
AUTOMATING VEHICLE NAVIGATION

Raphael Ahmed
Student ID: 06310045

Md.Intekhabul Hafiz
Student ID: 05101021

Department of Computer Science and Engineering

January 2009

BRAC University, Dhaka, Bangladesh

DECLARATION

I hereby declare that this thesis is based on the results found by myself. Materials of

work found by other researcher are mentioned by reference. This thesis, neither in

whole nor in part, has been previously submitted for any degree.

Signature of Signature of

Supervisor Author

ACKNOWLEDGMENTS

First of all, all praise belongs to Allah, without His help we wouldn’t have been able to

do anything. We would then like to acknowledge the continuous support of our

supervisor Dr. A. K. M. Abdul Malek Azad. We would also like to thank Syed Saiful

Islam, Munshi Asadullah, Annajiat Alim Rasel, Mohammad Asaduzzaman Al Faruq

and Ahmed All Amin for their enthusiasm and interest in our thesis that kept us

motivated throughout the thesis period.

ABSTRACT

Technological advancements in one sector integrate with other sectors resulting into

generation of further developments. GPS is the output from researches for better

navigation systems, which is now used by field researchers who travel to uncharted

distant places so that they don’t get lost and of course know where they are going.

Researchers have now brought up a new dimension to our lifestyle with the

introduction of unmanned vehicles on every possible surface: from air to land and

above and under water. Unmanned vehicles are no more innovative characters in

Sci-fi thrillers, but a reality and it is possible using GPS.

Our area of interest for the thesis is the implementation of GPS in an unmanned

vehicle that would take the input from a user in terms of latitude and longitude and

then make its way to the destination automatically by creating a path and maintaining

it till it reaches there.

TABLE OF CONTENTS

DECLARATION .. 2

ACKNOWLEDGMENTS .. 3

ABSTRACT.. 4

TABLE OF CONTENTS.. 5

LIST OF TABLES.. 6

LIST OF FIGURES .. 7

CHAPTER 1: INTRODUCTION... 8

1.1 Introduction ... 8
1.2 Project Overview.. 8
1.3 Global Positioning System ... 10
1.4 Micro-Controller ... 10

CHAPTER 2: THE OVERALL SYSTEM... 12

2.1 System Data Flow ... 12
2.1.1 Calculating vertical displacement .. 13
2.1.2 Calculating horizontal displacement.. 15
2.1.3 Calculating front wheel rotation angle... 21
2.1.4 Determining the turn angle (alternate): ... 23
2.1.4.1 Finding the arc length... 25
2.1.4.2 Finding the optimum wheel turn angle .. 26
2.1.5 Applying the alternate .. 27

CHAPTER 3: MOTORS AND DRIVERS... 29

CHAPTER 4: PROGRAMMER... 32

4.1 TOP 2005+ Universal Programmer .. 32

CHAPTER 5: CONCLUSIONS AND FUTURE WORK.. 33

5.1 Conclusion .. 33
5.2 Future Work .. 33

APPENDICES .. 34

Appendix A Vehicle Movement in Multidirections ... 34
Appendix B Turn Angle Calculation and Implementation 44

REFERENCES ... 49

LIST OF TABLES

2.1 Calculation of bearing (C=N,F=N,C≠F, F>C)………………………… 16

2.2 Calculation of bearing (C=N, F=N, C≠F, F<C)….…………………… 16

2.3 Calculation of bearing (C=N, F=N, C=F)……………….…………... 16

2.4 Calculation of bearing (C=N, F≠N)…………………………………... 17

2.5 Calculation of bearing (C≠N, F=N)…..………………………………. 17

2.6 Calculation of bearing (C≠N, F≠N, C≠F, F>C).………………………. 17

2.7 Calculation of bearing (C≠N, F≠N, C≠F, F<C)………………………… 18

2.8 Calculation of bearing (C≠N, F≠N, C=F)……………………………… 18

LIST OF FIGURES

1.1 System Overview……….……………………………………………… 8

1.2 Pictures of the car with embedded system…………………………. 8

1.3 IC: AT89C51…………………………………………………………… 10

2.1 System Data Flow……………………...……………………………… 11

2.2 Vertical displacement calculation flowchart……………………….... 13

2.3 Horizontal displacement calculation flowchart……………………... 15

2.4 Calculating front wheel rotation angle………………………………. 20

2.5 Turning arc………………………………………………………………. 21

2.6 Determining the arc length……………………………………………. 22

2.7 Determining the optimum turn angle………………………………… 23

2.8 Flowchart for determining the turn angle …………………………… 24

2.9 Aligning the vehicle heading with single arc………………………. 25

2.10 Aligning the vehicle heading with multiple arcs…………………… 25

3.1 Controlling unipolar stepper motor using ULN2003………………. 26

3.2 Controlling DC motor using L293D………………………………….. 27

3.3 Circuit diagram of entire embedded system………………………… 28

4.1 Universal Programmer 29

CHAPTER 1: INTRODUCTION

1.1 Introduction

Land, marine and air navigation systems have seen many advances with the

advancements of technologies such as DECCA Navigator System [1], LORAN [2]

and many more with the latest and the most accurate to date being the Global

Positioning System or GPS [3] in short.

With the introduction of this service to the civil population, researches resulted into

commercial units offering navigation aids for automobiles, ships and aircrafts.

1.2 Project Overview

The vehicle consists of two motors, responsible for backward and forward movement

and right and left rotation respectively, a microcontroller interfaced with a GPS

device and user input interface. The user inputs the desired destination in terms of

longitude and latitude. The microcontroller reads the data from GPS device and

creates a path to the final destination. It then gives necessary signal to the motors.

As the vehicle starts to move, the microcontroller keeps on taking feedback from the

GPS device making necessary corrections by constantly sending signal to the

motors. The process is continued till the vehicle reaches the destination. The block

diagram in the figure below illustrates the entire process.

User input

(In terms of

GPS Device

(Feedback

Micro Controller

(Controls the

Motor 2

(Responsible for
forward or

Motor 1

(Responsible for
moving the

Fig. 1.1 System Overview

Fig. 1.2 Pictures of the car with embedded system

1.3 Global Positioning System

It is a system by which an object’s position can be pin pointed. A GPS [4] receiver’s

job is to locate four or more of the satellites revolving the planet, figure out the

distance to each, and use this information to deduce its own location. This operation

is based on a simple mathematical principle called trilateration.

A GPS receiver calculates the distance to GPS satellites by timing a signal’s journey

from satellite to receiver. As it turns out, this is a fairly elaborate process. At a

particular time (let’s say midnight), the satellite begins transmitting a long, digital

pattern called a pseudo-random code. The receiver begins running the same digital

pattern also exactly at midnight. When the satellite’s signal reaches the receiver, its

transmission of the pattern will lag a bit behind the receiver’s playing of the pattern.

The length of the delay is equal to the signal’s travel time. The receiver

multiplies this time by the speed of light to determine how far the signal

traveled. Assuming the signal traveled in a straight line, this is the distance

from receiver to satellite. Differential GPS (DGPS) [4] helps correct some

errors. The basic idea is to gauge GPS inaccuracy at a stationary receiver

station with a known location. Since the DGPS hardware at the station

already knows its own position, it can easily calculate its receiver’s

inaccuracy. The station then broadcasts a radio signal to all DGPS-equipped

receivers in the area, providing signal correction information for that area. In

general, access to this correction information makes DGPS receivers much

more accurate than ordinary receivers.

1.4 Micro-Controller

The micro-controller used in the system is ATMEL’s AT89C51. The AT89C51 is a

low-power, high-performance CMOS 8-bit microcomputer [5] with 4Kbytes of Flash

programmable and erasable read only memory (PEROM) [6]. The device is

http://www.howstuffworks.com/question697.htm

manufactured using Atmel’s high-density nonvolatile memory technology and is

compatible with the industry-standard MCS-51 instruction set and pin-out. The on-

chip Flash allows the program memory to be reprogrammed in-system or by a

conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU

with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer

which provides a highly-flexible and cost-effective solution to many embedded

control applications.

Fig. 1.3 IC: AT89C51

CHAPTER 2: THE OVERALL SYSTEM

2.1 System Data Flow

Start

Stop

Input final
position

Get
current
position

Get
current

heading

Is

C = F

Y

N
Find vertical

displacement

B t C

Find horizontal
displacement

B t C

Calculate
bearing of F from

Calculate
difference

between bearing

Turn Left or
Right or no
turn at all

Fig. 2.1 System data flow

This is how the overall system works:

1. First it takes input from the user in terms of longitude and latitude.

2. Then it takes reading of the current position of the vehicle from the GPS

device.

3. Then it takes reading from the electronic compass, which gives the current

heading.

4. It then checks whether the current position is equal to the final destination. If

it is yes then it stops and if it is no then it goes to the next step.

5. At this point it finds the vertical displacement between current and final

destination.

6. Then it finds the horizontal displacement between current and final

destination.

7. Using the values of vertical and horizontal displacement, it calculates the

bearing of final destination from the current position.

8. It then calculates the difference between bearing of the final destination from

the current position and the direction the vehicle is currently heading.

9. Based on the values found the system decides in which direction should the

vehicle move or should it move at all. The entire process from step 2 is

repeated till the vehicle reaches the destination.

2.1.1 Calculating vertical displacement

This is how the system calculates the vertical displacement. Figure 2.2 shows the

flowchart of the algorithm.

1. It checks if the current location is in the northern hemisphere. Based on the

decision, it takes any of the two paths.

2. Assuming the current location was in the northern hemisphere, it then checks

whether the final destination is also in the northern hemisphere. There again

based on the reading it takes any of the two paths.

3. Assuming the final position is also in the northern hemisphere, it then checks

if the current latitude is equal to the final latitude. Based on the decision, it

takes any of the two paths.

4. Assuming the current is not equal to final, it then check if the destination

latitude is greater than the current latitude. Based on the decision, it takes

any of the two paths.

5. Assuming the final is greater than current, it then calculates the difference

between final and current and this gives the vertical displacement. It then

goes on to the next step which is to find out the horizontal displacement.

Is

C = N

Is

F = N

Is

C = F

Is

F > C

Dvert = F - C

Y

Y

Y

N

Dvert = C - F

Dvert = 0

Dvert = C + F

Is

F = N

Is

C = F

Is

F > C

Dvert = C +
F

Y

N

N

Y

N

N

N

Y

Y

Dvert = C - F

Dvert = F - C

Dvert = 0

…

…

…

…

…

…

…

…

.

.

1

2

3

4

5

6

7

8

Fig. 2.2 Vertical displacement calculation flowchart

2.1.2 Calculating horizontal displacement

This is how the system calculates the horizontal displacement. Figure 2.3 shows the

flowchart of the algorithm.

1. It checks if the current location is in the eastern hemisphere. Based on the

decision, it takes any of the two paths.

2. Assuming the current location was in the eastern hemisphere, it then checks

whether the final destination is also in the eastern hemisphere. There again

based on the reading it takes any of the two paths.

3. Assuming the final position is also in the eastern hemisphere, it then checks if

the current longitude is equal to the final longitude. Based on the decision, it

takes any of the two paths.

4. Assuming the current is not equal to final, it then check if the destination

longitude is greater than the current longitude. Based on the decision, it takes

any of the two paths.

5. Assuming the final is greater than current, it then calculates the difference

between final and current and this gives the horizontal displacement. It then

goes on to the next step which is to calculate the bearing of the final

destination from the current location.

From the algorithm of finding the vertical displacement, we find that there are eight

possible results. Also, the horizontal displacement algorithm gives eight possible

results. Since the algorithm of finding horizontal displacement is applied immediately

after the vertical displacement algorithm, thus that leaves us with sixty four different

combinations.

Is

C = E

Is

F = E

Is

C = F

Is

F > C

Dhor = F - C

Y

Y

Y

N

Dhor = C - F

Dhor = 0

Dhor = C + F

Is

F = E

Is

C = F

Is

F > C

Dhor = C +
F

Y

N

N

Y

N

N

N

Y

Y

Dhor = C - F

Dhor = F - C

Dhor = 0

…

…

…

…

…

…

…

…

.

.

1

2

3

4

5

6

7

8

Fig. 2.3 Horizontal displacement calculation flowchart

Putting these sixty four different combinations in a table we found out that different

formulae need to be used to calculate the bearing of the final destination from the

current location. Table 2.1 to 2.8 shows the results of the bearings.

Table 2.1

Calculation of bearing (C=N,F=N,C≠F F>C)

1

C=N

F=N

C≠F

F>C

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB1 BB2 BB3 BB2 BB1 BB2 BB1 BB3

Table 2.2

Calculation of bearing (C=N, F=N, C≠F, F<C)

2

C=N

F=N

C≠F

F<C

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB7 BB8 BB5 BB8 BB7 BB8 BB7 BB5

Table 2.3

Calculation of bearing (C=N, F=N, C=F)

3

C=N

F=N

C=F

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB4 BB6 STOP BB6 BB4 BB6 BB4 STOP

Table 2.4

Calculation of bearing (C=N, F≠N)

4

C=N

F≠N

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB7 BB8 BB5 BB8 BB7 BB8 BB7 BB5

Table 2.5

Calculation of bearing (C≠N, F=N)

5

C≠N

F=N

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB1 BB2 BB3 BB2 BB1 BB2 BB1 BB3

Table 2.6

Calculation of bearing (C≠N, F≠N, C≠F, F>C)

6

C≠N

F≠N

C≠F

F>C

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB7 BB8 BB5 BB8 BB7 BB8 BB7 BB5

Table 2.7

Calculation of bearing (C≠N, F≠N, C≠F, F<C)

7

C≠N

F≠N

C≠F

F<C

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB1 BB2 BB3 BB2 BB1 BB2 BB1 BB3

Table 2.8

Calculation of bearing (C≠N, F≠N, C=F)

8

C≠N

F≠N

C=F

1 2 3 4 5 6 7 8

C=E

F=E

C≠F

F>C

C=E

F=E

C≠F

F<C

C=E

F=E

C=F

C=E

F≠E

C≠E

F=E

C≠E

F≠E

C≠F

F>C

C≠E

F≠E

C≠F

F<C

C≠E

F≠E

C=F

BB4 BB6 STOP BB6 BB4 BB6 BB4 STOP

The formulae for finding the bearings, B1 to B8 are given in equations 2.1 to 2.8.

BB1 = tan (D-1
hor / Dvert) (2.1)

BB2 = 360 - tan (Do -1
hor / Dvert) (2.2)

BB3 = 0 (2.3) o

BB4 = 90 (2.4) o

BB5 = 270 (2.5) o

BB6 = 180 (2.6) o

BB7 = 180 - tan (Do -1
hor / Dvert) (2.7)

BB8 = 180 + tan (Do -1
hor / Dvert) (2.8)

2.1.3 Calculating front wheel rotation angle

This is how the system decides the front wheel rotation. Figure 2.4 shows the

flowchart of the algorithm.

1. It checks if the current heading is equal to bearing of final destination from

current position. If it is Yes then there is no rotation and it takes new reading

from GPS

2. Here it checks if heading is greater than bearing.

3. Assuming the Heading to be greater than bearing, it then calculates the

difference between heading and bearing.

4. It then checks if the difference is greater than 180o.

5. Assuming the difference to be greater than 180o It checks if the wheels were

turned right previously.

6. Assuming that the wheels were not turned, it then turns the wheels right.

Is

H B

.

Is

H B

Diff = H - B

Is

Did
previously
turn Right

Do
Nothin

Turn
Right

Did

previously
turn Left

Do
Nothin

Turn
Left

Y

Y

Y

Y

Do
Nothin

Diff = H - B

 Is

 Did
previously
turn Left

Do
Nothin

Turn
Left

 Turn
Right

Did
previously
turn Right

Do
Nothin

…

…

…

…

…

…

…

…
…

Y Y

Y
Y N

N

N N

N

N N

N

Fig 2.4 Calculating front wheel rotation angle

2.1.4 Determining the turn angle (alternate):

To account the turning arc for a vehicle trying to make a turn the following is another

solution. The arc of turn is to be considered as it will cause a final displacement

slightly different from the desired displacement. Thus, in order to determine the arc of

displacement, we need to find the optimum angle for which a minimum optimal arc is

going to be traversed by the vehicle.

The angle found by the previous step is denoted by the red arc and the angle to

which the wheel must be turned is denoted by the green arc. This is the angle that

we need to find which will maintain a uniform arc to the destination B.

Fig. 2.5 Turning arc

2.1.4.1 Finding the arc length
The arc length [7] can be found given the initial position, heading and the final

destination using the formula:

 (2.9)

 (2.10)

φ

θ

Fig. 2.6 Determining the arc length

2.1.4.2 Finding the optimum wheel turn angle

As we are now equipped with the value of theta, we need to find the optimum angle

to which the wheel must be turned to traverse the arc accurately. Now, this depends

on many factors like, vehicle size and shape, displacement of the wheels and the

forward thrust power. So, we have to find an optimal angle that will be least affected

by all of these factors. Thus, an optimal angle would be T% of arc length, where

value of T would depend on the above factors.

Fig. 2.7 Determining the optimum turn angle

Fig. 2.8 Flowchart for determining the turn angle

The flowchart above shows the flow of data for finding the optimum turn angle.

2.1.5 Applying the alternate

Now, this method can be used to straighten the vehicle to align with the final

heading. This is illustrated in the following diagrams.

In the first one, the slope of tangent to the arc at the end point is compared with the

slope of line from that point to the point B. If the slopes are equal then the wheels are

straightened and the car moves forward heading straight towards heading B.

B

A

Fig. 2.9 Aligning the vehicle heading with single arc

The figure below is a dynamic approach to aligning the vehicle to the destination

bearing.

 B

A

Fig. 2.10 Aligning the vehicle heading with multiple arcs

CHAPTER 3: MOTORS AND DRIVERS

For our thesis we used a stepper motor to control the front wheel rotation and we

used a normal DC motor for the rear wheels for forward and backward movement.

To control the stepper motor we used IC: ULN2003 and to control the DC motor we

used IC: L293D. Figure 3.1 illustrates how stepper motor can be controlled using

ULN2003. Figure 3.2 illustrates how the DC motor can be controlled using L293D

and figure 3.3 shows the circuit diagram of the entire embedded system.

Fig. 3.1 Controlling unipolar stepper motor using ULN2003

Fig. 3.2 Controlling DC motor using L293D

4

1 2 3 4 7 8 9 211

3

1 2 3 4 8

9 1 1 1 1

2 3 8 5 4 7 6

1

ULN2003 AT89C51 L293D

4 MHz

30 pF

Reset

 M

+ 9 V

+ 6 V + 6 V + 6 V

Stepper Motor

Fig. 3.3 Circuit diagram of entire embedded system

CHAPTER 4: PROGRAMMER

4.1 TOP 2005+ Universal Programmer

To burn our programs into the microcontroller, we used a universal programmer

manufactured by the Chinese company TOPWIN. The programmer comes with

installation CD with the software and a user manual. It has USB interface and very

easy to use.

We wrote our programs in C and compiled and converted to hex files, which then we

downloaded into the microcontroller using the universal programmer and the

software that came with it.

Fig. 4.1 Universal Programmer

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

The Automation system was designed to work acquiring the coordinate data from a

GPS receiver. The system would run according to the actual algorithms described in

the respective sections. However, during test sessions, factors like vehicle size,

weight, displacement of front and rear wheels, movement environment like surface

friction, skidding of wheels etc affected the actual path traversed by the vehicle.

Proper GPS receiver was not acquired during the course of the development, which

had made it impossible to carry out any tests that involved the data from a GPS

receiver.

5.2 Future Work

Thus, the system still requires to be worked upon to be made fully active. Among all

the other developments, we would suggest the use of obstacle avoidance techniques

and relevant sensors if the vehicle is to be used in a dynamic environment where the

obstructions are not known before hand. To use a vehicle equipped with our

automating system on regular traffic roads, the system would need an integrated

map which could assist it following the road exactly and it would also need

integration with the existing traffic system.

APPENDICES

Appendix A Vehicle Movement in Multidirections

unsigned int DATA;

void delay(unsigned int x){ /* x * 1ms delay */

 unsigned int k, l;

 for(k=0;k<x;++k){

 for(l=0;l<50;++l);

 }

}

void Sleep(unsigned int x){ /* x * 1ms delay */

 unsigned int k, l;

 for(k=0;k<x;++k){

 for(l=0;l<50;++l);

 }

}

void Out32(unsigned int DATAa, unsigned int pval){

 DATAa=0;

 P1=pval;

}

void stop (void){

 unsigned int pval = 0x00;

P1=pval;

}

void left (void){

 unsigned int delayTime = 20;

 unsigned int m_angle=10;

 unsigned int angle = (m_angle/(3.75))*96;

 unsigned int i=0;

 while (i<angle){

 switch(i%4){

 case 0:

 Out32(DATA,0x08); delay(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x04); delay(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x02); delay(delayTime);

 ++i;break;

 case 3:

 Out32(DATA,0x01); delay(delayTime);

 i++;break;

 default:

 ++i;

 }

 }

}

unsigned int Inp32(unsigned int x){

 x=P1;

 return x;

}

void left1 (unsigned int m_angle){

 unsigned int delayTime = 2;

 unsigned int angle = (m_angle/(3.75*2))*96;

 unsigned int i=0;

 unsigned int currentState=0;

 while (i<angle){

 currentState=Inp32(DATA);

 if((currentState & 0x10) == 0x10){

 switch(i%4){

 case 0:

 Out32(DATA,0x18); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x14); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x12); Sleep(delayTime);

 ++i;break;

 case 3:

 Out32(DATA,0x11); Sleep(delayTime);

 i++;break;

 default:

 ++i;

 }

 }

 else if((currentState & 0x20) == 0x20){

 switch(i%4){

 case 0:

 Out32(DATA,0x28); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x24); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x22); Sleep(delayTime);

 ++i;break;

 case 3:

 Out32(DATA,0x21); Sleep(delayTime);

 i++;break;

 default:

 ++i;

 }

 }

 else{

 switch(i%4){

 case 0:

 Out32(DATA,0x08); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x04); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x02); Sleep(delayTime);

 ++i;break;

 case 3:

 Out32(DATA,0x01); Sleep(delayTime);

 i++;break;

 default:

 ++i;

 }

 }

 }

}

void right1 (int m_angle){

 /* m_angle/=2; */

 unsigned int delayTime = 2;

 unsigned int angle = (m_angle/(3.75*2))*96;

 unsigned int i=0;

 unsigned int currentState=0;

 while (i<angle){

 currentState=Inp32(DATA);

 if((currentState & 0x10) == 0x10){

 switch(i%4){

 case 3:

 Out32(DATA,0x18); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x14); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x12); Sleep(delayTime);

 ++i;break;

 case 0:

 Out32(DATA,0x11); Sleep(delayTime);

 ++i;break;

 default:

 ++i;

 }

 }

 else if((currentState & 0x20) == 0x20){

 switch(i%4){

 case 3:

 Out32(DATA,0x28); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x24); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x22); Sleep(delayTime);

 ++i;break;

 case 0:

 Out32(DATA,0x21); Sleep(delayTime);

 ++i;break;

 default:

 ++i;

 }

 }

 else{

 switch(i%4){

 case 3:

 Out32(DATA,0x08); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x04); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x02); Sleep(delayTime);

 ++i;break;

 case 0:

 Out32(DATA,0x01); Sleep(delayTime);

 ++i;break;

 default:

 ++i;

 }

 }

 }

}

void right (void){

 int m_angle=10;

 unsigned int delayTime = 20;

 unsigned int angle = (m_angle/(3.75))*96;

 unsigned int i=0;

 while (i<angle){

 switch(i%4){

 case 3:

 Out32(DATA,0x08); Sleep(delayTime);

 ++i;break;

 case 2:

 Out32(DATA,0x04); Sleep(delayTime);

 ++i;break;

 case 1:

 Out32(DATA,0x02); Sleep(delayTime);

 ++i;break;

 case 0:

 Out32(DATA,0x01); Sleep(delayTime);

 ++i;break;

 default:

 ++i;

 }

 }

}

void forward (void){

 unsigned int forwardTime=3000;

 Out32(DATA,0x10);

 Sleep(forwardTime);

 stop();

}

void reverse (void){

 unsigned int reverseTime=3000;

 Out32(DATA,0x20);

 Sleep(reverseTime);

 stop();

}

void main(){

 unsigned char c[]="SLFFRFFSBBRFFFLF0T";

 unsigned int i=0;

 unsigned int ext=0;

 P1=0;

 P2=0;

 P3=0;

 P0=1;

 while (c[i]!='T'){

 switch (c[i]){

 case 'S': stop(); break;

 case 'L': left(); break;

 case 'R': right(); break;

 case 'F': forward(); break;

 case 'B': reverse(); break;

 case 'T': stop(); ext=1; break;

 default: stop(); break;

 }

 if(ext==1) break;

 ++i;

 }

 while(1){

 P1=0x00;

 }

}

Appendix B Turn Angle Calculation and Implementation

double turnDegree (double x1, double y1, double x2, double y2){

 double minArcLength = 0.0 ;

 double ArcLength = 0.0;

 double maxArcAngle = 0.0;

 double arcAngle = 26.0;

 double decrement = 0.5;

 double centralAngle = 0.0;

 double phi = 0.0;

 double theta = 26.0;

 double X = 0.0;

 double Y = 0.0;

 Y = y2-y1;

 X = x2-x1;

 while (arcAngle>0.0){

 phi = atan(((x1-x2) * tan(90-theta) + Y)/(Y * tan(90-

theta) + X));

 centralAngle = 2.0*phi;

 ArcLength = phi * sqrt(Y*Y + X*X) / (sin (phi));

 if(minArcLength > ArcLength){

 minArcLength = ArcLength;

 maxArcAngle = arcAngle;

 }

 arcAngle = arcAngle - decrement;

 }

 return maxArcAngle;

}

void processRun (void){

 unsigned char c[] = "abcdefghijklmnopqrstuvwxyz";

 unsigned char move[] = "0,0,2,2";

 unsigned int i = 0;

 unsigned int ext = 0;

 double turnAngle = 0;

 double x1;

 double x2;

 double y1;

 double y2;

 unsigned char *tok;

 unsigned char token[] = "abcd";

 tok = strtok (move, " ,\t\n");

 if (tok != NULL) {

 strcpy(token,tok);

 x1 = (double)atof(token);

 tok = strtok (NULL, " \t\n");

 }

 if (tok != NULL) {

 strcpy(token,tok);

 y1 = (double)atof(token);

 tok = strtok (NULL, " \t\n");

 }

 if (tok != NULL) {

 strcpy(token,tok);

 x2 = (double)atof(token);

 tok = strtok (NULL, " \t\n");

 }

 if (tok != NULL) {

 strcpy(token,tok);

 y2 = (double)atof(token);

 tok = strtok (NULL, " \t\n");

 }

 turnAngle = turnDegree (x1,y1,x2,y2);

 rightAngle(turnAngle);

 strcpy(c,"SFF");

 P1=0;

 P2=0;

 P3=0;

 P0=1;

 while (c[i]!='T'){

 switch (c[i]){

 case 'S': stop(); break;

 case 'L': left(); break;

 case 'R': right(); break;

 case 'F': forward(); break;

 case 'B': reverse(); break;

 case 'T': stop(); ext=1; break;

 default: stop(); break;

 }

 if(ext==1) break;

 ++i;

 }

}

REFERENCES

[1] Wikipedia. (2008). Decca Navigator System [online]. [Accessed 13 September

2008]. Available from World Wide

Web: <http://en.wikipedia.org/wiki/Decca_Navigator_System>.

[2] Wikipedia. (2008). LORAN [online]. [Accessed 13 September 2008]. Available

from World Wide Web: <http://en.wikipedia.org/wiki/LORAN>.

[3] Wikipedia. (2008). Global Positioning System [online]. [Accessed 13

September 2008]. Available from World Wide

Web: <http://en.wikipedia.org/wiki/GPS>.

[4] Howstuffworks. (2008). Global Positioning System [online]. [Accessed 13

September 2008]. Available from World Wide Web:

< http://adventure.howstuffworks.com/gps1.htm >

[5] Atmel. (2008). High performance micro-controllers (89C51)

[Online]. [Accessed 13 September 2008].

Available from World Wide Web:

< http://www.atmel.com/dyn/resources >

[6] Atmel. (2008). 8-bit Microcontroller with 4K Bytes Flash (89C51)

[Online]. [Accessed 16 October 2008].

Available from World Wide Web:

< http://www.atmel.com/dyn/resources/prod_documents/doc0265.pdf >

[7] Mathworks. (2008). Arcs and chords [online]. [Accessed 18 November

2008]. Available from World Wide Web:

< http://www.mathworks.com/ >

[8] G. Lachapelle, B. Townsend, H. Gehue, M. E. Cannon. (1993). GPS versus

Loran-C for vehicular navigation in urban andmountainous areas.

Proceedings of the IEEE-IEE, Vehicle Navigation and Information Systems

Conference, 1993. p456-459.

[9] David Mark Bevly. (2001). High Speed, Dead Reckoning, And Towed Implement

Control For Automatically Steered Farm Tractors Using GPS. A dissertation

submitted to the Department of Mechanical Engineering and the Committee

on Graduate Studies of Stanford University.

[10] J. Stephen and G. Lachapelle. (2001). Development and Testing of a GPS

Augmented Multi-Sensor Vehicle Navigation System. The Journal of

Navigation. 54 (2), p297-319.

[11] Salah Sukkarieh, Eduardo M. Nebot and Hugh F. Durrant-Whytte. (1999). A

High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle

Applications. IEEE transactions on Robotics and Automation. 15 (3), p572-

578.

[12] Chang-Sun Yoo, Lee-ki Ahn. (2003). Low cost GPS/INS sensor fusion system

for UAV navigation. Digital Avionics Systems Conference, 2003. DASC '03.

The 22nd. 2 (3), p8.A.1 - 8.1-9.

[13] S. H. Kwak, J. B. McKeon, J. R. Clynch, and R. B. McGhee. (1992).

Incorporation of Global Positioning System into Autonomous Underwater

Vehicle Navigation. Proceedings of the 1992 Symposium on Autonomous

Underwater Vehicle Technology, 1992. AUV '92. p291-297.

[14] Qiuping Wu, Zhongyu Gao, and Yongliang Wang. (2002). Study on

GPS/DR/MM integrated navigation system for vehicle based on DSP. IEEE

2002 International Conference on Communications, Circuits and Systems

and West Sino Expositions. 2, p1591-1595.

[15] David Hohman, Thomas Murdock, Edwin Westerfield, Thomas Hattox, and
Thomas Kusterer. (2000). GPS roadside integrated precision positioning

system. Position Location and Navigation Symposium, IEEE 2000. p221-230.

[16] Yongyi Zhao, Bo Song, and Jin Li. (2007). A Map Matching Algorithm in GPS-

based Car Navigation System. Third International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007. 1,

p77-80.

[17] Youngsheng Wang, Xiangpeng Li, and Yong Huang. (1996). Navigation

system of pilotless aircraft via GPS. Aerospace and Electronic Systems

Magazine, IEEE. 11 (8), p16-20.

	BRAC University, Dhaka, Bangladesh
	
	DECLARATION
	
	ACKNOWLEDGMENTS
	
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	
	
	LIST OF FIGURES
	
	CHAPTER 1: INTRODUCTION
	
	
	
	
	
	
	
	CHAPTER 2: THE OVERALL SYSTEM
	 CHAPTER 3: MOTORS AND DRIVERS
	
	
	
	
	
	
	
	
	
	 CHAPTER 4: PROGRAMMER
	 CHAPTER 5: CONCLUSIONS AND FUTURE WORK
	APPENDICES
	REFERENCES

