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We draw attention to a simple principle, which can be used to prove many of the 
usual and important theorems on countabilty of sets. We formulate it as the 

Countability Lemma. Suppose to each element of 
the set A there is assigned, by some definite rule, a 
unique natural number in such a manner that to 
each n∈ N there corresponds at most a finite 
number of elements of the set A. Then A is 
countable. 
 
The principle embodied in this lemma is not new, 
but we have not seen it expressly formulated 
anywhere. Needless to say, N denotes the set of 
natural numbers (which naturally begins with 1). 

e recall the basic definitions  W
 
A set S is said to be equinumerous with a set T if 
there exists a bijective mapping from S onto T. 
Many authors say S is equivalent to T, but we 
prefer not to overuse the adjective “equivalent”. 
A set S is called finite if it is either empty or it is 
nonempty and  there exists a natural number n such 
that S is equinumerous with { , the 
set of the first n natural numbers. If no such n 
exists, then S is called an infinite set.   

}n...,,3,2,1

An infinite set is called denumerable if it is 
equinumerous with N. 
A set is called countable if it is either finite or 
denumerable. Some authors use the term countable 
instead of denumerable; for our “countable” they 
have to say “at most countable”. 
The elements of a countable set S can be written 
down as a finite or an infinite sequcence 
                                        a  ...,,, 321 aa
where repetitions are allowed. We call this an 
enumeration of S. 
 
Proof of the Countability Lemma. Let  k(n) 
denote the number of elements of  A which 
correspond to n. We denote by a , 

 the k(1) elements of A 
corresponding to n = 1, provided k(1) > 0 ; then 

denote by the 
k(2) elements of A corresponding to n = 2, 
provided k(2) > 0; and so on. This gives us an 
numeration of all the elements of A 
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Theorem 1. Every subset of a countable set is 
ountable. c

  
Proof. Suppose   is an 
enumeration of the countable set A and B is any 
nonempty subset of A. If, for some n∈ N, the 
element belongs to B, then we assign the 
natural number n to it. For each  n∈ N  let k(n) 
denote the number of elements among 

, which belong to the subset B. 
Then  0 

a

aa ,, 21
≤  k(n)  n . Therefore, B is countable by 

the Countability Lemma. 
 
 
Theorem 2. The set Q of rational numbers is 
countable. 
 
Proof. To 0∈ Q  we assign the natural number 1, 

and to each nonzero rational number  in reduced 

form ( where r, s ∈  Z are coprime and ) we 
assign the natural number  
n = 2≥+ sr . Then to each  n∈ N there  
corresponds a finite number of rational numbers, 
because r and s   are natural numbers and 

aa ±=  . Therefore, Q is countable by the 
Countability Lemma. 
 
 
Theorem 3. The Cartesian product of two 
countable sets is countable. 
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Proof.  Suppose A, B are countable sets and 
 is an enumeration of  A and  ...,,, 321 aaa

k-element subsets of A has the form 
 { a ,,

21
} where 

kiii aa ......,

kiii <<< ......21  . ...,,, 321 bbb  is an enumeration of  B. Then  

                   A×B = ( ){ }N,N:, ∈∈ jiba ji . 

)To the element ( ji ba ,  we assign the natural 

number n= i + j. Then to each natural number n  
2 there correspond n – 1 elements of A

≥
×B, viz. 

, , …,  
Therefore A×B is countable by the Countability 
Lemma. 

( )11, −nba ( 22 , −nba ) )( 1,b1an−

To this subset we assign the natural number 

kiiin +++= ......21
n

i2,1

. Then to each natural 
number there corresponds only a finite number 
of possibilities for i , that is, only a 

finite number of k- element subsets of A. Therefore 
A is countable by the Countability Lemma.  

ki,......,

 
Theorem 6. The family of all finite subsets of a 
countable set is countable. 

 
Corollary. The Cartesian product of a finite family 
of countable sets is countable.  
 Proof. Suppose A is countable. Denote by Αn the 

family of all n-element subsets of A. Each Αn is 
countable. The family of all finite subsets of A is 
the union of all Αn, n∈ N; as such it is countable by 
Theorem 4. 

Remark. This result does not extend to a 
denumerable family of denumerable sets, as shown 
by the example NN. It is the set of all sequences of 
natural numbers, which is known to be 
uncountable.   
 A real or complex number is called algebraic if it 

satisfies a polynomial equation with integer 
coefficient; that is, if it is a root of an equation of 
the form 

Theorem 4. The union of a countable family of 
ountable sets is countable.  c

 
Proof. Without lost of generality, we can denote a 
countable family of sets by  (1)                                            

,  0...1
10 =+++ −

k
kk axaxa A1, A2 , A3, …. Suppose ai1, ai2,  ai3, … is an 

enumeration of Ai. Then  
where are integers and n∈ N. kaaa ...,,, 10

Υ
∞

=1i

Ai = { aij : i∈N, j∈N}.  
In particular every rational number is algebraic; so 
are many irrational numbers. A real number which 
is not algebraic, is called transcendental. It is 
known that e and π, the two most important 
numbers in Mathematics, are transcendental.  

To the element aij we assign the natural number n= 
i + j. Then to each natural number 
 n � 2 there correspond at most n –1 distinct 
elements of A. Therefore A is countable by the 

ountability Lemma.  C
 
Remark. The union of a denumerable family of 
denumerable sets is denumerable, even when the 
sets in the family are pairwise disjoint; whereas the 
Cartesian product of denumerable family of 
denumerable sets is non-denumerable 
(uncountable), even when all the sets in the family 
are the same. This is one of the many surprises of 
transfinite set theory, “ the paradise created by 
Cantor from which no one can drive us out” 
(Hilbert).  

n

Theorem 7. The set of all algebraic numbers, real 
and complex, is countable. 

Proof.  If x is algebraic and satisfies the equation 
(1), the to x we assign the natural number  

kaaak ++++= ...10

kaaak ...,,,, 10

. Then to each n∈ 
N there corresponds a finite number of choices for 

; that is, a finite number of 
equations of the form (1). Each of these equations 
has at most k distinct roots in the system of 
complex numbers (according to the Fundamental 
Theorem of Algebra), each of which is an algebraic 
number. Therefore, to each n∈ N there corresponds 
a finite number of algebraic numbers. Therefore, 
the set of all algebraic numbers is countable by the 
Countability Lemma. 

 
Theorem 5. The family of all subsets of a 
countable set having a fixed and finite number of 
elements is countable. 
 
Proof.  Suppose A is countable and a1, a2,  a3, … 
is an enumeration of A. Then every  
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Theorem 8. The set of real transcendental numbers 
is uncountable. 
 
Proof. R is the (disjoint) union of the set of real 
algebraic numbers, which is countable, and the set 
of real transcendental numbers. If the latter set 
were countable, R would be countable. 
 
This existence theorem ranks among the most 
amazing instances of the power of mathematical 

reasoning. We have established the existence of 
uncountably many real transcendental numbers, 
without needing to know a single specific 
transcendental number. 
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