F<C 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB1 BB2 BB3 BB2 BB1 BB2 BB1 BB3

 

Table 2.8  

Calculation of bearing (C≠N, F≠N, C=F) 

8 

C≠N 

F≠N 

C=F 

1 2 3 4 5 6 7 8 

C=E 

F=E 

C≠F 

F>C 

C=E 

F=E 

C≠F 

F<C 

C=E 

F=E 

C=F 

C=E 

F≠E 

C≠E 

F=E 

C≠E 

F≠E 

C≠F 

F>C 

C≠E 

F≠E 

C≠F 

F<C 

C≠E 

F≠E 

C=F 

BB4 BB6 STOP BB6 BB4 BB6 BB4 STOP 



 

The formulae for finding the bearings, B1 to B8 are given in equations 2.1 to 2.8. 

 

BB1 = tan  (D-1
hor / Dvert) (2.1) 

 

BB2 = 360  - tan  (Do -1
hor / Dvert) (2.2) 

 

BB3 = 0 (2.3) o 

 

BB4 = 90 (2.4) o 

 

BB5 = 270 (2.5) o 

 

BB6 = 180 (2.6) o 

 

BB7 = 180  - tan  (Do -1
hor / Dvert) (2.7) 

 

BB8 = 180  + tan  (Do -1
hor / Dvert) (2.8) 

 
2.1.3 Calculating front wheel rotation angle 
 

This is how the system decides the front wheel rotation. Figure 2.4 shows the 

flowchart of the algorithm. 



 

1. It checks if the current heading is equal to bearing of final destination from 

current position. If it is Yes then there is no rotation and it takes new reading 

from GPS 

2. Here it checks if heading is greater than bearing. 

3. Assuming the Heading to be greater than bearing, it then calculates the 

difference between heading and bearing. 

4. It then checks if the difference is greater than 180o. 

5. Assuming the difference to be greater than 180o It checks if the wheels were 

turned right previously. 

6. Assuming that the wheels were not turned, it then turns the wheels right. 
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Fig 2.4 Calculating front wheel rotation angle 

 

2.1.4 Determining the turn angle (alternate): 
 

To account the turning arc for a vehicle trying to make a turn the following is another 

solution. The arc of turn is to be considered as it will cause a final displacement 

slightly different from the desired displacement. Thus, in order to determine the arc of 

displacement, we need to find the optimum angle for which a minimum optimal arc is 

going to be traversed by the vehicle. 

 



The angle found by the previous step is denoted by the red arc and the angle to 

which the wheel must be turned is denoted by the green arc. This is the angle that 

we need to find which will maintain a uniform arc to the destination B. 

 

 

Fig. 2.5 Turning arc 

 



2.1.4.1 Finding the arc length 
The arc length [7] can be found given the initial position, heading and the final 

destination using the formula: 

 

    (2.9) 

   

 

 

          (2.10) 
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Fig. 2.6 Determining the arc length 



2.1.4.2 Finding the optimum wheel turn angle 
 

As we are now equipped with the value of theta, we need to find the optimum angle 

to which the wheel must be turned to traverse the arc accurately. Now, this depends 

on many factors like, vehicle size and shape, displacement of the wheels and the 

forward thrust power. So, we have to find an optimal angle that will be least affected 

by all of these factors. Thus, an optimal angle would be T% of arc length, where 

value of T would depend on the above factors. 

 

Fig. 2.7 Determining the optimum turn angle 



 

 

 

Fig. 2.8 Flowchart for determining the turn angle 

 

The flowchart above shows the flow of data for finding the optimum turn angle. 

 
2.1.5 Applying the alternate 
 

Now, this method can be used to straighten the vehicle to align with the final 

heading. This is illustrated in the following diagrams. 



 

In the first one, the slope of tangent to the arc at the end point is compared with the 

slope of line from that point to the point B. If the slopes are equal then the wheels are 

straightened and the car moves forward heading straight towards heading B. 
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Fig. 2.9 Aligning the vehicle heading with single arc 

 

The figure below is a dynamic approach to aligning the vehicle to the destination 

bearing. 

 B 

A 

 

 

 

 

 

Fig. 2.10 Aligning the vehicle heading with multiple arcs 



CHAPTER 3: MOTORS AND DRIVERS 
 
For our thesis we used a stepper motor to control the front wheel rotation and we 

used a normal DC motor for the rear wheels for forward and backward movement. 

 

To control the stepper motor we used IC: ULN2003 and to control the DC motor we 

used IC: L293D. Figure 3.1 illustrates how stepper motor can be controlled using 

ULN2003. Figure 3.2 illustrates how the DC motor can be controlled using L293D 

and figure 3.3 shows the circuit diagram of the entire embedded system. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 3.1 Controlling unipolar stepper motor using ULN2003 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Controlling DC motor using L293D 
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Fig. 3.3   Circuit diagram of entire embedded system 



CHAPTER 4: PROGRAMMER 
 
4.1 TOP 2005+ Universal Programmer 
 

To burn our programs into the microcontroller, we used a universal programmer 

manufactured by the Chinese company TOPWIN. The programmer comes with 

installation CD with the software and a user manual. It has USB interface and very 

easy to use. 

 

We wrote our programs in C and compiled and converted to hex files, which then we 

downloaded into the microcontroller using the universal programmer and the 

software that came with it.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Universal Programmer 



CHAPTER 5: CONCLUSIONS AND FUTURE WORK 
 
5.1 Conclusion 
 

The Automation system was designed to work acquiring the coordinate data from a 

GPS receiver. The system would run according to the actual algorithms described in 

the respective sections. However, during test sessions, factors like vehicle size, 

weight, displacement of front and rear wheels, movement environment like surface 

friction, skidding of wheels etc affected the actual path traversed by the vehicle. 

Proper GPS receiver was not acquired during the course of the development, which 

had made it impossible to carry out any tests that involved the data from a GPS 

receiver.  

 

5.2 Future Work 
 

Thus, the system still requires to be worked upon to be made fully active. Among all 

the other developments, we would suggest the use of obstacle avoidance techniques 

and relevant sensors if the vehicle is to be used in a dynamic environment where the 

obstructions are not known before hand. To use a vehicle equipped with our 

automating system on regular traffic roads, the system would need an integrated 

map which could assist it following the road exactly and it would also need 

integration with the existing traffic system.  

 

 



 

APPENDICES 
 

Appendix A   Vehicle Movement in Multidirections 
 

unsigned int DATA; 

void delay(unsigned int x){   /* x * 1ms delay */ 

 unsigned int k, l; 

 for(k=0;k<x;++k){ 

  for(l=0;l<50;++l);    

 }    

} 

void Sleep(unsigned int x){   /* x * 1ms delay */ 

 unsigned int k, l; 

 for(k=0;k<x;++k){ 

  for(l=0;l<50;++l);    

 }    

} 

void Out32(unsigned int DATAa, unsigned int pval){ 

 DATAa=0; 

 P1=pval; 

} 

void stop (void){ 

  unsigned int pval = 0x00; 



P1=pval; 

} 

void left (void){ 

 unsigned int delayTime = 20; 

 unsigned int m_angle=10; 

 unsigned int angle = (m_angle/(3.75))*96; 

 unsigned int i=0; 

 while (i<angle){ 

  switch(i%4){ 

   case 0: 

    Out32(DATA,0x08); delay(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x04); delay(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x02); delay(delayTime); 

    ++i;break; 

   case 3: 

    Out32(DATA,0x01); delay(delayTime); 

    i++;break; 

   default: 

    ++i; 

  } 



 } 

 

} 

 

unsigned int Inp32(unsigned int x){ 

 x=P1; 

 return x; 

} 

 

void left1 (unsigned int m_angle){ 

 

 unsigned int delayTime = 2; 

 unsigned int angle = (m_angle/(3.75*2))*96; 

 unsigned int i=0; 

 unsigned int currentState=0; 

 while (i<angle){ 

  currentState=Inp32(DATA); 

  if((currentState & 0x10) == 0x10){ 

   switch(i%4){ 

   case 0: 

    Out32(DATA,0x18); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x14); Sleep(delayTime); 



    ++i;break; 

   case 2: 

    Out32(DATA,0x12); Sleep(delayTime); 

    ++i;break; 

   case 3: 

    Out32(DATA,0x11); Sleep(delayTime); 

    i++;break; 

   default: 

    ++i; 

   } 

  } 

 

  else if((currentState & 0x20) == 0x20){ 

   switch(i%4){ 

   case 0: 

    Out32(DATA,0x28); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x24); Sleep(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x22); Sleep(delayTime); 

    ++i;break; 

   case 3: 



    Out32(DATA,0x21); Sleep(delayTime); 

    i++;break; 

   default: 

    ++i; 

   } 

  } 

 

  else{ 

   switch(i%4){ 

   case 0: 

    Out32(DATA,0x08); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x04); Sleep(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x02); Sleep(delayTime); 

    ++i;break; 

   case 3: 

    Out32(DATA,0x01); Sleep(delayTime); 

    i++;break; 

   default: 

    ++i; 

   } 



  } 

 } 

 

} 

 

 

void right1 (int m_angle){ 

 /* m_angle/=2; */ 

 unsigned int delayTime = 2; 

 unsigned int angle = (m_angle/(3.75*2))*96; 

 unsigned int i=0; 

 unsigned int currentState=0; 

 while (i<angle){ 

  currentState=Inp32(DATA); 

  if((currentState & 0x10) == 0x10){ 

   switch(i%4){ 

   case 3: 

    Out32(DATA,0x18); Sleep(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x14); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x12); Sleep(delayTime); 



    ++i;break; 

   case 0: 

    Out32(DATA,0x11); Sleep(delayTime); 

    ++i;break; 

   default: 

    ++i; 

   } 

  } 

 

  else if((currentState & 0x20) == 0x20){ 

   switch(i%4){ 

   case 3: 

    Out32(DATA,0x28); Sleep(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x24); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x22); Sleep(delayTime); 

    ++i;break; 

   case 0: 

    Out32(DATA,0x21); Sleep(delayTime); 

    ++i;break; 

   default: 



    ++i; 

   } 

  } 

 

  else{ 

   switch(i%4){ 

   case 3: 

    Out32(DATA,0x08); Sleep(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x04); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x02); Sleep(delayTime); 

    ++i;break; 

   case 0: 

    Out32(DATA,0x01); Sleep(delayTime); 

    ++i;break; 

   default: 

    ++i; 

   } 

  } 

 } 

} 



 

void right (void){ 

 int m_angle=10; 

 unsigned int delayTime = 20; 

 unsigned int angle = (m_angle/(3.75))*96; 

 unsigned int i=0; 

 while (i<angle){ 

  switch(i%4){ 

   case 3: 

    Out32(DATA,0x08); Sleep(delayTime); 

    ++i;break; 

   case 2: 

    Out32(DATA,0x04); Sleep(delayTime); 

    ++i;break; 

   case 1: 

    Out32(DATA,0x02); Sleep(delayTime); 

    ++i;break; 

   case 0: 

    Out32(DATA,0x01); Sleep(delayTime); 

    ++i;break; 

   default: 

    ++i; 

  } 

 } 



} 

 

void forward (void){ 

 unsigned int forwardTime=3000; 

 Out32(DATA,0x10); 

 Sleep(forwardTime);  

 stop(); 

} 

 

void reverse (void){ 

 unsigned int reverseTime=3000; 

 Out32(DATA,0x20); 

 Sleep(reverseTime);  

 stop();  

} 

 

void main(){ 

 unsigned char c[]="SLFFRFFSBBRFFFLF0T"; 

 unsigned int i=0; 

 unsigned int ext=0; 

 P1=0; 

 P2=0; 

 P3=0; 

 P0=1; 



 while (c[i]!='T'){ 

  switch (c[i]){ 

  case 'S': stop(); break; 

  case 'L': left(); break; 

  case 'R': right(); break; 

  case 'F': forward(); break; 

  case 'B': reverse(); break; 

  case 'T': stop(); ext=1; break; 

  default: stop(); break; 

  } 

 

  if(ext==1) break; 

  ++i; 

 } 

 while(1){ 

  P1=0x00; 

 } 

 

} 

 

Appendix B   Turn Angle Calculation and Implementation 
 

double turnDegree (double x1, double y1, double x2, double y2){ 

 double minArcLength = 0.0 ; 



 double ArcLength = 0.0; 

 double maxArcAngle = 0.0; 

 double arcAngle = 26.0; 

 double decrement = 0.5; 

 double centralAngle = 0.0; 

 double phi = 0.0;    

 double theta = 26.0; 

 double X = 0.0;   

 double Y = 0.0;  

 Y = y2-y1; 

 X = x2-x1; 

 while (arcAngle>0.0){ 

  phi = atan( ((x1-x2) * tan(90-theta) + Y)/(Y * tan(90-

theta) + X)); 

  centralAngle = 2.0*phi; 

  ArcLength = phi * sqrt( Y*Y + X*X ) / (sin ( phi ) ); 

  if(minArcLength > ArcLength){ 

   minArcLength = ArcLength; 

   maxArcAngle = arcAngle; 

  } 

  arcAngle = arcAngle - decrement; 

 } 

 return maxArcAngle;  

} 



 

void processRun (void){ 

 unsigned char c[] = "abcdefghijklmnopqrstuvwxyz"; 

 unsigned char move[] = "0,0,2,2"; 

 unsigned int i = 0; 

 unsigned int ext = 0; 

 double turnAngle = 0; 

 double x1; 

 double x2; 

 double y1; 

 double y2; 

 unsigned char *tok; 

 unsigned char token[] = "abcd"; 

 tok = strtok (move, " ,\t\n"); 

 if (tok != NULL) { 

  strcpy(token,tok); 

  x1 = (double)atof(token); 

  tok = strtok (NULL, " \t\n"); 

 } 

 

 if (tok != NULL) { 

  strcpy(token,tok); 

  y1 = (double)atof(token); 

  tok = strtok (NULL, " \t\n"); 



 } 

 if (tok != NULL) { 

  strcpy(token,tok); 

  x2 = (double)atof(token); 

  tok = strtok (NULL, " \t\n"); 

 } 

 if (tok != NULL) { 

  strcpy(token,tok); 

  y2 = (double)atof(token); 

  tok = strtok (NULL, " \t\n"); 

 } 

 

 

 turnAngle = turnDegree (x1,y1,x2,y2); 

 rightAngle(turnAngle); 

 strcpy(c,"SFF"); 

 

 

 P1=0; 

 P2=0; 

 P3=0; 

 P0=1; 

 while (c[i]!='T'){ 

  switch (c[i]){ 



  case 'S': stop(); break; 

  case 'L': left(); break; 

  case 'R': right(); break; 

  case 'F': forward(); break; 

  case 'B': reverse(); break; 

  case 'T': stop(); ext=1; break; 

  default: stop(); break; 

  } 

 

  if(ext==1) break; 

  ++i; 

 } 

} 
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